Table of contents, preface	1
Product overview	2
Function principle of the PSD	3
Files of the PSD	4
Interface description	5
Configuration of the PSD	6
Requirements	7
Test specification	8
Appendix	9
Terms and acronyms	10
	Product overview Function principle of the PSD Files of the PSD Interface description Configuration of the PSD Requirements Test specification Appendix

Edition 05 / 2010

Technical safety guidelines

This manual contains notices intended to ensure your personal safety, as well as to protect the product and connected equipment against damage. The notices are highlighted by a triangular warning symbol and are graded according to severity as follows:

Safety information

This is an important notice for the approval and failsafe use of the product.

Note

Draws your attention to particularly important information on the product, handling the product, or to a particular part of the documentation.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are trademarks of Siemens AG.

All other names appearing in this document may be trademarks; use of such names by third parties for their own purposes may infringe upon owners rights.

Copyright © Siemens AG 2010 All rights reserved The reproduction, transmission, or use of this document or its contents is not permitted without express written authorization. Violation of this rule can lead to claims for damage compensation. All rights, including rights created by patent grant or registration of a utility or design, are reserved. Protected by: US 6725419 B1; EP 1064590 B1; DE 10102435 C2 Siemens AG Industry Sector	Exclusion of liability We have checked that the contents of this document correspond to the hardware and software described. Discrepancies cannot be wholly excluded, however, which means that we cannot assume responsibility for the correctness of the information provided here. The data in this manual is reviewed regularly and any necessary corrections are included in subsequent editions. We are grateful for suggestions for improvement.
Division Industry-Automation P.O. Box 4848, D- 90327 Nuremberg, Germany	© Siemens AG 2010 Technical data subject to change without prior notice

Contents

1	Preface		1-5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Purpose of the manual Scope oF-Application What's New Customer benefits Target group References Other support	. 1-5 . 1-5 . 1-5 . 1-5 . 1-6
2	Product	overview	2-1
	2.1 2.2 2.3 2.4	Description of the PROFIsafe driver (PSD) Safe communication between F-Host and F-Slave Error detection mechanisms in the PSD. Standards and guidelines	. 2-1 . 2-2 . 2-2
3	Functior	n principle of the PSD	3-3
	3.1 3.1.2 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3	Integration of the PSD in F-Slaves	.3-4 .3-4 .3-4 .3-4 .3-5 .3-6 .3-7
4	Files of t	the PSD	4-1
	4.1 4.2 4.3	Files that must not be changed Files that may be adapted Procedure for startup	. 4-3
5	Interface	e description	5-1
5	Interface 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9 5.1.10	e description Necessary PSD interface functions psd_InitInstance()	.5-1 .5-2 .5-2 .5-4 .5-5 .5-5 .5-5 .5-6 .5-7

SIEMENS

	5.4.2 5.4.3	psd_OutSync() psd InTransfer().	
	5.4.3 5.4.4	psd_InTransier() psd_InSync()	
	5.5	Optional PSD interface functions	
	5.5.1	Help functions for CRC calculation	
	5.5.2	psd_GetState()	
	5.5.3	psd_GetFPar()	
	5.5.4	Inverse PSD Functions	
6	Configu	ration of the PSD	6-26
	6.1	Generation variant	6-26
	6.2	Memory space optimization for CRC tables and functions	
	6.3	Instance information	6-27
	6.4	F output user data range	
	6.5	F input user data range	
	6.6	Memory attributes	
	6.7	Memory model CRC tables	6-28
7	Require	ments	7-30
	7.1	Requirements independent of the generation variant	7-30
	7.2	Requirements for the single-channel generation variant	
	7.3	Requirements for the dual-channel generation variant	7-32
8	Test spe	ecification	8-33
	8.1	Fault insertion test	8-33
	8.1.1	Single channel and dual channel generation variants	8-34
	8.1.2	Single channel generation variant	
	8.1.3	Dual channel generation variant	
	8.2	Qualification of the development tools	
	8.3	Code generation	
	8.4	Compiler verification code for single channel generation variants	
	8.5	PROFIsafe-Conformance test	8-36
9	Append	ix	9-37
	9.1	Memory requirement	
	9.1.1	Single-channel generation	
	9.1.2	Dual-channel generation	
	9.2	Static code analysis	
	9.3	Development documents	9-39
10	Terms a	nd acronyms 1	0-40

Table of illustrations

Fig. 2-1: Structure of the F-telegrams	2-1
Fig. 3-1: Integration of the PSD (dual-channel)	3-3
Fig. 3-2: Integration of the PSD (single-channel)	3-3
Fig. 3-3: Operation of the asynchron synchronization	3-5
Fig. 3-4: Entire sequence of the PROFIsafe slave_FW	3-6
Fig. 3-5: Process the cyclical output telegram	3-8
Fig. 3-6: Processing the cyclical input telegrams	3-11
Fig. 4-1: CRC-values of the certified PSD-sources	4-3

1 Preface

1.1 **Purpose of the manual**

This manual describes the procedure for integrating the "PROFIsafe driver for F-Slaves" (hereinafter abbreviated to **PSD**) in various runtime environments.

1.2 Scope oF-Application

The PSD for F-Slaves is used in PROFIBUS and PROFINET applications with safetyoriented field devices. These include, for example,: remote I/Os, laser scanners, photo-electric guards, drives, valves, robots, operator panels, pressure transmitters, overflow safeguard, gateways to other failsafe buses, and many other systems or devices. In this manual, the devices that are failsafe are preceded by the letter "**F**", for example F-Slave and F-Host.

1.3 What's New

This manual, which refers to PSD V2.1, includes the following changes and

amendments compared to the previous edition:

- Some links to textmarks corrected.
- Description of the status byte bit_1 "Device Fault" changed.
- Restrictions relating the ban of code optimization (PSD_08) changed.

1.4 Customer benefits

The certified PSD for slaves reduces the development and certification overhead for F-device manufacturers. Development of a PSD by a PNO member offers the following benefits:

- The F-communication operates in the same manner for all F-Slaves that use the PSD (secures PROFIsafe profile /1/).
- You only need to go through the implementation, testing and certification procedures once.

1.5 Target group

F-device development department at Siemens and partner companies.

1.6 References

/1/	PROFIsafe – Profile for Safety Technology on PROFIBUS and PROFINET IO Order No. 3.192b, Version 2.4, March 2007 Publisher: PROFIBUS Nutzerorganisation e.V. Haid-und-Neu-Str. 7, D-76131 Karlsruhe Phone: ++ 721 / 96 58 590, Fax:++ 721 / 96 58 589 pi@profibus.com, http://www.profibus.com/
/2/	IEC 61508 Functional Safety of electrical/electronic/programmable electronic safety- related systems Part 1: General requirements (version 1999) Part 2: Requirements for electrical/electronic/programmable electronic safety- related systems (version: 2000) Part 3: Software requirements (version: 1999) Part 4: Definitions and abbreviations (version: 1999) Part 5: Examples of methods for the determination of safety integrity levels (version: 1999) Part 6: Guideline on the application of IEC61508-2 and IEC61508-3 (version: 2000) Part 7: Overview of techniques and measures (version: 2000)
/3/	PRQA QA C for C/C++ Ver. 7.0 http://www.programmingresearch.com/QAMISRA.html?pnl=1_3#1_3
/4/	PROFIsafe Starter Kit

Other unreferenced literature:

- Programming guidelines for the design of software of safety-related systems Wirtschaftsverlag NW, 1998
 Publisher: Federal Institute for Occupational Safety and Health Author: Dr. Schaefer. ISBN 3 89701 212 X
- PROFIBUS DP/DPV1 Basics, tips and tools for users Author: Manfred Popp, Hüthig, 2000, ISBN 3-7785-2781-9
- The Rapid Way to PROFIBUS-DP Author: Manfred Popp, PROFIBUS User Organization, order no. 4.071
- Industrielle Kommunikation mit PROFINET, Author: Manfred Popp, PROFIBUS User Organization, order no. 4.071
- PROFIsafe Requirements for Installation, Immunity and Electrical Safety V1.0, order no. 2.242 2.242

1.7 Other support

You can obtain further information or answers to questions via the ComDEC e-mail address: ComDeC@siemens.com

For more information about PROFIBUS, please go to the homepage http://www.profibus.com/

2 Product overview

2.1 Description of the PROFIsafe driver (PSD)

The PSD is a firmware module for F-Slaves. It contains the monitoring mechanisms for safety-oriented communication as defined in the "PROFIsafe – Profile for Safety Technology on PROFIBUS DP and PROFINET IO" profile. The PROFIsafe driver allows manufacturers of F-Slaves to easily connect their F-Slaves to the standard PROFIBUS as well as standard PROFINET and conduct failsafe communication with one F-communications partner (F-Host).

With the PSD, equipment manufacturers are able to design and implement F-devices with failsafe point-to-point communication via PROFIBUS or PROFINET. The PSD can be integrated in different runtime environments via "generation" (hardware/firmware environments).

2.2 Safe communication between F-Host and F-Slave

The PSD's main task in terms of safety is to ensure failsafe exchange of user data with an F-Host using the required F-Parameter assignment. The structure of a complete input / output telegram corresponds to the specification in the PROFIsafe-Profile (Fig. "Complete F-message structure") /1/. In the following, these expressions are used in the same way as in the following diagram.

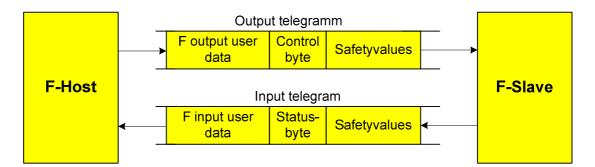


Fig. 2-1: Structure of the F-telegrams

For the user of the PSD, the following data is relevant:

Output telegram:

- F output user data (structure is application-specific)
- control byte.bit_0: iPar_EN
 (F-Host sets parameter request for i-Parameters)
- control byte.bit_1: OA_Req
 (F-Slave can display operator acknowledge request)
- control byte.bit_4: activate_FV (is utilized by F-Host to induce the F-Slave to transmit failsafe values at its outputs)

SIEMENS

Input telegram:

- F input user data (structure is application-specific)
- status byte.bit_0: iPar_OK
 (F-Slave has adopted the i-Parameters)
- status byte.bit_1: Device_Fault (F-Slave has detected a safety relevant malfunction)
- status byte.bit_4: FV_activated (F-Slave uses failsafe values at its outputs)

The meanings of the bits in the status / control byte are described in the PROFIsafe-Profile (Fig. "Status Byte" or "Control Byte") /1/.

Safety information

Requirement: PSD_16

The status byte.bit_1 shall be set by the F-Application for at least two (2) changes of the consecutive number (2 x returnvalue "F_OUTPUT_OK" of the PSD-function psd_GetFOutData()), if the F-Slave is not able to guarantee the safety integrity of the process data to be transmitted. Signal name is "Device Fault".

2.3 Error detection mechanisms in the PSD

A variety of measures are implemented in the PSD to detect errors. These take effect immediately on processing the PSD code, which means that an additional, cyclical PSD self-test function is not required to be started.

- In the single-channel PSD, a high-quality flow-control is fitted in all interface functions to detect falsifications in the program flow. The functions are processed logically in dual-channel, whereby in the second channel the data is stored as inverted, which can also be seen as the function call-ups of the PSD proceed.
- In the dual-channel PSD, a synchronization function helps to implement a flowcontrol in cyclical operation.

2.4 Standards and guidelines

The PSD was developed according to the SIL3 requirements of IEC 61508-1 and -3. On the single-channel variant, the SIL2 requirements as regards RAM, ROM and program flow monitor from IEC 61508-2 have also been taken into account and implemented.

It meets the requirements of the standards and guidelines with regard to functional safety as stated in the report issued with the safety certificate (TÜV certificate). The latest TÜV documents are available in the Internet at (http://support.automation.siemens.com/WW/view/de/11669702/134200).

Safety information

Requirement: PSD_21

Analysis with the verification code in the file p_verify.c /4/ must be performed to verify the compiler.

3 Function principle of the PSD

3.1 Integration of the PSD in F-Slaves

The following diagrams show the FW blocks integrated in F communication and the integration of the PSD.

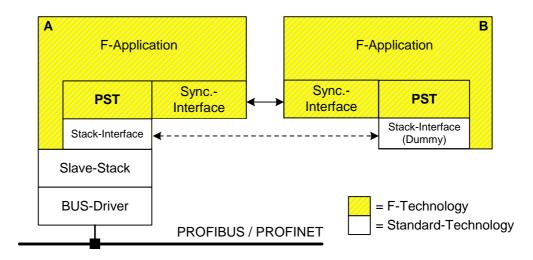


Fig. 3-1: Integration of the PSD (dual-channel)

F- <i>I</i>	Application	= F-Technology = Standard-Technology
	PST	
	Stack-Interface	
Slave-Stack		
B	US-Driver	
	PRO	FIBUS / PROFINET

Fig. 3-2: Integration of the PSD (single-channel)

Slave-Stack: controls communication via PROFIBUS or PROFINET.

Stack-Interface: for adapting the PSD to different Slave-Stacks.

F-Application: specific device application that uses the PSD for communication via the PROFIBUS or PROFINET with cyclic F-telegrams.

Synchronization-Interface: for data exchange.

SIEMENS

The tasks of the FW blocks defined below are intended as orientation for the design of an F-Slave.

3.1.1 Tasks of the Slave-Stack

The following tasks are handled by the Slave-Stack:

- The Slave-Stack receives F-Parameters and optional i-Parameters.
- The Slave-Stack receives the output telegram.
- The Slave-Stack transmits the input telegrams.
- The Slave-Stack recognized the BUS events such as "Start / stop of the cyclical data exchange".

3.1.2 Stack-Interface tasks

The following tasks are assigned to the Stack-Interface:

- The Stack-Interface extracts F-Parameters from the parameter telegram of the Slave-Stack and transfers them to the PSD.
- The Stack-Interface takes over the output telegrams from the Slave-Stack and transfers it to the PSD.
- On request, the Stack-Interface provides the PSD with a buffer to accept the input telegram.
- The Stack-Interface accepts the buffer with the input telegram.
- With the Slave-Stack, the Stack-Interface controls the transmission of the input telegram to the F-Host.

3.1.3 Tasks of F-Application

The implementation of the F-Application lies outside of the PSD and has to perform the following tasks:

- The F-Application controls the entire sequence.
- The F-Application handles the initialization of the Slave-Stack.
- The F-Application distributes (with dual-channel) the F-data packets to both channels with the help of the Synchronization-Interface.
- The F-Application takes over the output data and the control byte from the PSD and processes them.
- The F-Application generates the input data as well as certain bits for the status byte and transfers them to the PSD.

3.1.4 The Synchronization-Interface

The synchronization-sequence, which takes place in cyclic operation, is shown in the folling picture:

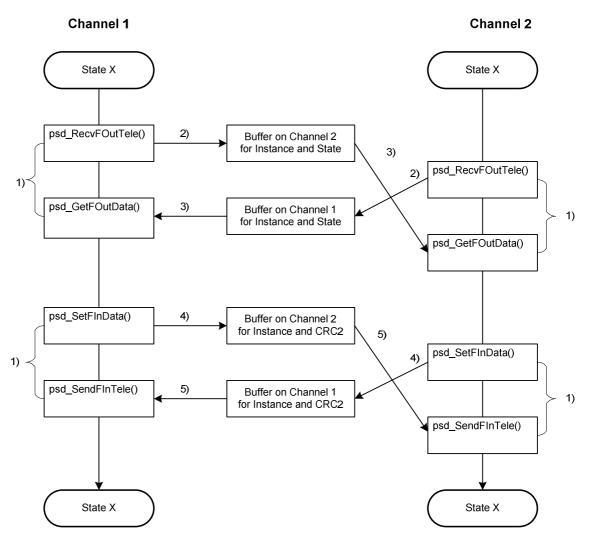


Fig. 3-3: Operation of the asynchron synchronization

- 1) = the calling order of the API-functions (see Chapter 5) is checked by the PSD.
- 2) = call of the API-function psd_OutTransfer(Instance, State),
- 3) = call of the API-function psd_OutSync(Instance, State),
- 4) = call of the API-function psd_InTransfer(Instance, CRC2),
- 5) = call of the API-function psd_InSync(Instance, CRC2)

In a first step, the PSD sends the synchronization data to the other channel.

In a second step, the PSD gets the meanwhile received synchronization data and compares it with the data of its own channel. A difference leads to the state PSD_HARD_FAIL.

After the transfer of the synchronization data to the PSD, the synchronization data have to be deleted.

The bufferd data have to be read out only one time (for example the bufferd data are deleted after read out).

3.2 Structure of an F-Application

In principle, the structure of an F-Application comprises the following states:

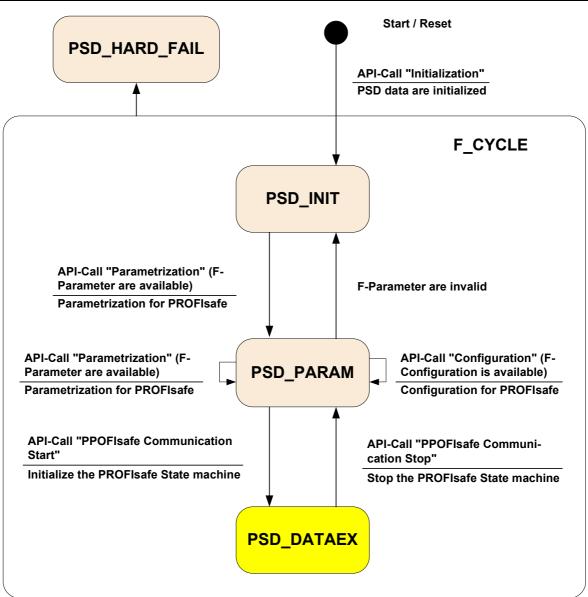


Fig. 3-4: Entire sequence of the PROFIsafe slave_FW

3.2.1 Description of the states

F_CYCLE

F-Application cycle.

PSD_INIT

PSD instance is initialized without error.

PSD_PARAM

Valid F-Parameters are available. The configuration of the user data length can take place in this status if it was set during initialization. The PSD instance is ready for cyclical data exchange.

PSD DATAEX

The cyclical data exchange with the F-Host was started. The PSD instance function psd_Run(...) has been called and cyclical processing of the input/output telegrams has started.

<u>PSD HARD FAIL</u>

The PSD instance has detected an inconsistency probably due to a hardware problem. With the single-channel generation variant, the instance will set the interface variable "pSafetyVar" to the value "P_SAFETY_CONST_FALSE." The PSD instance calls up the function "hard_err(...)" from the F-Application. The F-Application sets the safe status with this function.

3.2.2 Description of the state transitions

START→PSD_INIT

After PowerOn the F-Application initializes all instances of the PSD by starting psd_InitInstance(...). After an error-free run, the respective PSD instance will be in the PSD_INIT state.

F-CYCLE→PSD HARD-FAIL

Every inconsistency or hardware error that is recognized by a PSD instance will cause the state PSD_HARD_FAIL.

PSD_INIT→PSD_PARAM

The F-Application Slave-Stack indicates the reception of F-Parameters with **[SLAVE_STACK_F_PAR_AVAILABLE]**.

After that, the F-Application assigns parameters to the PSD instance by starting the function psd_FParBuild(...). The status PSD_PARAM will be reached if valid F-Parameters are available.

PSD_PARAM→PSD_INIT

The psd_FParBuild(...) function has detected invalid F-Parameters.

PSD_PARAM→PSD_PARAM

After receiving new, valid F-Parameters from the Slave-Stack, the F-Application reassigns parameters to the PSD instance.

PSD_PARAM→PSD_PARAM

After receiving the user data length configuration, the PSD instance sets the length for the input and output user data.

PSD_PARAM→PSD_DATAEX

The Slave-Stack has indicated to the F-Application the transition into the cyclical data exchange with **[RUN]**. Subsequently, the F-Application starts the function psd_Run(...).

PSD DATAEX→PSD PARAM

The Slave-Stack has indicated to the F-Application the exit from the cyclical data exchange with **[STOP]**. Subsequently the F-Application starts the function psd_Stop(...).

3.2.3 Activities of the PSD in state PSD_DATAEX

3.2.3.1 Processing the output telegrams

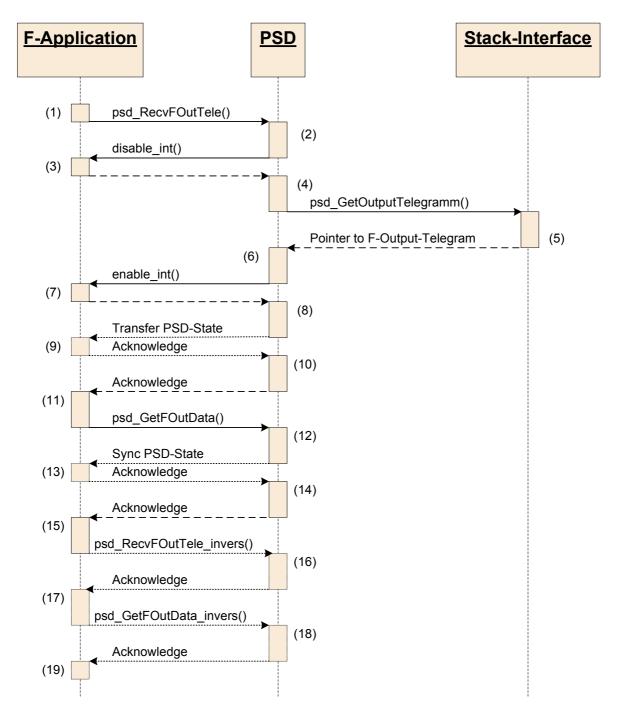


Fig. 3-5: Process the cyclical output telegram

- (1) The F-Application starts the PSD function psd_RecvFOutTele(...) to accept and check an output telegram from the Stack-Interface and test it. It will also transfer its latest time values to the PSD.
- (2) The PSD calculates the timeout situation based on the transferred time values. It will request an interrupt lock for consistent acceptance of the output telegram.

- (3) Set the interrupt lock.
- (4) The PSD requests a pointer to the buffer with the output telegram from the Slave-Stack-Interface.
- (5) The Slave-Stack-Interface fills the buffer with the output telegram and transfers a pointer to the PSD.
- (6) The PSD adopts the output telegram into its internal data structure. In case of single channel, the PSD will also fill the inverse data structure with the output telegram. It requests cancellation of the interrupt lock from the F-Application.
- (7) Cancel the interrupt lock.
- (8) The PSD checks the output telegram according to the PROFIsafe profile. In case of dual-channel, the PSD will makes its current status available to the other channel.
- (9) The F-Application transfers the PSD status to the other channel in case of dual channel.
- (10) The PSD exits the function psd_RecvFOutTele().
- (11) The F-Application checks the return value of psd_RecvFOutTele(...). To receive the output data, it starts the function psd_GetFOutData(...).
- (12) The PSD will request the status of the other channel from the F-Application in case of dual channel.
- (13) The F-Application transfers the status of the other channel to the PSD in case of dual channel.
- (14) The PSD compares its current status with the status of the other channel in case of dual channel. It then fills the buffer of the F-Application with the output data and the control byte.
- (15) The F-Application checks the return value of psd_GetFOutData (...) and processes the output telegram. In the single-channel generating version, the "inverse component" of the F-Application will start the function psd_RecvFOutTele_invers(...).
- (16) In case of single channel, inverse processing will take place with psd_RecvFOutTele().
- (17) In case of single channel, the "inverse component" of the F-Application checks the return value of psd_RecvFOutTele_invers(). To receive the inverse output data, it starts the function psd_GetFOutData_invers().
- (18) In case of single channel, inverse processing will take place with psd_GetFOutData_invers().
- (19) In case of single channel, the "inverse component" of the F-Application checks the return value of psd_GetFOutData_Invers() and processes the inverse output telegram.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Single channel generation variant

Requirement: PSD_18

The F-Application has to test the consistency of the normal and inverse F-output user data as well as control byte IDs. The consistency ckeck has to be done before output to the process.

If the PSD reports a communication error, the received control byte is invalid and the evaluation of the control byte IDs isn't permissible.

Safety information

Single channel generation variant

Requirement: PSD_22

When using the single channel-PSD in an actor or sensor, all safety critical secondary faults have to be uncovered by the surrounding of the PSD.

Safety information

Single channel generation variant

Requirement: PSD_23

When using the single channel-PSD in an actor, accidental hardware-faults have to be uncoverd within the process-fault-tolerance time by the surroundings.

Safety information

Dual channel generation variant

Requirement: PSD_24

The F-Application has to test the consistency of the F-output user data as well as control byte IDs of both hardware channels. The consistency ckeck has to be done before output to the process.

If the PSD reports a communication error, the received control byte is invalid and the evaluation of the control byte IDs isn't permissible.

SIEMENS

3.2.3.2 Processing the input telegrams

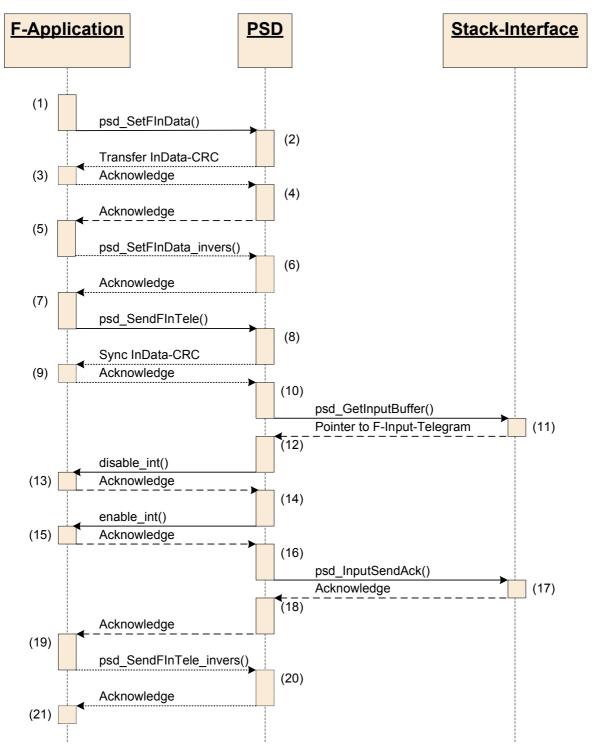


Fig. 3-6: Processing the cyclical input telegrams

- (1) To transfer the input data, the F-Application starts the function psd_SetFInData().
- (2) The PSD reads the input data and certain bits for the structure of the status-byte and starts creating the input telegram.
- (3) In case of dual channel, the PSD will make the CRC of the input telegram available to the other channel.

SIEMENS

- (4) The PSD exits the function psd_SetFInData().
- (5) The F-Application evaluates the return value of psd_SetFInData(). In case of single channel, the "inverse component" of the F-Application starts the function psd_SetFInData_invers().
- (6) In the single-channel generation version, the PSD processes the inverse function of psd_SetFInData().
- (7) In case of single channel, the F-Application evaluates the return value of psd_SetFInData_invers(). The F-Application starts the function psd_SendFInTele() to send the input telegram.
- (8) The PSD creates the input telegram according to the PROFIsafe profile. It requests the CRC of the other channel in case of dual channel and completes the input telegram. In case of single channel, the PSD will use the CRC of its inverse processing.
- (9) In case of dual channel, the F-Application will provide the CRC of the other channel to the PSD.
- (10) The PSD uses the function psd_GetInputBuffer() to request a buffer for the input telegram from the Stack-Interface.
- (11) The Stack-Interface returns a pointer to the buffer for the input telegram to the PSD.
- (12) The PSD request an interrupt lock from the F-Application for consistent filling of the send buffer.
- (13) The F-Application sets an interrupt lock.
- (14) The PSD fills the send buffer and then requests release of the interrupt lock from the F-Application.
- (15) The F-Application releases the interrupt lock.
- (16) The PSD uses the function psd_InputSendAck() to prompt the Stack-Interface to send the input telegram to the F-Host.
- (17) The Stack-Interface sends the input telegram.
- (18) The PSD checks the return value of psd_InputSendAck() and exits the function psd_SendFInTele().
- (19) In case of single channel, the "inverse component" of the F-Application starts the inverse processing of psd_SendFInTele().
- (20) In case of single channel, the PSD processes the function psd_SendFInTele_invers().
- (21) In case of single channel, the "inverse component" of the F-Application checks the return value of psd_RecvFOutTele_invers().

Safety information

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

4 Files of the PSD

The following tables list all the files that can be found on the CD-ROM for the PSD. The files include a description of the interface functions, which are explained briefly in the table below. A detailed description of these interfaces is available in the following chapters.

4.1 Files that must not be changed

File	Interface function	Task
p_crc.c	psd_CRC16()	Calculation of a 16-bit CRC via a memory section
	psd_CRC32()	Calculation of a 32-bit CRC via a memory section
p_init.c	psd_InitInstance()	Initialize a PSD instance
p_state.c	psd_GetState()	Get PSD state
	psd_Stop()	Stop cyclical data exchange of the PSD
	psd_Run()	PSD is in cyclical data exchange
p_input.c	psd_SendFInTele()	Transfer F input telegram to Stack-Interface
	psd_SetFInData()	Transfer F input data to PSD
p_output.c	psd_GetFOutData()	Transfer F output data to F-Application
	psd_RecvFOutTele()	Check F output telegram
p_param.c	psd_GetFPar()	Read F_SIL and F_iPar_CRC
	psd_FParBuild()	Check F-Parameters
	psd_Config()	Set user data length
p_time.c	-	Internal timer management
p_types.h	-	Declaration of higher-level data types
p_api.h	-	Interface eclaration
p_crc.h	-	Local type declaration for p_crc.c
p_global.h	-	Global type declaration for F-Application
p_init.h	-	Local type declaration for p_init.c
p_input.h	-	Local type declaration for p_input.c
p_invers.h	-	Inverse type declarations for single channel generation version of the PSD
p_local.h	-	PSD local type declarations
p_output.h	-	Local type declaration for p_output.c
p_param.h	-	Local type declaration for p_param.c
p_state.h	-	Local type declaration for p_state.c
p_time.h	-	Local type declaration for p_time.c

File	Interface function	Task
p_invers.c psd_GetFOutData_Invers()		Returned value of the inverse calculation path of the function psd_GetFOutData()
	psd_RecvFOutTele_Invers()	Returned value of the inverse calculation path of the function psd_RecvFOutTele ()
	psd_SendFInTele_Invers ()	Returned value of the inverse calculation path of the function psd_SendFInTele ()
	psd_SetFInData_Invers ()	Returned value of the inverse calculation path of the function psd_SetFInData()
	psd_InitInstance_Invers ()	Returned value of the inverse calculation path of the function psd_InitInstance ()
	psd_FParBuild_Invers ()	Returned value of the inverse calculation path of the function psd_FParBuild ()
	psd_Config_Invers ()	Returned value of the inverse calculation path of the function psd_Config ()
	psd_GetState_Invers ()	Returned value of the inverse calculation path of the function psd_GetState ()
	psd_Stop_Invers ()	Returned value of the inverse calculation path of the function psd_Stop ()
	psd_Run_Invers ()	Returned value of the inverse calculation path of the function psd_Run ()
	psd_GetFPar_Invers ()	Returned value of the inverse calculation of the function psd_GetFPar ()

Additionally for single-channel generation version

Safety information

Requirement: PSD_02

The PSD files must not be changed.

The tool **CRC-Check** is available to verify that the PSD sources used have not been changed. The tool forms a signature over each PSD file that must not be changed as well as an overall signature over all PSD sources.

For installation and use of the tool **CRC-Check**, read and comply with the information in the ReadMe file in the directory <CD>: CRC_Check .

The following diagram shows the corresponding CRC values for the source files. These CRC values must be compared to the currently calculated CRC values.

No.	File	CRC
1	D:\F-Treiber\Source\crc_gen\p_crc.c	919E 3169
2	D:\F-Treiber\Source\crc_gen\p_init.c	2A57 9023
3	D:\F-Treiber\Source\crc_gen\p_input.c	AE68 861C
4	D:\F-Treiber\Source\crc_gen\p_invers.c	C040 CE69
5	D:\F-Treiber\Source\crc_gen\p_output.c	79C2 9873
6	D:\F-Treiber\Source\crc_gen\p_param.c	D4B C458
7	D:\F-Treiber\Source\crc_gen\p_state.c	D890 7758
8	D:\F-Treiber\Source\crc_gen\p_time.c	9A8C E756
9	D:\F-Treiber\Source\crc_gen\p_api.h	69BD FD35
10	D:\F-Treiber\Source\crc_gen\p_crc.h	E622 D32A
11	D:\F-Treiber\Source\crc_gen\p_global.h	60BF 943C
12	D:\F-Treiber\Source\crc_gen\p_init.h	1163 BC2A
13	D:\F-Treiber\Source\crc_gen\p_input.h	4EC3 334B
14	D:\F-Treiber\Source\crc_gen\p_invers.h	C33D 1266
15	D:\F-Treiber\Source\crc_gen\p_local.h	A318 CE4B
16	D:\F-Treiber\Source\crc_gen\p_output.h	E28B 1AD9
17	D:\F-Treiber\Source\crc_gen\p_param.h	BFCB E84F
18	D:\F-Treiber\Source\crc_gen\p_state.h	1AA1 0C28
19	D:\F-Treiber\Source\crc_gen\p_time.h	DCEE CBC7
20	D:\F-Treiber\Source\crc_gen\p_types.h	4C9E 87D9
21	Total:	6C81 A67B

Fig. 4-1: CRC-values of the certified PSD-sources

Safety information

Requirement: PSD_03

The CRC values of the PSD files (individual and overall CRC) must match the values of the CRC check tool.

4.2 Files that may be adapted

File	Task
p_c_config.h	Definition of generation parameters
p_c_crc_m.h	Memory allocation of CRC table
p_c_crc_b.h	Restoring default memory model
p_c_fapplication.h	Adaptation level for F-Application
p_c_si.c	Functions of stack inferface
p_c_si.h	Function prototypes of stack inferface

4.3 **Procedure for startup**

The following steps are to be taken to use PSD:

- Implement surrounding FW modules (Stack-Interface, Synchronization-Interface, F-Application).
- Provide the functions required by the PSD (output macros) and match to prototype, which are available in p_c_fapplication.h.

- Adapt the generation parameters in p_c_Config.h.
- Include p_api.h in the surrounding FW modules.
- Adapt the desired memory model, the names of the memory classes in p_c_config or the memory segmentation in p_c_crc_m.h, p_c_crc_b.h. Each of the settings is also activated in p_c_config.h via Defines.

Note

A pseudo code /4/ is enclosed to illustrate the PSD integration. (Files: $p_c_pseudo_{1c.c}$ or $p_c_pseudo_{2c.c}$).

5 Interface description

Function interface

The PSD can be used in different system environments. The files described in chapter 4 are available for this purpose.

Data interface

The PSD uses buffers located in a separate memory section that is created and managed statically by the PSD to store the input and output telegrams.

Memory attributes and optional compiler instructions for memory segment control can be used to manage the storage location according to the tool chain.

Safety information

Requirement: PSD_04

Only the PSD interface functions declared in the file p_api.h may be used.

Safety information

Requirement: PSD_05

Only the PSD interface functions declared in the file p_global.h may be used.

Requirement: PSD_06

Safety information

The defines from p_global.h must be used for evaluation of the PSD returns.

Safety information

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1 Necessary PSD interface functions

example for instance 2: 0x01FE

The functions described below are to be integrated in the F-Application as described in chapter 3.2.

The instance number calculation from the bus telegrams is bus specific. For PROFINET for example, the instance number is calculated with the received submodul number.

For the adressing of an instance, the defines "INST_xx" can be used. The structure of each delivered instance number "pInstance" to the PSD is: 16Bit-value Bit 0- 7: (1th-complement of instance number) - 1 Bit 8-15: instance number - 1 example for instance 1: 0x00FF

(see also implementation in p_global.h)

5.1.1 psd_InitInstance(...)

When this function is started, the PSD is given the information for the indicated instance whether or not its data length is going to be configured dynamically.

Function:	psd_InitInstance()			
Prototype:	P_Byte psd_InitInstance (P_Word pInstance, P_Byte pDynamicTeleLenConf);			
Meaning:	 Initialize PSD instance Check the transfer parameters 			
Transfer parameters:	Value range		Meaning	
pInstance	INST_01INST_X X <= NOF_INSTANCES		Instance ID	
pDynamicTeleLenConf	DYNAMIC_TELE_LEN_CONF_ON		The maximally values are included in p_c_config.h. The latest data length of the instance are read in via the function psd_GetConfigPtr(). Data lengths of the	
	DYNAMIC_TELE_LEN_CONF_OFF		instance are determined in p_c_config.h.	
Return parameter:	P_Byte			
Value range M		Meanin	Meaning	
INIT_INSTANCE_OK Initialization successful		tion successful		

Safety information

From the point of view of the F-Application only INIT_INSTANCE_OK is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL

5.1.2 psd_FParBuild(...)

When this function is started, the PSD is given the F-Address (determined independently of the F-Parameters) and the maximum SIL of the F-Application (stored permanently in the F-Application) as well as the iPar-CRC (CRC3). The value range of the transferred parameters is checked by the PSD.

As part of this function, the PSD will retrieve the F-Parameters with the function psd_GetFParPtr (...), checks the CRC via the parameter block and executes a plausibility check. The acceptance of the F-Parameters is paranthesized with the functions disable_int(...) and enable_int(...) to guarantee consistency during parameter acceptance.

Function:	psd_FParBuild()
Prototype:	P_Byte psd_FParBuild (P_Word pInstance, Fw_FPar pFwPar, P_Word psd_CRC3);
Meaning:	 Configure PSD for instance Check transfer parameters Reading and checking F-Parameters

Transfer parameters:	Value range		Meaning	
pInstance	INST_01INST	_x	Instance ID	
	X <= NOF_INST	ANCES		
pFwPar	Fw_FPar		Device parameter	
psd_CRC3	0 - 0xFFFF		Transfer of i-Par-CRC (CRC3)	
			If "F_Check_iPar"=1, then iPar-CRC will be integrated into the calculation of FPar-CRC (CRC1). In this case, psd_CRC3 must not be "0".	
			If "F_Check_iPar" = 0 or "F_Block_ID" = "001", psd_CRC3 is not evaluated.	
			(See PROFIsafe profile /1/, chap. 8.1.4.3 and chap. 8.1.5.2)	
Return parameter:	P_Byte			
Value range		Meaning	g	
FPAR_BUILD_OK Para		Parame	Parameter assignment successful	
FPAR_F_DEST_ADD_N	FPAR_F_DEST_ADD_MISMATCH Inc		Incorrect target address	
FPAR_F_DEST_ADD_NOT_VALID Inval		Invalid ta	valid target address (0 or 0xFFFF)	
FPAR_F_SOURCE_ADD_NOT_VALID		Invalid source address (0 or 0xFFFF)		
FPAR_F_WD_TIME_NULL		Watchdo	og time is invalid (==0)	
FPAR_F_SIL_ERR		Transfer	rred SIL class too high	
FPAR_CRC1_ERR		F-Par-CRC – error		
FPAR_BUILD_NOT_OK		Inconsis	tent parameter assignment	

Structure of the device parameters:

With dual channel generation version

<pre>typedef struct Fw_FPar_t {</pre>	
---------------------------------------	--

P_Word	FDestAdd
P_Byte	FSil
} Fw_FPar;	

With single channel generation version

typedef struct Fw_FPar_t {

P_Word	FDestAdd

- P_Word FDestAdd_inv
- P_Byte FSil
- P_Byte FSil_inv
- } Fw_FPar;

Safety information

From the point of the F-Application only

- FPAR_BUILD_RETURN_OK
- FPAR_F_DEST_ADD_MISMATCH
- FPAR_F_DEST_ADD_NOT_VALID
- FPAR_F_SOURCE_ADD_NOT_VALID
- FPAR_F_WD_TIME_NULL
- FPAR_F_SIL_ERR
- FPAR_CRC1_ERR
- FPAR_BUILD_NOT_OK

are permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Safety information

Requirement: PSD_11

The SIL must correspond to the SIL of the F-Slave and must be determined independent of the F-Parameters.

Requirement: PSD_12

Safety information

The F-Address must be stored in the F-Application. An extraction of the F-Address or other values from the F-Parameters is not permitted.

5.1.3 psd_Config(...)

The PSD in this function sets the data length of the instance, which it either (depending on the setting of this instance) reads in via the function $psd_GetConfigPtr(...)$ or adopts the length directly from the settings of the file $p_c_config.h$. The acceptance of the data lengths is paranthesized with the functions disable_int(...) and enable_int(...) to guarantee consistency.

Function:	psd_Config()			
Prototype:	P_Byte psd_Config (P_W	P_Byte psd_Config (P_Word plnstance);		
Meaning:	Setting data length of PS	D instand	ce	
Transfer parameters:	Value range Meaning		Meaning	
pInstance	INST_01INST_X		Instance ID	
	X <= NOF_INSTANCES			
Return parameter:	P_Byte			
Value range		Meaning	g	
FPAR_CONFIG_OK	Config		ration successful	
FPAR_CRC_LENGTH	Invalid length information		ength information	

Safety information From the point of the F-Application only

FPAR_CONFIG_OK FPAR_CRC_LENGTH

are permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1.4 psd_Run(...)

The function switches the PSD into the cyclical data exchange and returns the internal state of the PSD.

Function:	psd_Run(…)			
Prototype:	P_Byte psd_Run (P_	P_Byte psd_Run (P_Word pInstance);		
Meaning:	Place PSD instance in c	yclical da	ita exchange	
Transfer parameters:	Value range Meaning			
pInstance	INST_01INST_X		Instance ID	
	X <= NOF_INSTANCES	5		
Return parameter:	P_Byte			
Value range		Meaning	g	
PSD_DATAEX		Error-fre	e cyclical data traffic	

Safety information

From the point of view of the F-Application only **PSD_DATAEX** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1.5 psd_Stop(...)

The function is intended to terminate the cyclical data exchange of the PSD and permit parameterization.

Function:	psd_Stop()		
Prototype:	P_Byte psd_Stop (P_Word pInstance);		
Meaning:	Terminate cyclical data e	exchange in PSD instance	
Transfer parameters:	Value range Meaning		
plnstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		
Return parameter:	P_Byte		
Value range		Meaning	
PSD_PARAM		Assigned	

Safety information

From the point of view of the F-Application only **PSD_PARAM** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1.6 psd_RecvFOutTele(...)

The function transfers the time values in 1ms intervals and accepts the output telegram from the F-Master in the PSD for the indicated instance. The PSD reads in the output data via the function psd_GetOutputTelegram(..). The acceptance of the output data is parenthesized with the functions disable_int(...) and enable_int(...) to guarantee consistency during parameter acceptance.

Function:	psd_RecvFOutTe	psd_RecvFOutTele()		
Prototype:	P_Byte psd_RecvFOutTele			
	(P_Word P Word			
	P_Word		·	
Meaning:	Acceptance of 1ms increments and the cyclical output telegram in the PSD_zykout buffer.			
Transfer parameters:	Value range		Meaning	
pInstance	INST_01INST_X		Instance ID	
	X <= NOF_INSTANC	ES		
ClockValue			1msec-clock value	
ClockValue2		1msec-clock value		
Return parameter:	P_Byte			
Value range	Meanin		g	
RECV_FOUT_TELE_OK Outp		Output telegram adopted		

From the point of view of the F-Application only **RECV_FOUT_TELE_OK** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1.7 psd_RecvFOutTele_Invers(...)

This function is to be used in the single-channel version. The function transfers the inverse time values in 1ms intervals and creates the inverse data in the internal memory of the PSD for the indicated instance.

Function:	Psd_RecvFOutTe	Psd_RecvFOutTele_Invers()		
Prototype:	P_Byte psd_RecvFOutTele_invers (P_Word pInstance, P_Word ClockValue_inv, P_Word ClockValueC2_inv);			
Meaning:		Acceptance of the inverse 1ms increments and buildup of the inverse data in the PSD buffer.		
Transfer parameters:	Value range		Meaning	
pInstance	INST_01INST_X X <= NOF_INSTANC	ES	Instance ID	
ClockValue_inv			Inverter 1msec-clock value	
ClockValue2_inv	Inverter 1msec-clock value			
Return parameter:	P_Byte			
Value range	Value range		g	
RECV_FOUT_TELE_OK_INV		Inverse-data created		

Safety information

From the point of view of the F-Application only **RECV_FOUT_TELE_OK_INV** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Requirement: PSD_19

Safety information

The returned values of the 'inverse' functions used are to be evaluated accordingly.

5.1.8 psd_GetFOutData(...)

The function is used to check the output telegrams from the master according to the indicated PROFIsafe profile /1/. The F-Application is provided with the F-output user data, the control byte, and the error status of the function.

Function:	psd_GetFOutData(…)		
Prototype:	P_Byte psd_GetFOutData (P_Word pInstance, Fw_OutputDataCB P_GLOBDAT_ATTR_POINTER* FFwOutputDataCB,		
	P_Byte P_GLOBDAT_ATTR_POINTER* pOutDataArray,		
	P_Byte pOutDataLen);		
Meaning:	Checks the output telegram, forms the F-output user data as well as the control byte		
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X X <= NOF_INSTANCES	Instance ID	
FFwOutputDataCB,		Pointer to a structure to store control byte IDs	
pOutDataArray		Pointer to a data area for storage of user data	
pOutDataLen		Length of the user data area	
Return parameter:	P_Byte		

Value range	Meaning	
F_OUTPUT_OK	F telegram from master is valid and the	
F_OUTPUT_OLD_CONSNR	F-output user data can be adopted by the F-Application.	
F_OUTPUT_CLEAR	The PSD has received a zero-telegram from the F-Host. This telegram will be discarded but time monitoring will continue. The F-output user data will remain unchanged. The F-Application can retain its last valid output user data.	
F_OUTPUT_COMM_ERR	An error in the PROFIsafe communication was detected. The F- output user data are passivated.	
F_OUTPUT_WD_TIMEOUT	A timeout was detected in the communication. The F-output user data are passivated.	
F_OUTPUT_PASSIVATED	An error was detected in the communication or the F-Host has set the bit_4 (FV-to-be-activated) to 1 in the control byte. The F-output user data are passivated.	

From the point of view of the F-Application for the return values: **F_OUTPUT_COMM_ERR**,

F_OUTPUT_WD_TIMEOUT, F_OUTPUT_PASSIVATED

you will have to set the F-output user data according to the application into the safe state.

Requirement: PSD_13

For:

F_OUTPUT_COMM_ERR, F_OUTPUT_WD_TIMEOUT, F_OUTPUT_PASSIVATED

the F-Application must ensure the safe state for the process.

Safety information

From the point of view of the F-Application, only

- F_OUTPUT_OK
- F_OUTPUT_OLD_CONSNR
- F_OUTPUT_CLEAR
- F_OUTPUT_COMM_ERR
- F_OUTPUT_WD_TIMEOUT
- F_OUTPUT_PASSIVATED

are permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Control byte ID		
<pre>typedef struct Fw_OutputDataCB_t {</pre>		
P_Byte	CB_B0_iParEN	
P_Byte CB_B1_OAReq		
P_Byte	CB_B4_activate_FV	
} Fw_OutputDataCB;		

Dual channel generation variant

Requirement: PSD_24

The F-Application has to test the consistency of the F-output user data as well as control byte IDs of both hardware channels. The consistency ckeck has to be done before output to the process.

If the PSD reports a communication error, the received control byte is invalid and the evaluation of the control byte IDs isn't permissible.

5.1.9 psd_GetFOutData_Invers(...)

This function is to be used in the single-channel version. The function provides the F-Application with the inverse F-output user data, the inverse control byte, and the inverse error status of the indicated instance.

Function:	psd_GetFOutData_Invers	s()	
Prototype:	P_Byte psd_GetFOutData_invers (P_Word pInstance, Fw_OutputDataCB P_GLOBDAT_ATTR_POINTER* FFwOutputDataCB_inv, P_Byte P_GLOBDAT_ATTR_POINTER* pOutDataArray_inv, P_Byte pOutDataLen);		
Meaning:	Checks the output telegram, forms the F output user data as well as the control byte		
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X X <= NOF_INSTANCES	Instance ID	
FFwOutputDataCB_inv		Pointer to a structure to store inverse control byte IDs	
pOutDataArray_inv		Pointer to a data area for storage of inverse user data	
pOutDataLen		Length of the user data area	
Return parameter:	P_Byte		

Value range	Meaning
F_OUTPUT_OK_INV F_OUTPUT_OLD_CONSNR_INV	F telegram from master is valid and the inverse F output user data can be adopted by the F-Application.
F_OUTPUT_CLEAR_INV	The PSD has received a zero-telegram from the F-Host. This telegram will be discarded but time monitoring will continue. The F output user data will remain unchanged. The F-Application can retain its last valid output user data.
F_OUTPUT_COMM_ERR_INV	An error in the PROFIsafe communication was detected. The inverse F output user data are passivated.
F_OUTPUT_WD_TIMEOUT_INV	A timeout was detected in the communication. The inverse F output user data are passivated.
F_OUTPUT_PASSIVATED_INV	An error was detected in the communication or the F-Host has set the bit_4 (FV-to-be-activated) to 1 in the control byte. The inverse F output user data are passivated.

From the point of view of the F-Application for the return values:

F_OUTPUT_COMM_ERR_INV, F_OUTPUT_WD_TIMEOUT_INV, F_OUTPUT_PASSIVATED_INV

you will have to set the F output user data according to the application into the safe state.

Requirement: PSD_13

For:

F_OUTPUT_COMM_ERR, F_OUTPUT_WD_TIMEOUT, F_OUTPUT_PASSIVATED the F-Application must ensure the safe state for the process

Safety information

From the point of view of the F-Application, only

- F_OUTPUT_OK_INV
- F_OUTPUT_OLD_CONSNR_INV
- F_OUTPUT_CLEAR_INV
- F_OUTPUT_COMM_ERR_INV
- F_OUTPUT_WD_TIMEOUT_INV
- F_OUTPUT_PASSIVATED_INV

are permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

SIEMENS

Control byte ID		
<pre>typedef struct Fw_OutputDataCB_t {</pre>		
P_Byte	CB_B0_iParEN	
P_Byte CB_B1_OAReq		
P_Byte	CB_B4_activate_FV	
} Fw_OutputDataCB_inv;		

Safety information

Requirement: PSD_19

The returned values of the 'inverse' functions used are to be evaluated accordingly.

Safety information

Single channel generation variant

Requirement: PSD_18

The F-Application has to test the consistency of the normal and inverse F-output user data as well as control byte IDs. The consistency ckeck has to be done before output to the process.

If the PSD reports a communication error, the received control byte is invalid and the evaluation of the control byte IDs isn't permissible

5.1.10 psd_SetFInData(...)

The function takes over the status IDs and the F-input user data of the indicated instance in a PSD internal buffer from the F-Application.

Function	psd_SetFInData()		
Prototype:	P_Byte psd_SetFinData (P_Word pInstance, const Fw_InputtDataSB P_GLOBDAT_ATTR_POINTER* FFwInputDataSB, const P_Byte P_GLOBDAT_ATTR_POINTER* pInDataArray, P_Byte pInDataLen);		
Meaning:	Transfer of F input user data as well as status byte IDs to an internal PSD buffer		
Transfer parameters:	Value range Meaning		
pInstance	INST_01INST_X X <= NOF_INSTANCES	Instance ID	
FFwInDataSB		Pointer to a structure to take over control byte IDs	
pInDataArray		Pointer to a data area to take over user data	
pInDataLen		Length of the input user data	
Return parameter:	P_Byte		
Value range		Meaning	
SEND_FIN_DATA_OK		Data are adopted	

From the point of view of the F-Application only **SEND_FIN_DATA_OK** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Status byte ID		
<pre>typedef struct Fw_InputDataSB_t {</pre>		
P_Byte	SB_B0_iParOk	
P_Byte SB_B1_DeviceFault		
P_Byte	CB_B4_FVactivated	
} Fw_InputDataSB;		

5.1.11 psd_SetFInData_invers(...)

This function is to be used in the single-channel version. The function takes over the inverse F-input user data as well as the status byte IDs of the indicated instance in a PSD internal buffer from the F-Application.

Function	psd_SetFInData_invers()		
Prototype:	P_Byte psd_SetFInData_invers (P_Word pInstance, const Fw_InputtDataSB P_GLOBDAT_ATTR_POINTER* FFwInputDataSB_inv, const P_Byte P_GLOBDAT_ATTR_POINTER* pInDataArray_inv, P_Byte pInDataLen);		
Meaning:	Transfer of F input user data as well as status byte IDs to an internal PSD buffer		
Transfer parameters:	Value range Meaning		
pInstance	INST_01INST_X X <= NOF_INSTANCES	Instance ID	
FFwInDataCB_inv		Pointer to a structure to take over the inverse control byte IDs	
pInDataArray_inv		Pointer to a data area to take over the inverse input user data	
pInDataLen	Length of the input user data		
Return parameter:	P_Byte		
Value range		Meaning	
SEND_FIN_DATA_OK_IN	v	Data are adopted	

Safety information

From the point of view of the F-Application only **SEND_FIN_DATA_OK_INV** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Requirement: PSD_19

The returned values of the 'inverse' functions used are to be evaluated accordingly.

5.1.12 psd_SendFInTele(...)

The function compiles the input telegram of the indicated instance from the F input user data as well as status byte IDs transferred from the F-Application and passes this to the Stack-Interface .

Function:	psd_SendFInTele()		
Prototype:	P_Byte psd_SendFInTele (P_Word pinstance);		
Meaning:	Generate and send the input telegram		
Transfer parameters:	Value range		Meaning
pInstance	INST_01INST_X		Instance ID
	X <= NOF_INSTANCE	S	
Return parameter:	P_Byte		
Value range		Меа	ning
SEND_FIN _TELE_OK		Inpu	t telegram sent

Safety information

From the point of view of the F-Application only **SEND_FIN_TELE_OK** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

5.1.13 psd_SendFInTele_invers(...)

This function is to be used in the single-channel version. The function compiles the inverse input telegram of the indicated instance from the F input user data as well as status byte IDs transferred from the F-Application.

Function:	psd_SendFInTele_invers()		
Prototype:	P_Byte psd_SendFInTele_invers (P_Word pinstance);		
Meaning:	Generate and send the input telegram		
Transfer parameters:	Value range Meaning		Meaning
pInstance	INST_01INST_X		Instance ID
	X <= NOF_INSTANCE	S	
Return parameter:	P_Byte		
Value range		Меа	ning
SEND_FIN_TELE_OK_INV		Inpu	t telegram sent

From the point of view of the F-Application only **SEND_FIN_TELE_OK_INV** is permitted.

Requirement: PSD_09

Invalid return values must lead to the F-Application state HARD_FAIL.

Safety information

Requirement: PSD_19

The returned values of the 'inverse' functions used are to be evaluated accordingly.

5.2 Necessary PSD-Interface variable

5.2.1 pSafetyVar

The interface variable **pSafetyVar** enables the F-Application to report a HARD_FAIL to the PSD in single channel. This leads to a CRC falsification of the input telegram.

Safety information

Requirement: PSD_20

If the F-Application goes into the state **HARD_FAIL**, the falsification variable **PSD_safety_var** must be set to the value **P_SAFETY_CONST_FALSE**.

5.3 Necessary functions to be implemented

5.3.1 hard_err(...)

In case of an error, the PSD sets the PSD status PSD_HARD_FAIL. The PSD then calls up the function hard_err(...) in p_c_fapplication.c so that the F-Application can respond to the error.

Function:	hard_err()		
Prototype:	void hard_err (P_Word pInstance);		
Meaning:	Specific reaction of the F-Application to fatal errors.		
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		
Return parameter:	Value range	Meaning	
none			

Safety information

Requirement: PSD_10

The function hard_err(...) is to be implemented by the F-Application. It must lead for all used instances to a HALT state.

Safety information

Requirement: PSD_17

All interface functions except hard_err(...) must return to PSD.

5.3.2 psd_GetFParPtr(...)

The prototype of the function is available in the file $p_c_si.h$ and has to be implemented by the F-Application. It provides a pointer to the PSD for the F-Parameters of the indicated instance. The buffer must be provided by the Stack-Interface.

Function	psd_GetFParPtr()	
Prototype:	P_Byte* psd_GetFParPtr	(P_Word pInstance);
Meaning:	The PSD requests a pointer to the F-Parameters of the instance from the Stack-Interface.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
Return parameter:	Value range	Meaning
P_Byte*	NIL	No pointer to the buffer for F- Parameters of instance present.
	!= NIL	Pointer to the buffer for F- Parameters of instance is present.

5.3.3 psd_GetConfigPtr(...)

The prototype of the function is available in the file $p_c_si.h$ and has to be implemented by the F-Application. It provides a pointer to the PSD for the structure with the data length of the indicated instance. The structure must be provided by the Stack-Interface.

Function	psd_GetConfigPtr()	
Prototype:	P_Byte* psd_GetConfigPtr (P_Word pInstance);	
Meaning:	The PSD requests a pointer to the data lengths of the instance from the Stack-Interface.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_0X X <= NOF_INSTANCES	Instance ID
Return parameter:	Value range	Meaning
P_Byte*	NIL	No pointer to the buffer for the data lengths of the instance present.
	!= NIL	Pointer to the buffer for the data lengths of the instance present.
		The buffer consists of an array of 2 bytes. The first byte contains the length of the input telegram. The second byte contains the length of the output telegram. The PSD calculates the length of the user data depend on parameterization.

5.3.4 psd_GetOutputTelegram(...)

The prototype of the function is available in the file $p_c_si.h$ and has to be implemented by the F-Application. It provides a pointer to the PSD for the output data of the indicated instance. The buffer must be provided by the Stack-Interface.

Function	psd_GetOutput_Telegram()		
Prototype:	P_Byte* psd_GetOutput_	Telegram (P_Word pInstance);	
Meaning:	The PSD requests a pointe from the Stack-Interface.	The PSD requests a pointer to the output data of the instance from the Stack-Interface.	
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		
Return parameter:	Value range	Meaning	
P_Byte*	NIL	No pointer to the buffer for output data of the instance present.	
	!= NIL	Pointer to the buffer for the output data of the instance is present.	

5.3.5 psd_GetInputBuffer(...)

The prototype of the function is available in the file $p_c_si.h$ and has to be implemented by the F-Application. It provides a pointer to the PSD for the input data area of the indicated instance. The buffer must be provided by the Stack-Interface.

Function	psd_GetInputBuffer()		
Prototype:	P_Byte* psd_GetInputBuf	fer	
	(P_Word pInstance	9	
	P_Byte InTeleLen	*);	
Meaning:	The PSD requests a pointe from the Stack-Interface.	The PSD requests a pointer to the input data area of the instance from the Stack-Interface.	
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		
InTeleLen		Length of the input data area	
Return parameter:	Value range	Meaning	
P_Byte*	NIL	No pointer to the buffer for input data area of the instance present.	
	!= NIL	Pointer to the buffer for input data area of the instance present.	

5.3.6 psd_InputSendAck(...)

The prototype of the function is available in the file $p_c_si.h$ and has to be implemented by the F-Application. It informs the Stack-Interface that the input data and F data were copied by the PSD to the input data area of the indicated instance (predefined by the Stack-Interface using the function psd_Get-InputBuffer()).

Function	psd_InputSendAck()	
Prototype:	P_Byte psd_InputSendAck	(P_Word pInstance);
Meaning:	The PSD informs the Stack-Interface that the input data were entered in the input data area of the instance.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
Return parameter:	Value range	Meaning
P_Byte	FIN_TELE_UPDATE_OK	The input telegram was taken over by the Stack-Interface .
	FIN_TELE_UPDATE_ER R	Error on taking over the input telegram

5.3.7 enable_int(...)

The prototype of the function is available in the file $p_c_application.h$ and has to be implemented by the F-Application. The PSD indicates that the interrupt lock for this instance has to be released once again.

Function	enable_int()	
Prototype:	void enable_int (P_Word pli	nstance);
Meaning:	The PSD informs the Stack-Interface that the interrupt lock of the instance may be removed once again.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
Return parameter:	Value range	Meaning
none		

5.3.8 disable_int (..)

The prototype of the function is available in the file p_c_application.h and has to be implemented by the F-Application. The PSD requests an interrupt lock of the indicated instance because it has to access "unfamilar" data.

Function	enable_int()	
Prototype:	void disable_int (P_Word pl	Instance);
Meaning:	The PSD requests an interrupt lock of the instance from the Stack-Interface because it has to access data.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
Return parameter:	Value range	Meaning
none		

5.4 Necessary to implement functions for the dual-channel generation version

In the dual-channel generation variant, the PSD requires a Synchronization-Interface to align the data.

The prototype of the functions is defined in the file $p_c_fapplication.h$ and it enables the PSD to access the Synchronization-Interface provided by the F-Application. The file $p_c_fapplication.c$ is available for the adaptation.

5.4.1 psd_OutTransfer(...)

This function is called up from the PSD in the function **psd_RecvFOutTele()**. It initiates transfer of the PSD status to other channel for specific instances.

Function	psd_OutTransfer		
Prototype:	P_Byte psd_OutTransfer	P_Byte psd_OutTransfer	
	(P_Word plnstance,		
	P_Byte State);		
Meaning:	The PSD transfers the PSD status of an interface to the Synchronization-Interface. The function initiates transfer to the second channel so that it can access the PSD status with the function psd_OutSync() at a later time.		
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		
State		Status to be transmitted	
Return parameter:	Value range	Meaning	
P_Byte	TRANSFER_OK	Synchronization-Interface reports all ok	
	TRANSFER_NOT_OK	Synchronization-Interface reports error	

5.4.2 psd_OutSync(...)

This function is called up from the PSD in the function **psd_GetFOutData()**. It transmits an instance specific pointer to a byte. The function enters the PSD status that was received by the Synchronization-Interface from the second channel in the meantime.

Function	psd_OutSync	
Prototype:	P_Byte psd_OutSync	
	(P_Word pInstance,	
	P_Byte* State);	
Meaning:	The PSD transmits a pointer to a byte. The function enters the PSD status that was received by the Synchronization-Interface from the second channel for specific instances.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
*State		Pointer to a status byte
Return parameter:	Value range	Meaning
P_Byte	SYNC_OK	Synchronization-Interface reports all ok
	SYNC_NOT_OK	Synchronization-Interface reports error

Safety information

Requirement: PSD_25

The F-Application must provide a Synchronization-Interface for dual-channel PSD generation. Mirroring of the data to be swapped should be prohibited.

5.4.3 psd_InTransfer(...)

This function is called up from the PSD in the function **psd_SetFInData()**. It initiates transfer of the input telegram CRC to other channel for specific instances.

Function	psd_InTransfer	
Prototype:	P_Byte psd_InTransfer	
	(P_Word pInstance,	
	P_DWord CRCValue)	;
Meaning:	The PSD transfers the CRC2 of the input telegram of an instance to the Synchronization-Interface. The function initiates transfer to the second channel so that it can access the CRC2 with the function psd_InSync() at a later time.	
Transfer parameters:	Value range	Meaning
pInstance	INST_01INST_X	Instance ID
	X <= NOF_INSTANCES	
CRCValue		CRC value to be transmitted
Return parameter:	Value range	Meaning
P_Byte	TRANSFER_OK	Stack-Interface reports all ok
	TRANSFER_NOT_OK	Stack-Interface reports error

5.4.4 psd_InSync(...)

This function is called up from the PSD in the function **psd_SendFInTele()**. It transmits an instance specific pointer to a DWord. The function enters the CRC value that was received by the Synchronization-Interface from the second channel in the meantime.

Function	psd_OutSync		
Prototype:	P_Byte psd_InSync	P_Byte psd_InSync	
	(P_Word plnstance,		
	P_DWord* CRCValue	a);	
Meaning:	The PSD transmits a pointer to a DWord. The function enters the CRC2 of the input telegram that was received by the Synchronization-Interface from the second channel for specific instances.		
Transfer parameters:	Value range	Meaning	
pInstance	INST_01INST_X	Instance ID	
	X < = NOF_INSTANCES		
*CRCValue		Pointer to a CRC value	
Return parameter:	Value range	Meaning	
P_Byte	SYNC_OK	Synchronization-Interface reports all ok	
	SYNC_NOT_OK	Synchronization-Interface reports error	

Safety information

Requirement: PSD_25

The F-Application must provide a Synchronization-Interface for dual-channel PSD generation. Mirroring of the data to be swapped should be prohibited.

SIEMENS

5.5 Optional PSD interface functions

Safety information

Requirement: PSD_17

All interface functions except hard_err(...) must return to PSD.

5.5.1 Help functions for CRC calculation

5.5.1.1 psd_CRC16(...)

The function calculates a 16-bit CRC across a data area. The generator polynomial 0x14EAB is used.

Function:	psd_CRC16()	
Prototype:	P_Word psd_CRC16	
	(P_DWord pLengt	h,
	P_Word PStartVal	ue,
	const P_Byte pDat	ta[],
	P_Byte pCalcDirec	ction);
Meaning:	CRC16 calculation across a	any memory section
Transfer parameters:	Value range	Meaning
pLength		Data length for calculation
PStartValue		Start-CRC16 value for calculation
pData		Pointer to data for calculation
pCalcDirection	FORWARD	It is calculated as of the start address of the data of the CRC16 value via the values according to the length information in increasing order.
	BACKWARD	It is calculated as of the end address of the data of the CRC16 value via the values according to the length information in decreasing order.
Return parameter:	P_Word	
Value range		Meaning
0 – 0xFFFF		16-bit CRC value

5.5.1.2 psd_CRC32(...)

The function calculates a 32-bit CRC across a data area. The generator polynomial 0x1F4ACFB13 is used.

Function:	psd_CRC32()	
Prototype:	P_DWord psd_CRC32	
	(P_DWord pLength,	
	P_DWord PStartValue,	
	const P_Byte pData[],	
	P_Byte pCalcDirection);	
Meaning:	CRC16 calculation across any memory section	

Transfer parameters:	Value range	Meaning
pLength		Data length for calculation
PStartValue		Start-CRC16 value for calculation
pData		Pointer to data for calculation
pCalcDirection	FORWARD	It is calculated as of the start address of the data of the CRC32 value via the values according to the length information in increasing order.
	BACKWARD	It is calculated as of the end address of the data of the CRC32 value via the values according to the length information in decreasing order.
Return parameter:	P_DWord	
Value range		Meaning
0 – 0xFFFF FFFF		32-bit CRC value

5.5.2 psd_GetState(...)

The function can be used to query the current PSD state.

Function:	psd_GetState()			
Prototype:	P_Byte psd_GetState (P_Word pinstance);			
Meaning:	Output of PSD status of	Output of PSD status of instance		
Transfer parameters:	Value range		Meaning	
pInstance	INST_01INST_X		Instance ID	
	X <= NOF_INSTANCE	X <= NOF_INSTANCES		
Return parameter:	P_Byte			
Value range		Meaning		
PSD_INIT		Initia	alized	
PSD_PARAM		Assigned		
PSD_DATAEX		Error-free cyclical data traffic		
PSD_HARD_FAIL		Fatal internal error →		
		Call	up the function hard_err()	

5.5.3 psd_GetFPar(...)

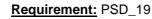
Use this function to read out the set SIL value and of the F_iPar_CRC.

Function:	psd_GetFPar()			
Prototype:	P_Byte psd_GetFPar (P_Word µ	P_Byte psd_GetFPar (P_Word pInstance		
	Fw_PsdFF	Par* pFwFParam);		
Meaning:	Read out the SIL value and the I	iPar_CRC value		
Transfer parameters:	Value range Meaning			
pInstance	INST_01INST_X	Instance ID		
	X <= NOF_INSTANCES			
pFwFParam		Pointer to device parameter		
Deturn neremeter	Volue renge	structure		
Return parameter:	Value range	Meaning		
P_Byte	GET_FPAR_OK	Call is correct		

Structure of the device parameter structure:

With dual channel generation version:

typedef struct Fw_PsdFPar_t {			
P_DWord	P_DWord FiParCRC		
P_Byte	FSil		
} Fw_PsdFPar;			


With single channel generation version:

typedef struct Fv	<pre>typedef struct Fw_PsdFPar_t {</pre>		
P_DWord	FiParCRC		
P_DWord	FiParCRC_inv		
P_Byte	FSil		
P_Byte	FSil_inv		
} Fw_PsdFPar;			

5.5.4 Inverse PSD Functions

In the single-channel generation variant, the PSD provides a corresponding inverse function for each main function. The functions described below support a single-channel software architecture of the F-Application. The functions deliver the results of the inverse calculation path of the PSD. The meaning of the returned values can be found in the main functions.

Safety information

The returned values of the 'inverse' functions used are to be evaluated accordingly.

5.5.4.1 psd_InitInstance_Invers (...)

Function:	psd_InitInstance_Invers ()			
Prototype:	P_Byte psd_InitInstance_	P_Byte psd_InitInstance_Invers (P_Word pInstance);		
Meaning:	Return of the inverse initialization	Return of the inverse initialization status of the PSD instance		
Transfer parameters:	Value range Meaning			
pInstance	INST_01INST_X Instance ID			
	X <= NOF_INSTANCES			
Return parameter:	P_Byte			
Value range	alue range Meaning		9	
INIT_INSTANCE_OK_IN	T_INSTANCE_OK_INV Initialization successful		tion successful	

5.5.4.2 psd_FParBuild_Invers(...)

Function:	psd_FParBuild_Invers()	
Prototype:	P_Byte psd_FParBuild_Invers (P_Word pInstance);	

Meaning:	Return of the inverse parameter status of the PSD instance				
Transfer parameters:	Value range		Meaning		
pInstance	INST_01INST_0X		Instance ID		
	X <= NOF_INSTANCE	S			
Return parameter:	P_Byte				
Value range		Me	aning		
FPAR_BUILD_OK_INV	V		Parameter assignment successful		
FPAR_F_DEST_ADD_MISMATCH_INV		Incorrect target address			
FPAR_F_DEST_ADD_NOT_VALID_INV		Invalid target address			
FPAR_F_SOURCE_ADD_NOT_VALID_INV		Invalid source address			
FPAR_F_WD_TIME_NULL_INV		Watchdog time is invalid (==0)			
FPAR_F_SIL_ERR _INV		Transferred SIL class too high			
FPAR_CRC1_ERR _INV		The CRC of the F-Parameters is invalid			
FPAR_BUILD_NOT_OK_INV		Inconsistent parameter assignment			

5.5.4.3 psd_Config_Invers (...)

Function:	psd_Config_Invers ()		
Prototype:	P_Byte psd_Config_Inve	rs (P_W	ord plnstance);
Meaning:	Return of the inverse configu	ration sta	tus of the PSD instance.
Transfer parameters:	Value range Meaning		
plnstance	INST_01INST_X Instance ID		
	X <= NOF_INSTANCES		
Return parameter:	P_Byte		
Value range	Meaning		g
FPAR_CONFIG_OK_INV		Configuration successful	
FPAR_CRC_LENGTH_I	TH_INV Invalid length information		ength information

5.5.4.4 psd_Run_Invers (...)

Function:	psd_Run_Invers()		
Prototype:	P_Byte psd_Run_Inv	vers (P_	Word pInstance);
Meaning:	Return of the inverse PS	SD status	of the PSD instance.
Transfer parameters:	Value range Meaning		
pInstance	INST_01INST_X		Instance ID
	X <= NOF_INSTANCES		
Return parameter:	P_Byte		
Value range	Meaning		3
PSD_DATAEX_INV	Error-free cyclical data traffic		e cyclical data traffic

5.5.4.5 psd_Stop_Invers (...)

Function:	psd_Stop_Invers (…)		
Prototype:	P_Byte psd_Stop (P_Word pInstance);		
Meaning:	Return of the inverse PSD status of the PSD instance.		
Transfer parameters:	Value range Meaning		
pInstance	INST_01INST_X	Instance ID	
	X <= NOF_INSTANCES		

SIEMENS

Return parameter:	P_Byte	
Value range	Meaning	
PSD_PARAM_INV		Assigned

5.5.4.6 psd_GetFPar_Invers (...)

Function:	psd_GetFPar_Invers ()			
Prototype:	P_Byte psd_GetFPar_Invers(P	P_Byte psd_GetFPar_Invers (P_Word pInstance);		
Meaning:	Return of the inverse acknowled PSD instance	Return of the inverse acknowledgment of psd_GetFPar() of the PSD instance		
Transfer parameters:	Value range Meaning			
pInstance	INST_01INST_X	Instance ID		
	X <= NOF_INSTANCES			
Return parameter:	Value range Meaning			
P_Byte	GET_FPAR_OK_INV	Call is correct		

5.5.4.7 psd_GetState_Invers (...)

Function:	psd_GetState_Invers ()		
Prototype:	P_Byte psd_GetState_Invers (P_Word pinstance);		
Meaning:	Return of the inverse PSD status of the PSD instance.		
Transfer parameters:	Value range Meaning		
pInstance	INST_01INST_0X	Instance ID	
	X <= NOF_INSTANCES		
Return parameter:	P_Byte		

Value range	Meaning	
PSD_INIT_INV Initialized		
PSD_PARAM_INV	Assigned	
PSD_DATAEX_INV	Error-free cyclical data traffic	
PSD_HARD_FAIL_INV	Fatal internal error 🗲	
	Call up the function hard_err()	

6 Configuration of the PSD

The generation parameters (compiler switches) described below can be found in the PSD files p_c_c on fig.h.

6.1 Generation variant

#undef REDUNDANT

Single-channel generation variant

Deployment of the PSD on a single-channel hardware architecture. The PSD stores all internal data as normal and inversely. The PSD functions use different algorithms to calculate on the normal and inverse data.

#define REDUNDANT

Dual-channel generation variant

Deployment of the PSD on a dual-channel hardware architecture. The processing is dual-channel. The data alignment takes place via the Synchronization-Interface.

6.2 Memory space optimization for CRC tables and functions

#undef CRC32

Tables and functions that are required exclusively for the 4-byte CRC are not generated. The PSD does **not** support the 32-bit CRC required for the cyclical input and/or output telegrams in V1 mode and V2 mode according to the PROFIsafe profile.

#define CRC32

Tables and functions that are required exclusively for the 4-byte CRC are generated. The PSD does support the 32-bit CRC required for the cyclical input and/or output telegrams in V1 mode and V2 mode according to the PROFIsafe profile.

SIEMENS

6.3 Instance information

#define NOF_INSTANCES 1

Number of instances.

A length information is required for each used instance of F output and F input user data in p_c_config.h.

Value range: 1 – 32

6.4 F output user data range

#define OUTDATA_MAX_LEN_INST_01 2

#define OUTDATA_MAX_LEN_INST_32 X

Use Defines to set the maximum number of cyclical F-output user data for each used instance. 0 means that no output user data are used.

Value range: 0 – 12 bytes for 2-byte CRC in V1 mode

- 0-12 bytes for 3 byte CRC in V2 mode
- 0 122 bytes for 4 byte CRC in V1 mode
- 0 123 bytes for 4 byte CRC in V2 mode

6.5 F input user data range

#define INDATA_MAX_LEN_INST_01 2

#define INDATA_MAX_LEN_INST_32 X

Use Defines to set the maximum number of cyclical F-input user data for each used instance. 0 means that no input user data are used.

Value range: 0 – 12 bytes for 2-byte CRC in V1 mode

0 – 12 bytes for 3 byte CRC in V2 mode

0 – 122 bytes for 4 byte CRC in V1 mode

0 - 123 bytes for 4 byte CRC in V2 mode

#undef INST_ACCESS_POINTER

For instances >1 addressing to the PSD instance data takes place via array pointers. Depending on the compiler type, this can mean a faster access method.

With only one instance, addressing will take place via array pointers with array index "0" as constant.

#define INST_ACCESS_POINTER

For instances >1 addressing to the PSD instance data takes place via array pointers. Depending on the compiler type, this can mean a faster access method.

6.6 Memory attributes

The memory attributes depend on the used tool chain. Use the keywords accordingly.

#define P_GLOBDAT_ATTR_POINTER

Memory attribute for pointers accessing PSD global variables.

#define P_GLOBDAT_ATTR

Memory attribute for storing the PSD global variables.

#define P_GLOBDAT_I_ATTR

Memory attribute for saving PSD global variables that can be different on both channels (in case of two channels).

#define CRC_DAT_ATTR

Memory attribute for storing the CRC tables.

#define P_CODE_ATTR const

Memory attribute for the code area.

6.7 Memory model CRC tables.

This switch turns on/off the memory model for the CRC tables.

The memory attributes depend on the used tool chain. Use the keywords accordingly.

#define p_crctab_memory

The files "p_c_crc_m.h" and "p_c_crc_b.h" are included. In p_c_crc_m.h you can set the tool chain specific memory model for CRC tables. In p_c_crc_b.h you can return to the memory model for the PSD code.

#undef p_crctab_memory

The files "p_c_crc_m.h" and "p_c_crc_b.h" are not included.

7 Requirements

In order to meet the requirements of the corresponding safety level of the PSD, the F-Application must meet the requirements summarized below.

7.1 Requirements independent of the generation variant

<u>PSD_01</u>	The normative requirements according to the standards on which they are based must be adhered to with regard to the F- Application.
<u>PSD_02</u>	The PSD files must not be changed.
<u>PSD_03</u>	The CRC values of the PSD files (individual and overall CRC) must match the values of the CRC check tool.
<u>PSD_04</u>	Only the PSD interface functions declared in the file p_api.h may be used.
<u>PSD_05</u>	Only the PSD interface functions declared in the file p_global.h may be used.
<u>PSD_06</u>	The defines from p_global.h must be used for evaluation of the PSD returns.
<u>PSD_07</u>	The development tools are to be qualified by the manufacturer of the F-Slave.
<u>PSD_08</u>	If code optimization is used, the restrictions described in chapter 8.3 have to be considered.
<u>PSD_09</u>	Invalid return values must lead to the F-Application state HARD_FAIL .

The following return values are permitted:

Function	Permitted return values
psd_InitInstance()	INIT_INSTANCE_OK
psd_FParBuild()	FPAR_BUILD_OK FPAR_F_DEST_ADD_MISMATCH FPAR_F_DEST_ADD_NOT_VALID FPAR_F_SOURCE_ADD_NOT_VALID FPAR_F_WD_TIME_NULL FPAR_F_SIL_ERR FPAR_CRC1_ERR FPAR_BUILD_NOT_OK
psd_Config()	FPAR_CONFIG_OK

SIEMENS

Function	Permitted return values
psd_Run()	PSD_DATAEX
psd_Stop()	PSD_PARAM
psd_RecvFOutTele()	RECV_FOUT_TELE_OK
psd_GetFOutData()	F_OUTPUT_OK F_OUTPUT_OLD_CONSNR F_OUTPUT_CLEAR F_OUTPUT_COMM_ERR F_OUTPUT_WD_TIMEOUT F_OUTPUT_PASSIVATED
psd_SetFInData()	SEND_FIN_DATA_OK
psd_SendFInTele()	SEND_FIN _TELE_OK
psd_GetState()	PSD_INIT PSD_PARAM PSD_DATAEX PSD_HARD_FAIL
psd_GetFPar()	GET_FPAR_OK

The permitted return value range of the "inverse" functions (only for the single channel generation variant) correspond to those of the main functions.

<u>PSD 10</u>	The function hard_err() is to be implemented by the F- Application. It must lead for all used instances to a HALT state.
PSD_11	The SIL must correspond to the SIL of the F-Slave and must be determined independent of the F-Parameters.
PSD_12	The F-Address must be stored in the F-Application. An extraction of the F-Address or other values from the F-Parameters is not permitted.
<u>PSD 13</u>	For: F_OUTPUT_COMM_ERR, F_OUTPUT_WD_TIMEOUT, F_OUTPUT_PASSIVATED the F-Application must ensure the safe state for the process.
PSD_14	A PROFIsafe-Conformance test must be run by an accredited inspection laboratory (see PNO).
PSD_15	The test cases specified in chapter 8 are to be run.
<u>PSD_16</u>	The status byte.bit_1 shall be set by the F-Application for at least two (2) changes of the consecutive number (2 x returnvalue "F_OUTPUT_OK" of the PSD-function psd_GetFOutData()), if

the F-Slave is not able to guarantee the safety integrity of the process data to be transmitted. Signal name is "Device Fault".

PSD_17 All interface functions except hard_err(...) must return to PSD.

7.2 Requirements for the single-channel generation variant

- PSD 18The F-Application has to test the consistency of the normal and
inverse F-output user data as well as control byte IDs. The
consistency ckeck has to be done before output to the process.
If the PSD reports a communication error, the received control
byte is invalid and the evaluation of the control byte IDs isn't
permissible.
- **PSD_19** The returned values of the 'inverse' functions used are to be evaluated accordingly.
- PSD_20
 If the F-Application goes into the state HARD_FAIL,, the falsification variable PSD_safety_var must be set to the value P_SAFETY_CONST_FALSE.
- **PSD_21** Analysis with the verification code in the file p_verify.c /4/ must be performed to verify the compiler.
- **PSD_22** When using the single channel-PSD in an actor or sensor, all safety critical secondary faults have to be uncovered by the surrounding of the PSD.
- **PSD_23** When using the single channel-PSD in an actor, accidental hardware-faults have to be uncoverd within the process-fault-tolerance time by the surroundings.

7.3 Requirements for the dual-channel generation variant

- **PSD_24** The F-Application has to test the consistency of the F-output user data as well as control byte IDs of both hardware channels. The consistency ckeck has to be done before output to the process. If the PSD reports a communication error, the received control byte is invalid and the evaluation of the control byte IDs isn't permissible.
- **PSD_25** The F-Application must provide a Synchronization-Interface for dual-channel PSD generation. Mirroring of the data to be swapped should be prohibited.

8 Test specification

8.1 Fault insertion test

The specific implementation of the PSD error detection mechanism (program operating control (single channel), Sync-Interface (dual channel), consistency comparison of PSD internal double + inverse data, etc.) are proven by the fault insertion test.

The test code necessary for the test is inserted with the help of macro into the C code of the PSD or directly in the F-Application C code. The PSD test code is contained as an example in the file p_c_fault_insert.h and must be modifed for the specific F-Slave. The define "FAULT_INSERTION" must be commented out in the file p_global.h.

Each individual fault insertion test must be "switched on" in the file; the entire code must be compiled and executed. In each test the state of HARD_FAIL must be attained during the course of PROFIsafe communication.

Safety information

Requirement: PSD_15

The test cases specified in chapter 8 are to be run.

8.1.1 Single channel and dual channel generation variants

The following tests must be performed:

No.	Description	Expected result
1	The parameter F_ iPar_CRC will be falsified. Error injection by the macro FI_PSD_025	Reaction of the PSD: The PSD detects the configuration error.
		Reaction of the F-Application: The secure state of the process values, dependent upon the application, is determined.
2	The PSD is given an excessive length via the function psd_Config().	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_024	
3	The PSD is not set into the cyclical data exchange (pst_run is not started).	Reaction of the F-Host: The F-Host detects a timeout.
	Error injection through F-Application	
4	The PSD function psd_SetFInData() is given an excessively large instance.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_001	
5	The PSD function psd_SetFInData() is given an incorrect data length.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_002	
6	The PSD function psd_SetFInData() is terminated prematurely.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_003	
7	The PSD is given an excessive data length via the function psd_GetInputBuffer().	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_005	
8	The PSD function psd_SendFInTele() is given an incorrect CRC value.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_006	
9	The PSD function psd_SetFInTele() is terminated prematurely.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_011	
10	The PSD function psd_RecvFOutTele() is given an incorrect CRC value.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_013	
11	The PSD function psd_RecvFOutTele() is terminated prematurely.	The PSD detects an error and calls up the function hard_err().
	Error injection by the macro FI_PSD_017	

8.1.2 Single channel generation variant

The following tests must be performed:

No.	Description	Expected result
12	Recognition of a falsfication of the process control on a logical channel via FlowControl value Error injection by the macro FI_PSD_151	Reaction of the PSD: The process control of the PSD detects an error and calls up the function hard_err().
13	Recognition of a falsfication of the process control on a logical channel via FlowControl_inv value Error injection by the macro FI_PSD_152	Reaction of the PSD: The process control of the PSD detects an error and calls up the function hard_err().

8.1.3 Dual channel generation variant

The following tests must be performed:

No.	Description	Expected result
14	Detection of an incorrect SyncQuit on a channel when sending the PSD, change to state PSD_HARD_FAIL: In function psd_SetFInData() the Sync_Quit to TRANSFER_NOT_OK is falsified after call up of psd_InTransfer() on a channel. Error injection by the macro FI_PSD_102	Reaction of the PSD: The PSD detects a synchronization error on a channel and calls up the function hard_err(). A synchronization timeout is generated on the other channel and the function hard_err() is called up.
15	Detection of an incorrect SyncQuit on a channel when sending the PSD, change to state PSD_HARD_FAIL: In function psd_SetFInTele() the Sync_Quit to SYNC_NOT_OK is falsified after call up of psd_InSync () on a channel. Error injection by the macro FI_PSD_104	Reaction of the PSD: The PSD detects a synchronization error on a channel and calls up the function hard_err(). A synchronization timeout is generated on the other channel and the function hard_err() is called up.

8.2 Qualification of the development tools

Safety information

Requirement: PSD_07

The development tools are to be qualified by the manufacturer of the F-Slave.

8.3 Code generation

Code generation for the single channel variant with use of code optimization has to retain the logical dual channel model in the code.

Safety information

Requirement: PSD_21

Analysis with the verification code in the file p_verify.c /4/ must be performed to verify the compiler.

8.4 Compiler verification code for single channel generation variants

The verification code in the file p_verify.c shows how the compiler used in the PSD converts code sequences used in the PSD. To prove redundancy in the code, all instances marked with "M:" must be met. All instances marked with "S:" show the implementation of C instructions in Assembler and are for information purposes only. In the comments, the term "move" is used for assignments and the term "compare" is used for comparisons. These terms are to be interpreted according to the controller used.

Safety information

Requirement: PSD_21

Analysis with the verification code in the file p_verify.c /4/ must be performed to verify the compiler.

8.5 **PROFIsafe-Conformance test**

Safety information Requirement: PSD_14

A PROFIsafe-Conformance test must be run by an ac

A PROFIsafe-Conformance test must be run by an accredited inspection laboratory (see PNO).

9 Appendix

9.1 Memory requirement

The memory requirement has been determined using the list files with a generation for the DPC31 EKit. A Keil-C-Compiler V7.01 was used.

9.1.1 Single-channel generation

Compiler switches	Data	CRC tables	Code
	[bytes]	[bytes]	[bytes]
#define NOF_INSTANCES 1 #undef REDUNDANT #undef CRC32 #undef INST_ACCESS_POINTER	approximately 438	approximately 1536	approximately 15534

9.1.2 Dual-channel generation

Compiler switches	Data	CRC tables	Code
	[bytes]	[bytes]	[bytes]
#define NOF_INSTANCES 1 #define REDUNDANT #undef CRC32 #undef INST_ACCESS_POINTER	approximately 147	approximately 1536	approximately 6995

9.2 Static code analysis

The tool "QA C" was used for the static code analysis. The default settings with MISRA supplementary module were used. The following table summarizes the messages from all configurations. (The list of messages can be different in the individual configurations.)

QA C Message category	QA C Message number and text	Comment
(2) Switch statements	3352: This 'switch' statement contains only two execution paths.	When using different configurations, "case" branches (through Compiler switch) may no longer be present.
(3) Redundancy	3199: The value of <variable_name> is never used following this assignment.</variable_name>	In single instance operation, "pID" is always 0 and for performance reasons "pID" is replaced with "0" in the single instance configuration in case of data pointers. (The configuration-dependent design of the function header is not necessary.) To suppress the Compiler warning a redundant assignment is used.

SIEMENS

QA C Message category	QA C Message number and text	Comment
(4) M2CM Rule 8.7	1514: The object <object_name> is only referenced by function <function_name>, in the translation unit where it is defined.</function_name></object_name>	Certain global data are only referenced by the operator of PSD internal by pointers. This external or indirect referencing is not detected as referencing by QA C.
(4) M2CM Rule 8.10	1504: The object <object_name> is only referenced in the translation unit where it is defined.</object_name>	The CRC tables must be accessible for PSD users. The tables are part of the PSD interface but are also used internally.
(4) M2CM Rule 8.10	1505: The function <function_name> is only referenced in the translation unit where it is defined.</function_name>	Certain functions must be accessible for PSD users that are referenced/used internally. The functions are part of the PSD interface. The inverse path does not follow the physical path of the standard path, but the automatically generated functions are all housed in the same compilation unit (source file). This means functions that are referenced in the standard path by other sources are referenced by the same source in the inverse path only.
(4) M2CM Rule 11.4	310: Casting to different object pointer type.	Intentional type conversion with loss to determine the storage format (Intel or Motorola) or intentional conversion in which an integer date is used as byte array in the CRC calculation.
(4) M2CM Rule 13.7	3556: The result of this logical operation is always 'false'.	Certain control structures for multi-instance operation are not completely executed/utilized in single instance operation.
(4) M2CM Rule 13.7	3559: The result of this logical operation is always 'false'.	Certain control structures for multi-instance operation are not completely executed/utilized in single instance operation.
(4) M2CM Rule 14.1	1503: The function <function_name> is defined but is not used within this project.</function_name>	Interface functions are referenced by the PSD users (external) only.
(4) M2CM Rule 14.1	3201: This statement is unreachable.	Certain control structures for multi-instance operation are not completely executed/utilized in single instance operation.
(4) M2CM Rule 14.10	2004: No concluding 'else' exists in this 'if'- 'else'-'if' statement.	No "else" branch is required in this "if-else- if" structures.
(4) M2CM Rule 19.4	3412: Macro defines an unrecognised code-fragment.	-This macro definition is necessary for performance reasons to permit pointer access. (There are platforms in which pointer access is much faster than array access)
(4) M2CM Rule 19.7	3453: A function could probably be used instead of this function-like macro.	A function is hidden behind a macro in this case for configuration reasons. The callup can be turned on or off depending on the configuration.

QA C Message category	QA C Message number and text	Comment
(6) Implementation defined	288: [I] Source file <file_name> has comments containing characters which are not members of the basic source character set.</file_name>	The \$ character in the comment is necessary for automatic generation of the inverse branch.

9.3 Development documents

The documents listed below were created during development and are the basis for certification.

- PROFIsafe Profil /1/
- Safety requirement specification
- Safety plan
- Feature Specification
- FMEA
- Software design
- Safety Criticality Analysis
- Module test specification
- Module test reports
- Integration test specification
- Integration test report
- Fault-Insertion test specification
- Fault-Insertion test report
- PROFIsafe-Conformity test
- PROFIsafe-Conformity test report
- Manual

10 Terms and acronyms

CRC	Cyclic Redundancy Check	
DP	Decentralized Periphery	
EPROM	Erasable programmable read-only memory	
F	F ail-safe	
FW	Firmware	
HW	Hardware	
ISR	Interrupt Service Routine	
PNO	PROFIBUS-User-Organisation	
	URL: http://www.profibus.com/	
Prm	Parameter	
PSD	PROFIsafe Slave Driver	
SI	DP-Stack-Interface	
SIL	Safety Integrity Level	
SW	Software	
WD	Watchdog, for runtime monitoring	
zero-telegram	All the bytes of a telegram contain "0"	