UHF push-pull power MOS transistor

BLF545

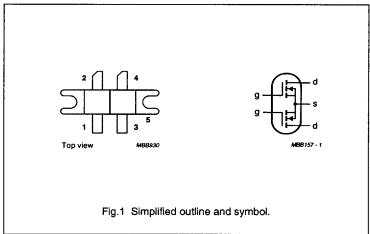
AMER PHILIPS/DISCRETE

69E D ____

FEATURES

- · High power gain
- · Easy power control
- · Good thermal stability
- Gold metallization ensures excellent reliability
- · Designed for broadband operation.

DESCRIPTION


Silicon N-channel enhancement mode vertical D-MOS push-pull transistor designed for communications transmitter applications in the UHF frequency range.

The transistor is encapsulated in a 4-lead, SOT268 balanced flange envelope, with two ceramic caps. The mounting flange provides the common source connection for the transistors.

PINNING - SOT268

PIN	DESCRIPTION
1	gate 1
2	drain 1
3	gate 2
4	drain 2
5	source

PIN CONFIGURATION

CAUTION

The device is supplied in an antistatic package. The gate-source input must be protected against static charge during transport and handling.

WARNING

Product and environmental safety - toxic materials

This product contains beryllium oxide. The product is entirely safe provided that the BeO discs are not damaged. All persons who handle, use or dispose of this product should be aware of its nature and of the necessary safety precautions. After use, dispose of as chemical or special waste according to the regulations applying at the location of the user. It must never be thrown out with the general or domestic waste.

QUICK REFERENCE DATA

RF performance at T_h = 25 °C in a push-pull common source circuit.

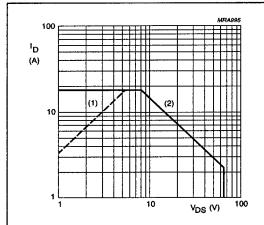
MODE OF OPERATION	f (MHz)	V _{DS} (V)	P _L (W)	G _p (dB)	η _D (%)
CW, class-B	500	28	40	> 11	> 50

UHF push-pull power MOS transistor

BLF545

N AMER PHILIPS/DISCRETE

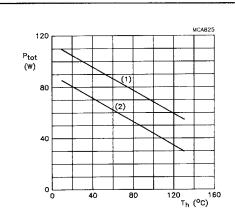
LAE D


LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134). Per transistor section unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		_	65	V
±V _{GS}	gate-source voltage		_	20	٧
I _D	DC drain current		-	3.5	Α
P _{tot}	total power dissipation	up to T _{mb} = 25 °C; total device; both sections equally loaded	-	92	W
T _{stg}	storage temperature		-65	150	°C
T _i	junction temperature		_	200	°C

THERMAL RESISTANCE


SYMBOL PARAMETER		CONDITIONS	THERMAL RESISTANCE		
R _{th j-mb}	thermal resistance from junction to mounting base	total device; both sections equally loaded	1.9 K/W		
R _{th mb-h}	thermal resistance from mounting base to heatsink	total device; both sections equally loaded	0.25 K/W		

- (1) Current is this area may be limited by $R_{\text{DS(on)}}$.
- (2) $T_{mb} = 25 \, ^{\circ}C$.

Total device; both sections equally loaded.

Fig.2 DC SOAR.

- (1) Short-time operation during mismatch.
- (2) Continuous operation.

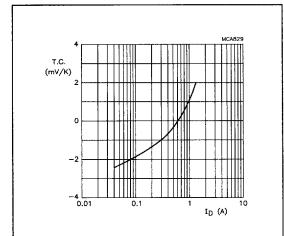
Total device; both sections equally loaded.

Fig.3 Power/temperature derating curves.

October 1992

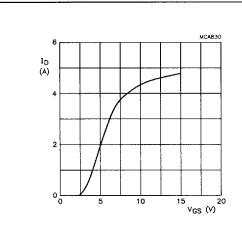
69E D -

UHF push-pull power MOS transistor


BLF545

AMER PHILIPS/DISCRETE

CHARACTERISTICS (per section)

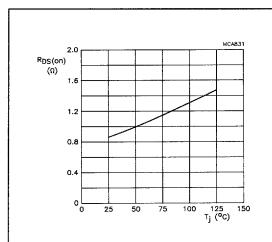

T_i = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	drain-source breakdown voltage	V _{GS} = 0; I _D = 10 mA	65	-	-	٧
I _{DSS}	drain-source leakage current	V _{GS} = 0; V _{DS} = 28 V	-	-	1	mA
I _{GSS}	gate-source leakage current	$\pm V_{GS} = 20 \text{ V; } V_{DS} = 0$	-	-	1	μА
V _{GS(th)}	gate-source threshold voltage	I _D = 40 mA; V _{DS} = 10 V	1	-	4	V
g _{fa}	forward transconductance	I _D = 1.2 A; V _{DS} = 10 V	600	900	-	mS
R _{DS(on)}	drain-source on-state resistance	$\hat{I}_{D} = 1.2 \text{ A; V}_{GS} = 10 \text{ V}$	_	0.85	1.25	Ω
I _{DSX}	on-state drain current	V _{GS} = 15 V; V _{DS} = 10 V		4.8	-	Α
Cis	input capacitance	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz	-	32	-	pF
C _{os}	output capacitance	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz	-	24	-	pF
C _{rs}	feedback capacitance	V _{GS} = 0; V _{DS} = 28 V; f = 1 MHz	_	6.4	 	pF

 $V_{DS} = 10 \text{ V}.$

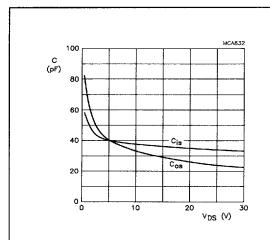
Fig.4 Temperature coefficient of gate-source voltage as a function of drain current, typical values per section.

 $V_{DS} = 10 \text{ V}; T_i = 25 \text{ }^{\circ}\text{C}.$


Fig.5 Drain current as a function of gate-source voltage, typical values per section.

69E D

UHF push-pull power MOS transistor


BLF545

AMER PHILIPS/DISCRETE

 $I_D = 1.2 \text{ A}; V_{GS} = 10 \text{ V}.$

Fig.6 Drain-source on-state resistance as a function of junction temperature, typical values per section.

 $V_{GS} = 0$; f = 1 MHz.

Fig.7 Input and output capacitance as functions of drain-source voltage, typical values per section.

 $V_{GS} = 0$; f = 1 MHz.

Fig.8 Feedback capacitance as a function of drain-source voltage, typical values per section.

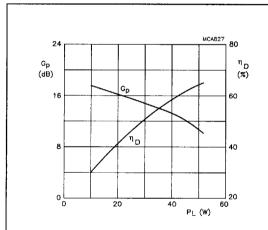
October 1992

UHF push-pull power MOS transistor

BLF545 HAE D

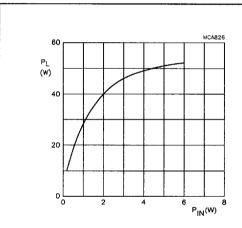
N AMER PHILIPS/DISCRETE

APPLICATION INFORMATION FOR CLASS-B OPERATION


 $T_h = 25$ °C; $R_{th mb-h} = 0.25$ K/W, unless otherwise specified. RF performance in a common source, class-B, push-pull circuit.

MODE OF OPERATION	f	V _{DS}	I _{DQ}	P _L	G _p	η _D
	(MHz)	(V)	(mA)	(W)	(dB)	(%)
CW, class-B	500	28	2 x 40	40	> 11 typ. 13	> 50 typ. 60

Ruggedness in class-B operation

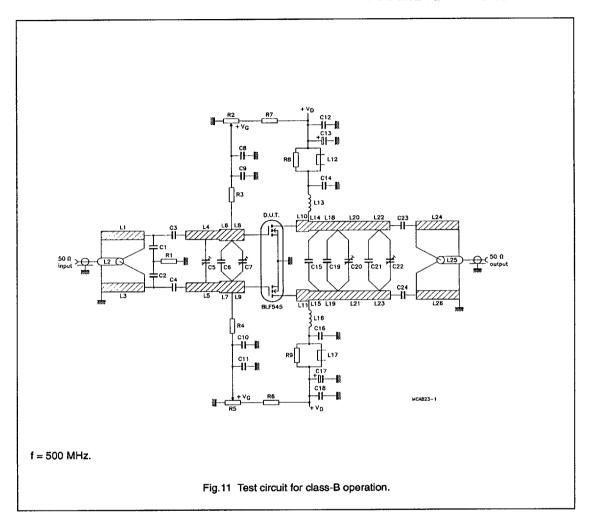

The BLF545 is capable of withstanding a full load mismatch corresponding to VSWR = 50 through all phases under the following conditions:

 $V_{DS} = 28 \text{ V}$; f = 500 MHz at rated output power.

Class-B operation; $V_{DS} = 28 \text{ V}$; $I_{DQ} = 2 \text{ x } 40 \text{ mA}$; $Z_L = 4.2 + j6.2 \Omega$ (per section); f = 500 MHz.

Fig.9 Power gain and efficiency as functions of load power, typical values per section.

Class-B operation; $V_{DS} = 28 \text{ V}$; $I_{DQ} = 2 \text{ x 40 mA}$; $Z_L = 4.2 + j6.2 \Omega$ (per section); f = 500 MHz.


Fig.10 Load power as a function of input power, typical values per section.

UHF push-pull power MOS transistor

BLF545

N AMER PHILIPS/DISCRETE

LAE D

List of components (class-B test circuit)

COMPONENT	DESCRIPTION	VALUE	DIMENSIONS	CATALOGUE NO.
C1, C2	multilayer ceramic chip capacitor (note 1)	5.1 pF		
C3, C4	multilayer ceramic chip capacitor (note 1)	16 pF		
C5, C7, C20, C22	film dielectric trimmer	1.8 to 10 pF		2222 809 05002
C6	multilayer ceramic chip capacitor (note 1)	22 pF		

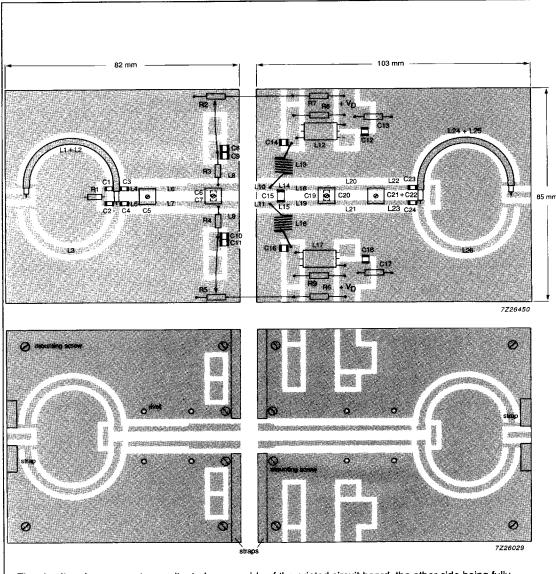
UHF push-pull power MOS transistor

BLF545

N AMER PHILIPS/DISCRETE

69E D

COMPONENT	DESCRIPTION	VALUE	DIMENSIONS	CATALOGUE NO.
C8, C11, C12, C18	multilayer ceramic chip capacitor	100 nF		2222 852 47104
C9, C10, C14, C16	multilayer ceramic chip capacitor (note 1)	390 pF		
C13, C17	electrolytic capacitor	10 μF, 63 V		
C15	multilayer ceramic chip capacitor (note 1)	18 pF		
C19	multilayer ceramic chip capacitor (note 1)	13 pF		
C21	multilayer ceramic chip capacitor (note 1)	6.2 pF		
C23, C24	multilayer ceramic chip capacitor (note 1)	10 pF		
L1, L3, L24, L26	stripline (note 2)	50 Ω	56 x 2.4 mm	
L2, L25	semi-rigid cable (note 3)	50 Ω	ext. dia. 2.2 mm ext. conductor length 56 mm	
L4, L5	stripline (note 2)	56 Ω	13.4 x 2 mm	
L6, L7	stripline (notes 2 and 4)	56 Ω	9.6 x 2 mm	
L8, L9	stripline (note 2)	42 Ω	9 x 3 mm	
L10, L11	stripline (note 2)	42 Ω	6 x 3 mm	
L12, L17	grade 3B Ferroxcube RF choke			4312 020 36642
L13, L16	4 turns enamelled 1.2 mm copper wire	62 nH	length 7.6 mm int. dia. 5 mm leads 2 x 5 mm	
L14, L15	stripline (note 2)	56 Ω	8 x 2 mm	
L18, L19	stripline (note 2)	56 Ω	13 x 2 mm	
L20, L21	stripline (note 2)	56 Ω	18 x 2 mm	
L22, L23	stripline (note 2)	56 Ω	14 x 2 mm	
R1	0.4 W metal film resistor	5.11 Ω		2322 151 75118
R2, R5	10 turns cermet potentiometer	50 kΩ		
R3, R4	0.4 W metal film resistor	10 kΩ		2322 151 71003
R6, R7	0.4 W metal film resistor	205 kΩ		2322 151 72054
R8, R9	1 W metal film resistor	10 Ω		2322 151 71009


Notes

- 1. American Technical Ceramics (ATC) capacitor, type 100B or other capacitor of the same quality.
- 2. The striplines are on a double copper-clad printed circuit board, with glass microfibre reinforced PTFE (ϵ_r = 2.2); thickness $\frac{1}{32}$ inch.
- 3. Semi-rigid cables L2 and L25 are soldered on to striplines L1 and L26.
- 4. Striplines L6 and L7 are used in series with a 42 Ω stripline (11 x 3 mm).

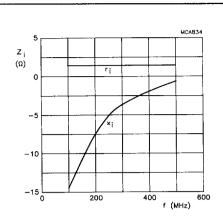
BLF545

N AMER PHILIPS/DISCRETE

69E D

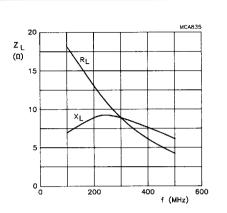
The circuit and components are situated on one side of the printed circuit board, the other side being fully metallized, to serve as a ground plane. Earth connections are made by means of copper straps and hollow rivets for a direct contact between upper and lower sheets.

Fig.12 Component layout for 500 MHz class-B test circuit.


October 1992

BLF545

UHF push-pull power MOS transistor


N AMER PHILIPS/DISCRETE

LAE D

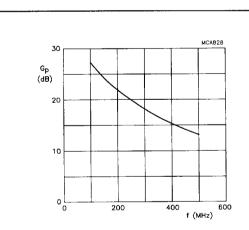

Class-B operation; $V_{DS} = 28 \text{ V}$; $I_{DQ} = 2 \text{ x } 40 \text{ mA}$; $P_1 = 40 \text{ W}.$

Fig.13 Input impedance as a function of frequency (series components), typical values per section.

Class-B operation; $V_{DS} = 28 \text{ V}$; $I_{DQ} = 2 \text{ x } 40 \text{ mA}$; $P_1 = 40 \text{ W}.$

Fig.14 Load impedance as a function of frequency (series components), typical values per section.

Class-B operation; $V_{DS} = 28 \text{ V}$; $I_{DQ} = 2 \text{ x } 40 \text{ mA}$; $P_1 = 40 \text{ W}.$

Fig.15 Power gain as a function of frequency, typical values per section.

October 1992