

DSB 10 I 45 PM

45 V

10 A

0.52 V

advanced

Schottky Diode Gen²

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode

Part number

DSB 10 I 45 PM

• Rectifiers in switch mode power

• Free wheeling diode in low voltage

Applications:

converters

supplies (SMPS)

Backside: isolated

FL E72873

Package:

 $V_{RRM} =$ $I_{FAV} =$

- Housing: TO-220FP
- Industry standard outline
 Plastic overmolded tab for electrical isolation
- Isolation Voltage 2500 V
- UL registered E 72873
- Epoxy meets UL 94V-0RoHS compliant

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- low Irm values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching

Ratings

Symbol	Definition	Conditions	min.	typ.	max.	Unit
V_{RRM}	max. repetitive reverse voltage	$T_{VJ} = 25^{\circ}C$			45	V
I _R	reverse current	$V_R = 45V$ $T_{VJ} = 25^{\circ}C$			7	mA
		$V_R = 45V$ $T_{VJ} = 100$ °C			35	mA
V _F	forward voltage	$I_F = 10 A$ $T_{VJ} = 25 ^{\circ} C$			0.56	V
		$I_F = 20 A$			0.78	V
		$I_F = 10 A$ $T_{VJ} = 125 ^{\circ} C$			0.52	V
		$I_F = 20 A$			0.74	V
I _{FAV}	average forward current	rectangular $d = 0.5$ $T_c = 115$ °C			10	Α
V _{F0}	threshold voltage slope resistance $T_{VJ} = 150 ^{\circ}\text{C}$				0.30	V
r _F					20.7	m_Ω
R _{thJC}	thermal resistance junction to case				4.50	K/W
T _{VJ}	virtual junction temperature		-55		150	°C
P _{tot}	total power dissipation	$T_c = 25^{\circ}C$			30	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$ (50 Hz), sine $T_{VJ} = 45^{\circ}\text{C}$			112	Α
C _J	junction capacitance	$V_R = 5 V$; $f = 1 MHz$ $T_{VJ} = 25$ °C		326		pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = 20 \text{ A}; L = 100 \mu H$ $T_{VJ} = 25^{\circ}\text{C}$			20	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.: } f = 10 \text{ kHz}$			2	Α

advanced

Symbol	Definition		Ratings			
		Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin ¹⁾			35	Α
R _{thCH}	thermal resistance case to heatsink			0.50		K/W
T _{stg}	storage temperature		-55		150	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	N
V _{ISOL}	isolation voltage	t = 1 second	2500			٧
		t = 1 minute	2000			٧

¹⁾ I_{RMS} is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Part number

D = Diode

S = Schottky Diode

B = ultra low VF

10 = Current Rating [A]

I = Single Diode

45 = Reverse Voltage [V]

PM = TO-220ACFP (2)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key
Standard	DSB 10 I 45 PM	DSB10I45PM	Tube	50	504423

advanced

Outlines TO-220FP

SYM	INCHES		MILLIMETERS		
214	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9,96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13,28	
L1	.119	.135	3.03	3,43	
ØΡ	.121	.129	3.08	3,28	
Q	.126	.134	3,20	3,40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.