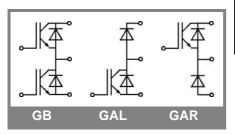


IGBT Module

SK40GB067 SK40GAL067 SK40GAR067


Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications*

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		62	Α	
		$T_s = 80 ^{\circ}C$		41	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			180	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		10	μs	
Inverse [Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		62	Α	
		$T_s = 80 ^{\circ}C$		38	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; sinusoidal	$T_j = ^{\circ}C$		270	Α	
Freewhe	eling Diode					
I _F	T _j = 150 °C	Ts = 25 °C		62	Α	
		Ts = 80 °C		38	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms;	$T_j = ^{\circ}C$		270	Α	
Module						
I _{t(RMS)}					Α	
T _{vj}				-40 +150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s = 2$				25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units		
IGBT	•					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.9 \text{ mA}$		3	4	5	V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,006	mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			360	nA		
V _{CE0}		T _j = 150 °C			2	V		
r _{CE}	V _{GE} = 15 V	T _j = 150°C		17		mΩ		
V _{CE(sat)}	I _{Cnom} = 90 A, V _{GE} = 15 V			2,8	3,15	V		
		$T_j = 125^{\circ}C_{chiplev}$		3,5	4	V		
C _{ies}				4,5		nF		
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,45		nF		
C _{res}				0,27		nF		
t _{d(on)}				40		ns		
t _r	$R_{Gon} = 0 \Omega$	$V_{CC} = 400V$		90		ns		
E _{on}		I _C = 90A		2,44		mJ		
t _{d(off)}	$R_{Goff} = 11 \Omega$	T _i = 125 °C		262		ns		
t _f		V _{GE} =±15V		30		ns		
E _{off}				2,54		mJ		
R _{th(j-s)}	per IGBT				0,6	K/W		

SK40GB067

SEMITOP® 3

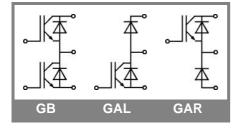
IGBT Module

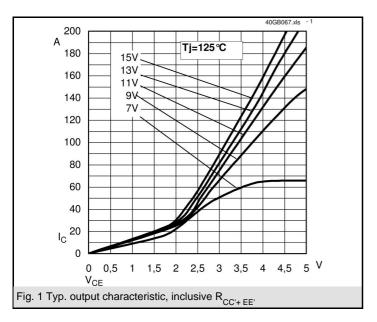
SK40GB067 **SK40GAL067 SK40GAR067**

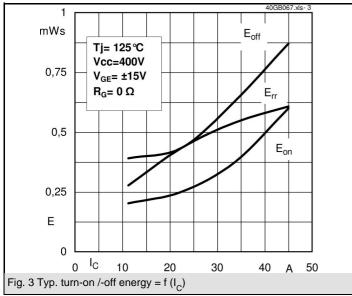
Target Data

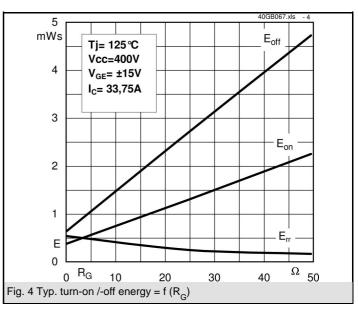
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

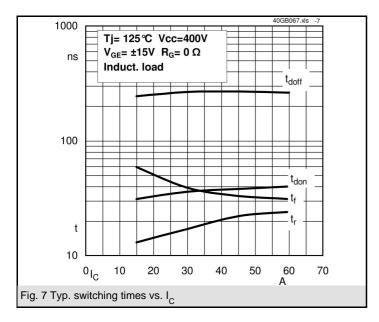

Typical Applications*

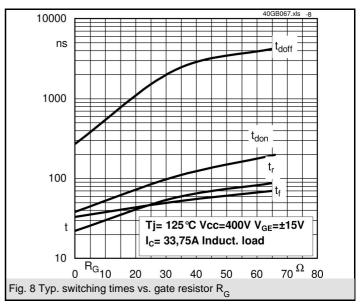

- Switching (not for linear use)
- **High Frequencies Applications**
- Welding generator
- Switched mode power supplies
- UPS

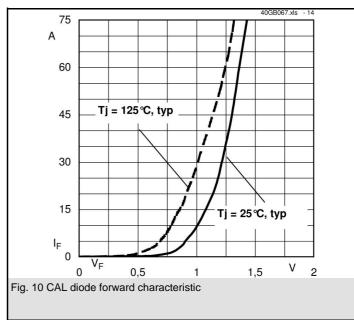

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 90 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$			2	V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,25		V	
V_{F0}		T _j = 25 °C				V	
		T _j = 150 °C		1		V	
r _F		T _j = 25 °C				mΩ	
		T _j = 150 °C		5,5		mΩ	
I _{RRM}	I _F = 90 A	T _j = 125 °C		7,5		Α	
Q_{rr}	di/dt = -270 A/μs			4,65		μC	
E _{rr}	V _{CC} = 400V			0,93		mJ	
$R_{th(j-s)D}$	per diode				1,2	K/W	
Free-wheeling diode							
$V_F = V_{EC}$	$I_{Fnom} = 90 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$			2	V	
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,25		V	
V_{F0}		T _j = 25 °C				V	
		T _j = 150 °C		1		V	
r _F		T _j = 25 °C				V	
		T _j = 150 °C		5,5		V	
I _{RRM}	I _F = 90 A	T _j = 125 °C		7,5		Α	
Q_{rr}	di/dt = -270 A/μs			4,65		μC	
E _{rr}	V _{CC} =400V			0,93		mJ	
$R_{th(j-s)FD}$	per diode				1,2	K/W	
M_s	to heat sink		2,25		2,5	Nm	
w				29		g	

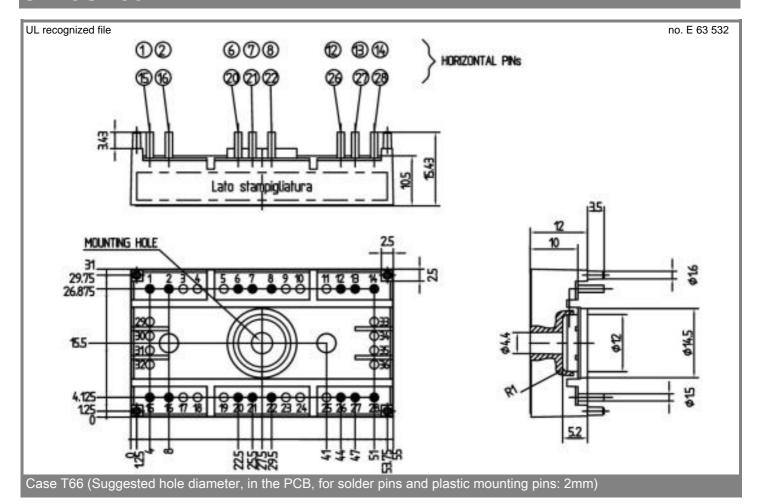

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

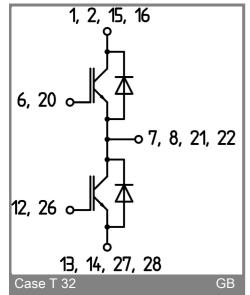
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

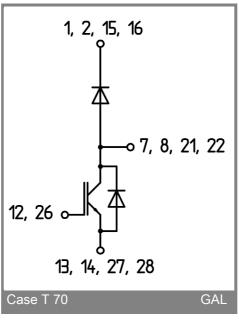


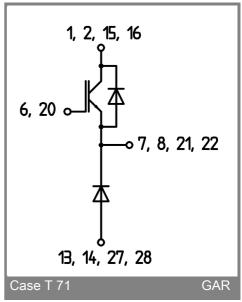





SK40GB067







SK40GB067

