SIEMENS

SIMATIC

WInAC Slot T-Kit
Version 3.3

Manual

This manual is part of the product
package with the order number:
6ES7 673-0CC00-2YX0

Edition 01/2003
ABE00097452-02

Preface, Contents

Product Overview

System Requirements and Instal-
lation

Getting Started with an Example
Program

Data Access Classes

Appendix

SIMATIC S7 Data Types

Glossary, Index

Safety Guidelines

This manual contains notices intended to ensure personal safety, as well as to protect the products and
connected equipment against damage. These notices are highlighted by the symbols shown below and
graded according to severity by the following texts:

Danger

/N

are not taken.

indicates that death, severe personal injury or substantial property damage will result if proper precautions

Warning

/N

precautions are not taken.

indicates that death, severe personal injury or substantial property damage can result if proper

Caution

/N

indicates that minor personal injury can result if proper precautions are not taken.

Caution

indicates that property damage can result if proper precautions are not taken.

Notice

draws your attention to particularly important information on the product, handling the product, or to a

particular part of the documentation.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground and to tag circuits, equipment, and
systems in accordance with established safety practices and standards.

Correct Usage

Warning

Note the following:

This device and its components may only be used for the applications described in the catalog or the

technical description, and only in connection with devices or components from other manufacturers which
have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks
might infringe upon the rights of the trademark owners.

Copyright © Siemens AG 2001-2003 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or
design, are reserved.

Siemens AG

Bereich Automation and Drives
Geschaeftsgebiet Industrial Automation Systems
Postfach 4848, D-90327 Nuernberg

Disclaim of Liability

We have checked the contents of this manual for agreement
with the hardware and software described. Since deviations
cannot be precluded entirely, we cannot guarantee full
agreement. However, the data in this manual are reviewed
regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are

© Siemens AG 2001-2003
Technical data subject to change.

Siemens Aktiengesellschaft

AS5E00097452

welcomed.
Excellence in
Automation & Drives:
Siemens

Preface

Purpose of this documentation

This documentation is aimed at original equipment manufacturers (OEMs) who
wish to implement a high-speed data interface for a WinAC Slot 41x.

T-Kit is an application with which you, as an OEM, can implement a technological
application to meet the requirements of your customers, which above all is
designed for a simple and fast exchange of data between the CPU 41x-2 PCIl and
PC application.

Required basic skills

We assume the following basic skills for work to be possible with the
documentation that follows:

e Extensive knowledge of WIinAC Slot 41x
e Extensive knowledge of STEP 7

* Knowledge of C**

Scope of the documentation

This documentation is applicable to T-Kit, version 3.3.

Changes compared to previous version

The following change has been made in comparison to the previous version of
T-Kit, Version 3.2:

¢ T-Kit can also be operated under Windows XP Professional.

For your guidance
The documentation that follows is subdivided into the following subjects:
e Application of T-Kit
e System requirements and installation
e Getting started with an example program
» Data access classes for C**

¢ Representation of data formats in SIMATIC S7

WinAC Slot T-Kit Version 3.3
A5E00097452-02 1]

Preface

How the manual fits in

This manual describes how to use T-Kit. To work with T-Kit, you will require
additional information on the following subjects:

Table 1-1 How the Manual Fits In

Manual/Manual Package Contents
WinAC Slot 41x Basic knowledge of CPUs 412-2 PCI and 416-2 PCI, and SIMATIC
Computing.
Basic Grounding in STEP7 The basic grounding for technical staff describing the procedures for
* Getting Started and Exercises implementing control tasks with STEP 7.
with STEP 7

* Programming with STEP 7

* Configuring Hardware and
Connections with STEP 7

® [From S5 To S7, Conversion

Guide
STEP7 reference Reference works describing the programming languages LAD, CSF
e LAD/FBD/STL Manual for and STL as well as standard and system functions additional to the
S$7-300/400 STEP 7 basic grounding.

® Standard and System
Functions for S7-300/400

S7-400 manuals The basic and reference knowledge referring to S7-400 CPUs, which
e S7-400. M7-400 is required for the CPU 412-2 PCIl and CPU 416-2 PCI manuals.

Programmable Controllers
Manual; Hardware and
Installation

® S7-400, M7-400
Programmable Controllers
Reference Manual; Module
Specifications

Further Support

If you have any technical questions, please get in touch with your Siemens
representative or agent responsible.

http://www.siemens.com/automation/partner

Training center

We offer a range of suitable courses to help get you started with the SIMATIC S7
automation system. Please contact your local training center or the central training
center in Nuremberg, D-90327 Germany.

Phone: +49 (911) 895-3200.
http://www.sitrain.com

. WinAC Slot T-Kit Version 3.3
v A5E00097452-02

http://www.siemens.com/automation/partner
http://www.sitrain.com

Preface

A&D Technical Support

Worldwide, available 24 hours a day:

hTechnicaI Support

Worldwide (Nuernberg)
Technical Support

24 hours a day, 365 days a year
Phone: +49 (0) 180 5050-222
Fax: +49 (0) 180 5050-223

E-Mail: adsupport@
siemens.com

GMT: +1:00

Europe / Africa (Nuernberg)
Authorization

Local time: Mon.-Fri. 7:00 to 17:00
Phone: +49 (0) 180 5050-222
Fax: +49 (0) 180 5050-223

E-Mail: adautorisierung@
siemens.com

GMT: +1:00

United States (Johnson City)

Technical Support and
Authorization

Local time: Mon.-Fri. 8:00 to 17:00
Phone: +1 (0) 423 262 2522
Fax: +1 (0) 423 262 2289

E-Mail: simatic.hotline@
sea.siemens.com

GMT: -5:00

Asia / Australia (Beijing)

Technical Support and
Authorization

Local time: Mon.-Fri. 8:30 to 17:30

Phone:
Fax:
E-Mail:

GMT:

+86 1064 7575 75
+86 1064 7474 74

adsupport.asia@
siemens.com

+8:00

The languages of the SIMATIC Hotlines and the authorization hotline are generally German and English.

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Preface

Service & Support on the Internet
In addition to our documentation, we offer our Know-how online on the internet at:
http://www.siemens.com/automation/service&support
where you will find the following:

¢ The newsletter, which constantly provides you with up—to—date information on
your products.

e The right documents via our Search function in Service & Support.

e A forum, where users and experts from all over the world exchange their
experiences.

¢ Your local representative for Automation & Drives via our representatives
database.

¢ Information on field service, repairs, spare parts and more under “Services”.

. WinAC Slot T-Kit Version 3.3
Vi A5E00097452-02

http://www.siemens.com/automation/service&support

Contents

Preface

A W N P

4.1
41.1
41.2
4.1.3
41.4
4.1.5
4.1.6
4.1.7
4.1.8
419
4.1.10
4.1.11
4.1.12
4.1.13

4.1.14

4.2
42.1
42.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
429
4.2.10
4.2.11
4.2.12
4.2.13

Product Overview
System Requirements and Installation
Getting Started with an Example Program

Data Access Classes

CWinACReadData Helper Class 4-4
bool ReadS7Bool(long byteOffset, int bitNo, bool &value) method 4-5
bool ReadS7BYTE(long byteOffset, BIT8 &value) method 4-6
bool ReadS7WORD(long byteOffset, BIT16 &value) method 4-6
bool ReadS7DWORD(long byteOffset, BIT32 &value) method 4-6
bool ReadS7INT(long byteOffset, SINT16 &value) method 4-7
bool ReadS7DINT(long byteOffset, SINT32 &value) method 4-7
bool ReadS7REAL (long byteOffset, float &value) method 4-7
bool ReadS7S5TIME(long byteOffset, Bit1l6 &value) method 4-8
bool ReadS7TIME(long byteOffset, SINT32 &value) 4-8
bool ReadS7DATE(long byteOffset, UINT16 &value) method 4-8
bool ReadS7TIME_OF_DAY (long byteOffset, UINT32 &value) method . 4-9
bool ReadS7CHAR(long byteOffset, char &value) method 4-9
bool ReadS7STRING(long byteOffset, UINT8 readMax,

char* string) method 4-9
bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, UINT8 &curLen)
MEthod 4-10
CWinACReadWriteData Helper Classt 4-11
bool WriteS7BOOL (long byteOffset, int bitNo, bool &value) method 4-12
bool WriteS7BYTE(long byteOffset, BIT8 &value) method 4-13
bool WriteS7TWORD(long byteOffset, BIT16 &value) method 4-13
bool WriteS7TDWORD(long byteOffset, BIT32 &value) method 4-13
bool WriteS7INT(long byteOffset, SINT16 &value) method 4-14
bool WriteS7DINT(long byteOffset, SINT32 &value) method 4-14
bool WriteS7TREAL (long byteOffset, float &value) method 4-14
bool WriteS7S5TIME(long byteOffset, BIT16 &value) method 4-15
bool WriteS7TIME(long byteOffset, SINT32 &value) method 4-15
bool WriteS7DATE(long byteOffset, UINT16 &value) method 4-15
bool WriteS7TIME_OF_DAY (long byteOffset, UINT32 &value) method . [4-16
bool WriteS7CHAR(long byteOffset, char &value) method 4-16
bool WriteS7STRING(long byteOffset, char* string) method 4-16

WinAC Slot T-Kit Version 3.3

A5E00097452-02

vii

Contents

viii

SIMATIC
Al
A.2

A3

A4

A5

A6

A7

A8

A9

A.10
Glossary

Index

S7 Data Types

Data Types in SIMATIC S7 e A-2
Format of the WORD and DWORD Data Types for Binary-Coded

Decimal NUMbers A-4
Format of the INT Data Type (16-bitinteger) A-5
Format of the DINT Data Type (32-bitinteger) A-6
Format of the REAL Data Format (Floating-Point Number) A-6
Format of the S5TIME Data Type (time duration) A-12
Format of the TIME Data Typet A-13
Format of the DATE Data TYPeo vt A-14
Format of the TIME_OF DAY Data Typec.cooiiiiiiinnnan... A-14
Format of the STRING Data Type ..., A-15

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Contents

Figures
1-1

3-1
3-2
3-3
4-1

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11

Tables

1-1
3-1
3-2
3-3
3-4
3-5
4-1
4-2
A-1
A-2
A-3
A-4
A-5
A-6
A-7

A-8

Theory of Operation of Data Exchange Between CPU 41x-2 PCI and

Technological Application
TKitStart Dialog BOXo
OpPen WOrKSPacCeo
Create the TKitStart.exe File o i
Theory of Operation of Data Exchange Between CPU 41x-2 PCI and

Technological Application i
Word Format
Double Word Format
DINT Format Represented as Pure Binary Number
DINT Format Represented as Pure Binary Number
Representation of the Data Format
Examples of the REAL Data Type,
Examples of the S5TIME Data Type
Examples of the TIME Data Typet
Examples of the DATE Data Typeccoiiiiiiiiiiiiiiannn.
Example of the TIME_OF DAY Data Typecouniinninannan ..
Examples of the STRING Data Typeiiiiii it

Howthe Manual Fits In e
STEP 7 User Program (Example of CPU 412-2PCIl)
STEP 7 User Program (Example of CPU 416-2PCI)
Header File s7tkith o
Header File TKitStartDIg.h
Implementation File TKitStartDIg.cpp . .-« oo
Address Assignment between CPU 412-2 PCIl and Dual-Port RAM
Address Assignment bewteen CPU 416-2 PCIl and Dual-Port RAM
Elementary Data Types in SIMATIC S7 i,
Format and Area of the WORD and DWORD Data Types
Format and Area of the INT Data Type
Format and Area of the DINT Data Typeo iii it
REAL Data Type: Values of the Individual Bits
Format and Area of the REAL Data Type
Signal State of Bits in the Status Word When Results with

Floating-Point Numbers Do Not Lie within the Valid Range
Time Base for S5TIME

WinAC Slot T-Kit Version 3.3

A5E00097452-02

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Product Overview 1

Introduction

The T-Kit is an interface (API) for technological applications that run with
WIinAC Slot 41x, version 3.2 or higher.

The T-Kit is intended for original equipment manufacturers (OEMs), who wish to
implement a high-speed data interface between their application and
CPU 41x-2 PCI.

The T-Kit consists of:

e T-Kit DLL (Dynamic Link Library)
e Header files

e Example code

¢ This documentation

WinAC Slot T-Kit Version 3.3
A5E00097452-02 1-1

Product Overview

Function
The T-Kit features the following functions for WinAC Slot 41x:

e Access from the STEP 7 user program to the dual-port RAM (input/output area)
of the CPU 41x-2 PCI.

e Access from PC applications to the dual-port RAM of CPU 41x-2 PCI

PC with CPU 41x-2 PCI

STEP 7 user program (for Technological application
CPU 412-2 PCI ++
) Dual-port RAM C** method calls
(O]
Write £ Read
L MW 14
T PAW 5000 . g —"€8% . ReadS7WORD (4, value)
. > 2.*
Qs
X5
< O
M
L PEW 4096 Read - S
eal < ' .
T MW 16 e 5 <M¥i__ WriteS7WORD (0, value)
= :
o
k=

* Data format conversion (S7 data format <—> PC data format)

Figure 1-1 Theory of Operation of Data Exchange Between CPU 41x-2 PCI and Technological
Application

Data exchange between CPU 41x-2 PCI and its technological application operates
as follows:

1. You write the data required for the technological application in your STEP 7
user program by means of a transfer command to the dual-port RAM.

2. You read the data in your technological application by the polling method. To do
this, you use the methods of the data access helper class (refer to Chapter 4).

Result: The data are converted from the S7 data format to the PC data format
that is used in Microsoft Windows.

WinAC Slot T-Kit Version 3.3
1-2 A5E00097452-02

Product Overview

Conversely, the data exchange from the technological application to
CPU 41x-2 PCl is as follows:

3.

You write the data of the technological application to the dual-port RAM using a
method of the data access helper class (refer to Chapter 4).

Result: The data are converted to the S7 data format and are available in the
STEP 7 user program in S7 format.

Using the Load command, you read the data from the dual-port RAM within the
STEP 7 user program.

Characteristics of T-Kit

The following initial conditions apply to the technological application, which you
create with T-Kit:

PC side:

Maximum data consistency is 4 byte. If you want to transmit large files
consistently, you must ensure this by means of your technological application.
For this you will find an example application on the T-Kit's CD in the Examples
directory.

The data access helper classes of the T-Kit support the following data types:
- BOOL

— BYTE, WORD, DWORD (double word)

— INT (integer), DINT (integer, 32 Bit)

— REAL (floating-point number)

— S5TIME, TIME, DATE, TIME_OF_DAY

— CHAR (character), STRING (of characters)

You will find a detailed list of all data types supported by the T-Kit in
Appendix A.

Using the methods of the data access helper class, you automatically convert
from the existing data type to the S7 data type, and the other way round.

CPU side:

Only word and double-word accesses to even addresses are allowed.

CPUs 41x-2 PCI each have 4 KB inputs and 4 KB outputs reserved in the
dual-port RAM for the technological application:

— CPU 412-2 PCI: PEW 4096 to 8190, PAW 4096 to 8190
— CPU 416-2 PCI: PEW 16384 to 20478, PAW 16384 to 20478

WinAC Slot T-Kit Version 3.3

A5E00097452-02

1-3

Product Overview

Note

The above address areas are reserved in the CPU 41x-2 PCI for data exchange
with a technological application — in other words, an 1/0O access error is not gene-
rated within this address area.

Exception: If the dual-port RAM is disabled by the PC when the PC runs up, for
example, an I/O access error is generated.

Example applications

You will find example applications, which will assist you with the creation of your
technological application, in the Examples directory on the “WinAC Slot T-Kit”
CD-ROM.

WinAC Slot T-Kit Version 3.3
1-4 A5E00097452-02

System Requirements and Installation 2

Hardware requirements
For operating WinAC Slot 41x and T-Kit, we recommend the following hardware:
¢ WInAC Slot 41x Version 3.2 or higher
e PC with
— Pentium processor clocking at least 300 MHz
— Not less than 128 MB RAM

— Windows 2000 Professional with SP3 or higher or Windows XP Professional
with SP1 or higher or Windows NT Version 4 with SP6 or higher.

e A color monitor, keyboard, and mouse (or other pointing device) that are
supported by Microsoft Windows NT

¢ A hard disk with at least 40 MB of spare storage space

Software requirements

To develop a technological application with T-Kit, you will require the following
software packages, which must be installed on your PC:

¢ WInAC Slot 41x, version 3.2 or higher
* WiInAC Slot T-Kit, version 3.3
e STEP 7, version 5.2

» Microsoft Visual Developers Studio (Visual C**), Version 6, Service Pack 3 or
Ihigher

Lincense conditions

A single WinAC Slot T-Kit license is required for each development workstation.

WinAC Slot T-Kit Version 3.3
A5E00097452-02 2-1

System Requirements and Installation

Distribution of T-Kit applications

The WiInAC Slot T-Kit includes a license for the installation on a development
workplace.

Applications created with the WinAC Slot T-Kit require no additional licensing from
Siemens. In other words, you may freely reproduce and use such applications.
Additional licenses for the WIinAC Slot T-Kit are therefore unnecessary.

To operate your T-Kit applications on a destination PC with WinAC Slot without
having to install the WIinAC Slot T-Kit itself, you may copy the following DLL
together with the T—Kit application:

\WINNT\System32\S7TKIT_DLL.DLL

To activate the S7TTKIT_DLL.DLL on the destination PC, simply place the DLL in
the \WINNT\System32 directory of the destination PC. It is not necessary to enter
the DLL in the registry.

Ideally, this task should be part of a setup program created for your T-Kit
application.

Installation

2-2

The WiInAC Slot T-Kit software includes a setup feature for each CPU type that
performs automatic installation.

The Setup program guides you step by step through the installation process. You
can switch to the next step or to the previous step from any position. To start the
installation program, proceed as follows:

1. Insert the CD in your CD-ROM drive.

2. Double-click the “setup.exe” file to select it.

Once the installation has been completed successfully, a message to that effect is
displayed on the screen.

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Getting Started with an Example Program 3

Overview

With T-Kit you received examples, located in the Examples directory, of how to use
T-Kit for creating a technological application in.

The following example is intended to help you understand the theory of how T-Kit
functions.

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-1

Getting Started with an Example Program

Contents of the example

3-2

The following example demonstrates how you exchange a word between
CPU 41x-2 PCI and the technological application. You have the following dialog
box for this on your PC:

#= TKitStart [%]

—Send or Receive a 16-Bit value of Dual-Paort-F am

DP-Ram Offzet [0-4094]; ||:|

| Send Data [PC > 57) |

| Receive Data [57 > PC) |

Figure 3-1 TKitStart Dialog Box

DP-Ram Offset (0 — 4094): Here you enter the offset address of the dual-port
RAM from and to which the “Word” type value has to be read and written.

Send Data (PC —> S7): Here you enter the value that you want to have sent from
your PC to CPU 41x-2 PCI and click on “Send Data (PC —> S7)” to confirm.

Receive Data (PC —> S7): Click on “Receive Data (PC —> S7) to receive the value
that has been transferred from CPU 41x-2 PCI to your PC.

Quit: “Quit” closes the TKitStart dialog box.

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Getting Started with an Example Program

Example program (starting)
The example program consists of the following files:
e STEP 7 user program consisting of OB 1.

Depending on the type of CPU, a "Word” type value is read from
CPU 41x-2 PCI or written to CPU 41x-2 PCl in OB 1.

e C** program consisting of header, source code and resources files (refer to
Figure 3-3).

The files show you how to load a "Word” type value from CPU 41x-2 PCI or
transfer it to CPU 41x-2 PCI from your PC. The majority of the files are created
automatically by Visual C** Studio; only those files are shown below which
have been expanded for the example.

STEP 7 user program

Below, you will find the structure of OB 1 as a function of the type of CPU.

Table 3-1 STEP 7 User Program (Example of CPU 412-2 PCI)

‘STL Explanation

OBl Example of CPU 412-2 PCI
L PIW 4096
T PQW 4096

Table 3-2 STEP 7 User Program (Example of CPU 416-2 PCI)

‘STL Explanation

OBl Example of CPU 416-2 PCI
PIW 16384
T PQW 16384

e

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-3

Getting Started with an Example Program

Procedure for using the example program
To work with the example program, you must proceed as follows:
1. Start Visual C**.
2. Open the workspace by choosing File > Open Workspace.

Result: The following window opens:

Dpen Woikspoce e
Ia GetStart j ﬁl

IStart Open I
IWDrkspaces [dzw:. mdp) j Cancel |

Figure 3-2 Open Workspace

3. Select the Start.dsw file and then click Open.

WinAC Slot T-Kit Version 3.3
3-4 A5E00097452-02

Getting Started with an Example Program

4. Create the TKitStart.exe file by choosing the command Create > Create
TKitStart.exe.

*. Start - Microsoft Yisual C++

File Edit iew Inzert Project | Buld Tool: Window Help

?i’-—'zbl | = E ﬁ | '}E E @ [EammEie [Eirl+Fy:
a Build TKitStart. exe /

CTKitS tartApp [0 et Rebuid &l
| Batch Build...

wiorkspace ‘Start: 1 projec|s Clgan

El Start Debug g
E-=3 Quelcodedateien -

...... #] Stdéfscpp

------ #] TKitStart.cpp ! Execute TKitStatewe Chil+F5

------ 3 TEitStart.rz

______ —::I TEitStanDlg.cpp Set Active Configuration. .

=3 Header-D ateien Configurations. .

------ % Fezource.h

...... E] s7tkith =

] Stddfah

...... =] TKitStart.h

------ % TEitStartDlg.h

=3 Ressoucendateien

------ % TEitStart.ico

------ % TEitStart. rc2

------ [E] ReadMe.tt

<] | M
%03 Clas...| g Res...| =] Flev..|

Debugger Remate Connectior...

Profile...

Figure 3-3 Create the TKitStart.exe File

5. In SIMATIC Manager, set the access point of the application to “PC internal” by
choosing Options > Set PG/PC Interface.

6. Load the highlighted OB1 in SIMATIC Manager (in the Blocks folder) into
CPU 41x-2 PCI.

7. Using Explorer, start the “TKitStart.exe” file.
8. Change CPU 41x-2 PCI to “RUN".

Result: You can now send data to CPU 41x-2 PCI or receive data from
CPU 41x-2 PCI in the “TKitStart” window.

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-5

Getting Started with an Example Program

C** files

You will find a simple C** listing below. The passages relevant to T-Kit have a gray
background.

Note

At the end of the C** listing you must always delete the pointer (pointer release)
so that subsequent PC applications can work properly.

Header file s7tkit.h

The s7tkit.h header file is a requirement for being able to use the data access
helper class:

Table 3-3 Header File s7tkit.h

C-Listing

// s7tkit.h :

// The following ifdef block is the standard way of creating macros which make

// exporting from a DLL simpler. All files within this DLL are compiled with the

// STTKIT EXPORTS symbol defined on the command line. this symbol should not be

// defined on any project that uses this DLL. This way any other project whose source
// files include this file see S7TKIT API functions as being imported from a DLL,

// wheras this DLL sees symbols defined with this macro as being exported.

#ifdef S7TKIT EXPORTS

#define S7TKIT API _ declspec(dllexport)
#else

#define S7TKIT API _ declspec(dllimport)
#endif

11171777/7777777/77777777777
// Type definitions
11171777177/7777777/77777777777

typedef short int SINT16;
typedef DWORD BIT32;
typedef WORD BIT16;
typedef int SINT32;
typedef BYTE BITS;
typedef unsigned short int UINT16;
typedef BYTE UINTS;

WinAC Slot T-Kit Version 3.3
3-6 A5E00097452-02

Getting Started with an Example Program

Table 3-3 Header File s7tkit.h (continued)

C-Listing

// Internal
protected:

HANDLE hDriver;

BYTE* pDPR;

int Status;

bool OffsetCheck (long byteOffset, int size);

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-7

Getting Started with an Example Program

Header file TKitStartDIlg.h

In der Header-Datei TKitStartDIg.h rufen Sie die Header-Datei s7tkit.h auf und
greifen auf den Pointer pinterface zu:

Table 3-4 Header File TKitStartDIg.h

C-Listing

// TKitStartDlg.h :
//

#if
tdefined (AFX TKITSTARTDLG H 3FF60425 332C 11D5 BB1l 08000624AC1F INCLUDED)
#define AFX TKITSTARTDLG H 3FF60425 332C 11D5 BB1l 08000624AC1lF INCLUDED

#if MSC VER > 1000
#pragma once
#endif // _MSC VER > 1000

111111171117177117771771117717/1/77/
// START, own code Getting Started //

1117177171717717171771717177/717177
#include ”s7tkit.h”

11111117117717711777177117717/1/1777
// END , own code Getting Started //

L1117117777717717717717717717717777

LI1171771077
// CTKitStartDlg

class CTKitStartDlg : public CDialog
{
public:

CTKitStartDlg (CWnd* pParent = NULL) ;

//{{AFX_DATA (CTKitStartDlg)

enum { IDD = IDD TKITSTART DIALOG };
CStringm Str ValueS7PC;
CStringm Str ValuePCS7;

long m long Offset;

//}}AFX DATA

//{{AFX_VIRTUAL (CTKitStartDlg)
protected:
virtual void DoDataExchange (CDataExchange* pDX) ;

//}}AFX VIRTUAL

WinAC Slot T-Kit Version 3.3
3-8 A5E00097452-02

Getting Started with an Example Program

Table 3-4 Header File TKitStartDIg.h (continued)

C-Listing

protected:
HICON m hIcon;

11111117111717717771771117717/1/1777
// START, own code Getting Started //

L11171777777717717717717717717777

CWinAcReadWriteData *pInterface;

1111111711771771777177117717/1/1777
// END , own code Getting Started //

L11177777777717717711717717717777

//{{AFX_MSG(CTKitStartDlg)

virtual BOOL OnInitDialog() ;

afx msg void OnSysCommand (UINT nID, LPARAM lParam);
afx msg void OnPaint();

afx msg HCURSOR OnQueryDragIcon();

afx msg void OnButtonReceiveS7Pc() ;

afx msg void OnButtonSendPcS7();

afx msg void OnQuit();

//}}AFX MsG

DECLARE MESSAGE MAP ()

}i

//{{AFX_INSERT LOCATION}}

#endif //
tdefined (AFX TKITSTARTDLG H 3FF60425 332C 11D5 BB1l 08000624ACLlF _INCLUDED)

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-9

Getting Started with an Example Program

Implementation file TKitStartDIlg.cpp

In the TKitStartDIlg.cpp implementation file you instance the data access helper
class and read or write a "Word” type value.

Table 3-5 Implementation File TKitStartDlg.cpp

C-Listing

// TKitStartDlg.cpp :
//

#include ”“stdafx.h”
#include ”“TKitStart.h”
#include ”TKitStartDlg.h”

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS FILE[] = FILE ;
#endif

L1111 771777

class CAboutDlg : public CDialog

{
public:
CAboutDlg() ;
//{{AFX_DATA (CAboutDlg)
enum { IDD = IDD ABOUTBOX };
//}}AFX_ DATA
//{{AFX_VIRTUAL (CAboutDlg)
protected:
virtual void DoDataExchange (CDataExchange* pDX) ;
//}}AFX VIRTUAL
protected:
//{{AFX_MSG (CAboutDlg)
//}}AFX MsG
DECLARE_MESSAGE MAP ()
}i
CAboutDlg: :CAboutDlg() : CDialog (CAboutDlg: :IDD)
{
//{{AFX DATA INIT (CAboutDlg)
//}}AFX DATA INIT
}
void CAboutDlg: :DoDataExchange (CDataExchange* pDX)
{
CDialog: :DoDataExchange (pDX) ;
//{{AFX_DATA MAP (CAboutDlg)
//}}AFX DATA MAP
}

WinAC Slot T-Kit Version 3.3
3-10 A5E00097452-02

Getting Started with an Example Program

Table 3-5 Implementation File TKitStartDIg.cpp (continued)

C-Listing

BEGIN MESSAGE MAP (CAboutDlg, CDialog)
//{{AFX_MSG MAP (CAboutDlg)
//}}AFX MSG MAP

END MESSAGE MAP ()

LI1111771077
// CTKitStartDlg

CTKitStartDlg: :CTKitStartDlg (CWnd* pParent /*=NULL*/)
: CDialog(CTKitStartDlg: :IDD, pParent)

//{{AFX DATA INIT(CTKitStartDlg)

m Str ValueS7PC = T("”);

m Str ValuePCS7 = T("”);

m long Offset = 0;

//}}AFX DATA INIT

m hIcon = AfxGetApp () ->LoadIcon (IDR MAINFRAME) ;

}

void CTKitStartDlg::DoDataExchange (CDataExchange* pDX)
{
CDialog: :DoDataExchange (pDX) ;
//{{AFX DATA MAP (CTKitStartDlg)
DDX Text (pDX, IDC EDIT VALUE RECEIVE S7 PC, m Str ValueS7PC);
DDX Text (pDX, IDC EDIT VALUE SEND PC S7, m Str ValuePCS7);
DDX Text (pDX, IDC EDIT OFFSET HEX, m long Offset);
//}}AFX DATA MAP

}

BEGIN MESSAGE MAP (CTKitStartDlg, CDialog)
//{{AFX MSG MAP (CTKitStartDlg)
ON_WM_SYSCOMMAND ()
ON_WM_PAINT ()
ON_WM_QUERYDRAGICON ()
ON_BN CLICKED (IDC BUTTON RECEIVE S7 PC, OnButtonReceiveS7Pc)
ON_BN CLICKED (IDC BUTTON SEND PC S7, OnButtonSendPcS7)
ON_BN CLICKED (ID QUIT, OnQuit)
//}}AFX MSG MAP
END MESSAGE MAP ()

LI1171777
// CTKitStartDlg

BOOL CTKitStartDlg::OnInitDialog()

{

CDialog: :OnInitDialog() ;

ASSERT ((IDM_ABOUTBOX & OxFFF0) == IDM ABOUTBOX) ;
ASSERT (IDM ABOUTBOX < 0xF000) ;

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-11

Getting Started with an Example Program

Table 3-5 Implementation File TKitStartDIg.cpp (continued)

C-Listing
CMenu* pSysMenu = GetSystemMenu (FALSE) ;
if (pSysMenu != NULL)

CString strAboutMenu;
strAboutMenu.LoadString (IDS ABOUTBOX) ;
if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu (MF_SEPARATOR) ;
pSysMenu->AppendMenu (MF_STRING, IDM ABOUTBOX

}

SetIcon(m hIcon, TRUE); //
SetIcon(m hIcon, FALSE); //

11111117117717711777177117777/7/1777
// START, own code Getting Started //

L11177777777717717711717717717777

pInterface = new CWinAcReadWriteData() ;
// while instancing you build a link to the DPRAM

111111171 11771771777177117717/1/1777
// END , own code Getting Started //

L1117117777717717717717717717717777

return TRUE;

}

void CTKitStartDlg::0nSysCommand (UINT nID, LPARAM lParam)

{

if ((nID & OxXFFF0) == IDM ABOUTBOX)

{

CAboutDlg dlgAbout;
dlgAbout.DoModal () ;

CDialog: :OnSysCommand (nID, lParam) ;

3-12

, strAboutMenu) ;

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Getting Started with an Example Program

Table 3-5 Implementation File TKitStartDIg.cpp (continued)

C-Listing
void CTKitStartDlg::0nPaint ()
if (IsIconic())
CPaintDC dc(this) ;
SendMessage (WM ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);
int cxIcon = GetSystemMetrics (SM_CXICON) ;
int cyIcon = GetSystemMetrics (SM_CYICON) ;
CRect rect;
GetClientRect (&rect) ;
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;
dc.DrawlIcon(x, y, m hIcon);
else
CDialog: :OnPaint () ;
HCURSOR CTKitStartDlg: :OnQueryDragIcon ()
return (HCURSOR) m hIcon;

void CTKitStartDlg::0nButtonReceiveS7Pc ()

{

long offset;
bool success;

BIT16 bitl6é = 0x00;

UpdateData (TRUE) ;

offset = m long Offset;

success = pInterface->ReadS7WORD (offset, bitlé6);

if (success)

m_Str ValueS7PC.Format (“%04X”, bitl6);
else
m Str ValueS7PC.Format (“Nothing”) ;

WinAC Slot T-Kit Version 3.3
A5E00097452-02 3-13

Getting Started with an Example Program

Table 3-5 Implementation File TKitStartDIg.cpp (continued)

C-Listing

UpdateData (FALSE) ;

void CTKitStartDlg::0nButtonSendPcS7 ()

{

long offset;
bool success;

BIT16 bitlé = 0x00;
UpdateData (TRUE) ;
offset = m long Offset;
LPSTR str = m Str ValuePCS7.GetBuffer(10);

sscanf (str, ”%x”, &bitl6);

success = pInterface->WriteS7WORD (offset, bitlé6);

// Very Important. When the pointer is not deleted ,you are not calling the
// destructor of the data helper class and you crash the operating system

}
void CTKitStartDlg::0nQuit ()
{
delete pInterface;
CDialog: :OnCancel () ;
}

3-14

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Data Access Classes

In this chapter

Section Description Page
4.1 CWinACReadData Helper Class 4-4
4.2 CWinACReadWriteData Helper Class 4-11

Introduction

The data access helper classes include the CWinACReadData and

CWinACReadWriteData helper classes.

Note

The read and write methods were split in order to ensure basic security. This
makes sure that you cannot inadvertently overwrite data when you call the read

method.

Use the data access class methods to exchange data between the STEP 7 user
program and your technological application:

¢ These methods help you to avoid programming errors such as access to offsets

outside the valid area or writing of invalid pointers.

¢ In addition, you perform the necessary byte exchange by converting the data
from “big endian” format (used in SIMATIC S7) into “little endian” format (used
in Windows).

WinAC Slot T-Kit Version 3.3
A5E00097452-02

4-1

Data Access Classes

Assignment of the addresses between the CPU 41x-2 PCI and dual-port RAM

The following tables show you the relationship between the addresses in the

STEP 7 user program and the addresses in the dual-port RAM.

Table 4-1 Address Assignment between CPU 412-2 PCI and Dual-Port RAM

Address in the
CPU 412-2 PCI

Offset (Parameters for Methods
of Data Access Class)

Address in
Dual-Port RAM

1/0 output word
4096 to 8190

0000 to OFFF

CO000 to CFFF
(read area)

1/0 output word
4096 to 8190

0000 to OFFF

EO000 to EFFF
(write area)

Table 4-2 Address Assignment bewteen CPU 416-2 PCI and Dual-Port RAM

Address in the
CPU 416-2 PCI

Offset (Parameters for Methods of
Data Access Class)

Address in
Dual-Port RAM

1/0 input word
16384 to 20478

0000 to OFFF

3C000 to 3CFFF
(read area)

1/0 input word
16384 to 20478

0000 to OFFF

3E000 to 3EFFF
(write area)

Example: You wish to send a word from the CPU 416-2 PCI to the technological
application. If you write the word by means of the load command “T PW 16384 to
the dual-port RAM, you can read the word to offset 0000 from the dual-port RAM

with the help of one of the following methods (read method).

STEP 7 user program (for

CPU 416-2 PCI)

L MW 14
T PAW 16384

L PEW 16386
T MW 16

PC with CPU 41x-2 PCI

4 KB

4 KB

Input area

Technological application
C** method calls

Dual-port RAM

Read
2.*

Output area

3.*

* Data format conversion (S7 data format <—> PC data format)

— > ReadS7WORD (0, value)

<Wite \writeSTWORD (2, value)

Figure 4-1

4-2

Theory of Operation of Data Exchange Between CPU 41x-2 PCI and Technological
Application

WinAC Slot T-Kit Version 3.3

A5E00097452-02

Data Access Classes

Cycle overflow from continous load

If you create a continuous load by using the data access classes of the
T-Kit (e.g. invoking loops with 10000 "WriteS7Word”), WIinAC Slot may go
into the "Stop” operating mode. The reason for this is that the PC
processor generates a continuous data stream through the PCI bus. This,
in turn, means that the dual-port RAM between the PC and WinAC-Slot is
continuously resevered for the PC. The end result is that WinAC Slot
changes to the “Stop” operating mode or invokes OB 122 because of the
cycle time overflow. You should therefore avoid continuous loads, perhaps
by inserting “Sleeps” or using a lower repetition rate for you loops.

Problem

for (i=0;1i<10000,1i++)

{
}

bResult=InOut .WriteS7Word (0, BitléVval) ;

Solution

for (k=1;0<10;k++)

{

for (1i=0;1i<1000,1i++)

{

bResult=InOut .WriteS7Word (0, BitléVval) ;

}

sleep(100) ;

}

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-3

Data Access Classes

4.1

CWinACReadData Helper Class

In this chapter

4-4

Section Description Page
41.1 bool ReadS7Bool(long byteOffset, int bitNo, bool &value) 4-5
method
41.2 bool ReadS7BYTE(long byteOffset, BIT8 &value) method 4-6
41.3 bool ReadS7WORD(long byteOffset, BIT16 &value) method 4-6
41.4 bool ReadS7DWORD(long byteOffset, BIT32 &value) method 4-6
415 bool ReadS7INT(long byteOffset, SINT16 &value) method 4-7
41.6 bool ReadS7DINT(long byteOffset, SINT32 &value) method 4-7
41.7 bool ReadS7REAL(long byteOffset, float &value) method 4-7
4.1.8 bool ReadS7S5TIME(long byteOffset, Bit16 &value) method 4-8
419 bool ReadS7TIME(long byteOffset, SINT32 &value) method 4-8
4.1.10 bool ReadS7DATE(long byteOffset, UINT16 &value) method 4-8
41.11 bool ReadS7TIME_OF_DAY (long byteOffset, UINT32 &value) 4-9
method
41.12 bool ReadS7CHAR(long byteOffset, char &value) method 4-9
4.1.13 bool ReadS7STRING(long byteOffset, UINT8 readMax,char* 4-9
string) method
4.1.14 bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, 4-10
UINT8 &curLen) method

WinAC Slot T-Kit Version 3.3

A5E00097452-02

Data Access Classes

Introduction

The CWinACReadData helper class fetches input data from the read area of the
dual-port RAM, which were stored there in the STEP 7 user program using
Transfer commands.

Every method follows the following format:
ReadS7<datatype>(long byteOffset, <datatype>& value)

All the following methods have the return value True or False, depending on
whether the read method was successful or not. For example, the read method
can prove unsuccessful if the offset is outside the valid area on the dual-port RAM.

The methods automatically perform all byte format conversions that are necessary
between the original byte format and the internal WinAC byte format.

<datatype> Name of S7 data type. You will find more information about S7 data
types in Appendix A.

byte offset: Start address (in bytes) of the value in the dual-port RAM in the read
area. (For example, the 4th double word begins at byte offset 12.)

value: Destination address of the data needing to be stored.

41.1 bool ReadS7Bool(long byteOffset, int bitNo, bool &value)
method

This method retrieves the requested bit value from the dual-port RAM (read area)
byteOffsetat byteOffset and stores the value in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)
¢ int bitNo: bit number to be retrieved (starting from right to left)

¢ Dbool &value: value of the bit to be retrieved

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-5

Data Access Classes

4.1.2

4.1.3

4.1.4

4-6

bool ReadS7BYTE(long byteOffset, BIT8 &value) method

This method retrieves a byte (8 bits) from the dual-port RAM (read area) at
byteOffset and stores the value in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

e BIT8 &value: value of the retrieved byte

bool ReadS7WORD(long byteOffset, BIT16 &value) method

This method retrieves a 16-bit value from the dual-port RAM (read area) and
stores it as an unsigned 16-bit integer in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

¢ BIT16 &value: value of the retrieved data

bool ReadS7TDWORD(long byteOffset, BIT32 &value) method

This method retrieves a 32-bit double word from the dual-port RAM (read area) at
byteOffset and stores the value as an unsigned 32-bit integer in the value
parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

¢ BIT32 &value: value of the retrieved data

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Data Access Classes

4.1.5

4.1.6

4.1.7

bool ReadS7INT(long byteOffset, SINT16 &value) method

This method retrieves 16 bits from the dual-port RAM (read area) at byteOffset and
stores the value as a signed 16-bit integer in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

¢ SINT16 &value: value of the retrieved data

bool ReadS7DINT(long byteOffset, SINT32 &value) method

This method retrieves 32 bits from the dual-port RAM (read area) at byteOffset and
stores the value as a signed integer in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

¢ SINT32 &value: value of the retrieved data

bool ReadS7REAL (long byteOffset, float &value) method

This method retrieves 32 bits from the dual-port RAM (read area) at byteOffset and
stores the value as a floating-point number in the value parameter.

Return value:
e bool: success or fail (true = success)
Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

+ float &value: value of the retrieved data

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-7

Data Access Classes

4.1.8

4.1.9

4.1.10

4-8

bool ReadS7S5TIME(long byteOffset, Bitl6 &value) method

This method retrieves the a 16-bit value from the dual-port RAM (read area) at
byteOffset and stores the data in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

* BIT16 &value: value of the retrieved data

bool ReadS7TIME(long byteOffset, SINT32 &value)

This method retrieves a 32-bit value from the dual-port RAM (read area) at
byteOffset and stores it as a signed 32-bit integer in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

e SINT32 &value: value of the retrieved data

bool ReadS7DATE(long byteOffset, UINT16 &value) method

This method retrieves a 16-bit value from the dual-port RAM (read area) at
byteOffset and stores the value as an unsigned 16-bit integer (S7 data type: Date)
in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

e UINT16 &value: value of the retrieved data

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Data Access Classes

41.11

4.1.12

4.1.13

bool ReadS7TIME_OF DAY (long byteOffset, UINT32 &value)
method

This method retrieves a 32-bit value from the dual-port RAM (read area) at
byteOffset and stores it as an unsigned 32-bit integer in the value) parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

e UINT32 &value: value of the retrieved data

bool ReadS7CHAR(long byteOffset, char &value) method

This method retrieves an 8-bit character from the dual-port RAM (read area) at
byteOffset and stores the value in the value parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)

¢ char &value: value of the retrieved character

bool ReadS7STRING(long byteOffset, UINT8 readMax,
char* string) method

This method retrieves a string from the dual-port RAM (read area), starting with
byteOffset. This methods continues retrieval until all characters in the string have
been retrieved or retrieved up to the readMax character. readMax cannot be longer
than the maximum string length. This can be determined by
ReadS7STRING_LEN. The string is stored in the memory, to which string is
pointing.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)
¢ UINT8 readMax: maximum number of characters to be retrieved

e char* string: memory in which the string is stored

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-9

Data Access Classes

4.1.14 bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen,
UINT8 &curLen) method

The method reads the information about the length of a string. The maximum
length of the string is stored in the maxLen parameter. The current length of the
string is stored in the curLen parameter.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (read area)
¢ UINT8 maxLen: maximum length of the string

e UINT8 &curLen: current length of the string

WinAC Slot T-Kit Version 3.3
4-10 A5E00097452-02

Data Access Classes

4.2 CWinACReadWriteData Helper Class

In this chapter

Section Description Page
421 bool WriteS7BOOL (long byteOffset, int bitNo, bool &value) 4-12
method
422 bool WriteS7BYTE(long byteOffset, BIT8 &value) method 4-13
423 bool WriteS7TWORD(long byteOffset, BIT16 &value) method 4-13
424 bool WriteS7TDWORD(long byteOffset, BIT32 &value) method 4-13
425 bool WriteS7INT(long byteOffset, SINT16 &value) method 4-14
4.2.6 bool WriteS7DINT(long byteOffset, SINT32 &value) method 4-14
427 bool WriteS7TREAL(long byteOffset, float &value) method 4-14
428 bool WriteS7S5TIME(long byteOffset, BIT16 &value) method 4-15
429 bool WriteS7TIME(long byteOffset, SINT32 &value) method 4-15
4.2.10 bool WriteS7DATE (long byteOffset, UINT16 &value) method 4-15
4211 bool WriteS7TIME_OF_DAY (long byteOffset, UINT32 &value) 4-16
method
4212 bool WriteS7CHAR(long byteOffset, char &value method 4-16
4.2.13 bool WriteS7STRING(long byteOffset, char* string) method 4-16

WinAC Slot T-Kit Version 3.3

A5E00097452-02

4-11

Data Access Classes

Introduction

42.1

4-12

The CWinACReadWriteData helper class expands the CWinACReadData class by
additional methods for writing data as S7 data types to the write area of the
dual-port RAM. You then access the data in the write area of the dual-port RAM in
the STEP 7 user program with load commands.

Every method follows the following format:

WriteS7<datatype>(long byteOffset, <datatype>& value)

All the following methods have the return value True or False, depending on
whether the write method was successful or not. For example, the write method
can prove unsuccessful if the offset is outside the valid area on the dual-port RAM.

The methods automatically perform all byte format conversions that are necessary
between the original byte format and the internal WinAC byte format.

<datatype> Name of S7 data type. You will find more information about S7 data
types in Appendix A.

byte offset: Start address (in bytes) of the value in the dual-port RAM in the write
area.

value: data that are required to be stored in the memory

Note

The CWinACReadData helper class bequeaths all methods to the
CWinACReadWriteData helper class, so that all read methods that appear in the
CWinACReadData helper class are also available in the CWinACReadWriteData
helper class.

bool WriteS7TBOOL (long byteOffset, int bitNo, bool &value)
method

This method sets a bit on the value stored in the value parameter. The position of
the bit is determined by bitNo, the address of the byte in the long byteOffset
parameter

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)
e int bitNo: bit number to be written (starting from right to left)

¢ Dbool &value: value of the bit to be written

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Data Access Classes

4.2.2

4.2.3

4.2.4

bool WriteS7TBYTE(long byteOffset, BIT8 &value) method

This method writes the data stored in the value parameter to a byte (8 bits) in the
dual-port RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e BIT8 &value: value of the byte to be written

bool WriteS7TWORD(long byteOffset, BIT16 &value) method

This method writes the 16-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

¢ BIT16 &value: value of the data to be written

bool WriteS7TDWORD(long byteOffset, BIT32 &value) method

This method writes the 32-bit double word stored in the value parameter to the
dual-port RAM (write area) at the byteOffset position.

Return value:
e bool: success or fail (true = success)
Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

¢ BIT32 &value: value of the data to be written

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-13

Data Access Classes

4.2.5

4.2.6

4.2.7

4-14

bool WriteS7INT(long byteOffset, SINT16 &value) method

This method writes the signed 16-bit integer value stored in the value parameter to
the dual-port RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e SINT16 &value: value of the data to be written

bool WriteS7DINT(long byteOffset, SINT32 &value) method

This method writes the 32-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

¢ SINT32 &value: value of the data to be written

bool WriteS7TREAL(long byteOffset, float &value) method

This method writes a 32-bit floating-point number stored in the value parameter to
the dual-port RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

+ float &value: value of the data to be written

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Data Access Classes

4.2.8

4.2.9

4.2.10

bool WriteS7S5TIME(long byteOffset, BIT16 &value) method

This method writes the 16-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e BIT16 &value: value of the data to be written

bool WriteS7TIME(long byteOffset, SINT32 &value) method

This method writes the 32-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

¢ SINT32 &value: value of the data to be written

bool WriteS7TDATE(long byteOffset, UINT16 &value) method

This method writes the 16-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:
e bool: success or fail (true = success)
Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

¢ UINT16 &value: value of the character to be written

WinAC Slot T-Kit Version 3.3
A5E00097452-02 4-15

Data Access Classes

4.2.11

4.2.12

4.2.13

4-16

bool WriteS7TIME_OF_DAY(long byteOffset, UINT32 &value)
method

This method writes the 32-bit value stored in the value parameter to the dual-port
RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e UINT32 &value: value of the data to be written

bool WriteS7TCHAR(long byteOffset, char &value) method

This method writes the 8-bit character stored in the value parameter to the
dual-port RAM (write area) at the byteOffset position.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e char &value: value of the character to be written

bool WriteS7STRING(long byteOffset, char* string) method

This method writes a string to the dual-port RAM (write area) beginning at
byteOffset. The method expects the string to end at ZERO (\0’). If the whole string
does not fit into the space intended for it (for example, if the current length is
longer than the maximum length or there is not sufficient space in the dual-port
RAM (write area), the write method fails. For a string with an odd length (in bytes),
a byte is automatically added when this method is used.

Return value:

e bool: success or fail (true = success)

Parameters:

¢ long byteOffset: offset in byte in the dual-port RAM (write area)

e char* string: pointer to a string that ends on ZERO.

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

In this chapter

Section Description Page
Al Data Types in SIMATIC S7 A-2
A.2 Format of the WORD and DWORD Data Types for A-4

Binary-Coded Decimal Numbers
A3 Format of the INT Data Type (16-bit integer) A-5
A4 Format of the DINT Data Type (32-bit integer) A-6
A5 Format of the REAL Data Type (Floating-Point Number) A-6
A.6 Format of the S5TIME Data Type (Time Duration) A-12
A7 Format of the TIME Data Type A-13
A.8 Format of the DATE Data Type A-14
A.9 Format of the TIME_OF_DAY Data Type A-14
A.10 Format of the STRING Data Type A-15

WinAC Slot T-Kit Version 3.3

A5E00097452-02

A-1

SIMATIC S7 Data Types

Al

Elementary data types

Data Types in SIMATIC S7

The following table shows you the elementary data types in SIMATIC S7, which
you can access with the help of T-Kit:

Table A-1 Elementary Data Types in SIMATIC S7

Type and Size Format Area and Number Example:
Descriptio in Options Representation (Lowest to
n Bits Highest Value)
BOOL (Bit) |1 Bool text TRUE/FALSE True
BYTE 8 Hexadecimal B16#0 to B16#FF L B#16#10
(Byte) number L byte#16#10
WORD 16 Pure binary 2#0 to L 2#0001_0000_0000_0000
(Word) number 2#1111 1111 1111 1111
Hexadecimal W#16#0 to W#16#FFFF L W#16#1000
number L word16#1000
BCD C#0 to C#999 L C#998
Unsigned B#(0,0) to B#(255,255) L B#(10,20)
decimal L byte#(10,20)
number
DWORD 32 Pure binary 2#0 to 2#1000_0001_0001_1000_
(Double number 2#1111 11111111 1111 1011 1011_0111_1111
Word) 11111111 11111111
Hexadecimal DW#16#0000_0000 to L DW#16#00A2_1234
number DW#16#FFFF_FFFF L dword#16#00A2_1234
Unsigned B#(0,0,0,0) to L B#(1, 14, 100, 120) L
decimal B#(255,255,255,255) byte#(1,14,100,120)
number
INT 16 Signed decimal | -32768 to 32767 L1
(Integer) number
DINT 32 Signed decimal | L#-2147483648 to L L#1
(Integer, 32 number L#2147483647
Bits)
REAL 32 IEEE Upper limit: L 1.234567e+13
(Floating-Po floating-point + 3.402823e+38
int Number) number Lower limit:
+1.175 495e-38
S5TIME 16 S7 time in S5T#0H_OM_0S_10MS to L S5T#0H_1M_0S_OMS
(SIMATIC steps of 10 ms | S5T#2H_46M_30S_OMS und |L
Time) (default value) | S5T#0H_OM_0S_0OMS S5TIME#OH_1H_1M_0S_OMS
TIME (IEC | 32 IEC time in T#24D_20H_31M_23S_648M | L T#0D_1H_1M_0S_OMS
Time) stepsof 1 ms, |Sto L TIME#0D_1H_1M_0S_OMS
signed integer | T#24D_20H_31M_23S_647M
S

A-2

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

Table A-1 Elementary Data Types in SIMATIC S7 (continued)

Type and Size Format Area and Number Example:
Descriptio in Options Representation (Lowest to
n Bits Highest Value)
DATE (IEC |16 IEC date in D#1990-1-1 to L D#1994-3-15
Date) steps of one D#2168-12-31 L DATE#1994-3-15
day

TIME_OF_ |32 Time of day in | TOD#0:0:0.0 to L TOD#1:10:3.3
DAY (Time) steps of 1 ms TOD #23:59:59.999 L TIME_OF_DAY#1:10:3.3
CHAR 8 ASCII ‘A, B, etc. L'E
(Character) character

Complex data types

STRING: Defines a group of not more than 254 characters (CHAR data type). The
standard area reserved for a string of characters consists of 256 bytes. This is the
space required to store 254 characters and a header of 2 bytes. You can reduce
the storage space for a string of characters by defining the number of characters
which you want to have saved in the string for example: string[7] 'Siemens’).

WinAC Slot T-Kit Version 3.3
A5E00097452-02

A-3

SIMATIC S7 Data Types

A.2 Format of the WORD and DWORD Data Types for Binary-Coded
Decimal Numbers

The binary-coded decimal (BCD) represents a decimal number by means of
groups of binary digits (bits). A group of 4 bits represent a digit of a decimal
number of the sign of the decimal number. The groups of 4 bits form one word (16
bits) or double word (32 bits).

The four highest-order bits specify the sign of the number (“1111" means minus
and “0000“ means plus). Commands with BCD-coded operands evaluate only the
highest-order bit (15 for word format and 31 for format).

The following table shows the format and area for both types of BCD numbers.

Table A-2 Format and Area of the WORD and DWORD Data Types

Format Area
Word -999 to +999
(16 bits, 3-digit BCD number, signed)
Double Word -9 999 999 to +9 999 999
(32 bits, 7-digit BCD number, signed)

Word format

+328 (decimal format)
Bit
15 12|11 8|7 4|3 0

00:00/00 1100 101000
Sign Hundreds Tens Units
(102) (10Y) (109)

Figure A-1 Word Format

Double word format

-3 285 660 (decimal format)
Bit
31 28|27 24|23 20|19 16|15 12|11 8|7 43 0

1111000 1100 10/10 00010 101 1001 10 00 0 0

Sign Millions Hundred Ten Thou- Hun- Tens Units
(108) thou- thou- sands dreds (101 (109)
sands sands (103) (102)
(109) (104

Figure A-2 Double Word Format

WinAC Slot T-Kit Version 3.3
A-4 A5E00097452-02

SIMATIC S7 Data Types

A.3 Format of the INT Data Type (16-bit integer)
An integer has a sign that indicates whether the integer is a positive or negative
number. The space that an integer (16 bits) takes up in the memory is one word.

The following table shows the area of an integer (16 bits).

Table A-3 Format and Area of the INT Data Type

Format Area

Integer -32 768 to +32 767
INT
Bit |15 12|11 8|7 43 0
00:0:0/00 0000 10110 0
Sign Decimal values: 32+ 8+4 =44
Figure A-3 DINT Format Represented as Pure Binary Number
WinAC Slot T-Kit Version 3.3
A-5

A5E00097452-02

SIMATIC S7 Data Types

A4

DINT

A5

A-6

Format of the DINT Data Type (32-bit integer)
An integer has a sign that indicates whether the integer is a positive or negative
number. The space that an integer (32 bits) takes up in the memory is two words.

The following table shows the area of an integer (32 bits).

Table A-4 Format and Area of the DINT Data Type

Format Area

Integer (32 bits) -2 147 483 648 to
+2 147 483 647

The following figure shows the integer —500 000 as a pure binary humber. In the
binary number system, the negative form of an integer is shown as the two’s
complement of the positive integer. You obtain the two’s complement of an integer
by reversing the signal states of all bits and adding +1 to the result.

Bit
31 28|27 24| 23 20(19 16 (15 12|11 8|7 4|3 0

[1f1rv1fr1 1111 1fro 000101111011 100000

Sign

Figure A-4 DINT Format Represented as Pure Binary Number

Format of the REAL Data Format (Floating-Point Number)

Numbers in floating-point number format are shown in the general form of "number
=m * b to the power of E”. The base “b“ and exponent “E* are integers, the
mantissa “m*“ is a rational number.

This number representation has the advantage of it being possible to display very
large and very small values in a limited space. A further range of numbers can be
covered with the limited number of bits for the mantissa and exponent.

The disadvantage is the limited accuracy of calculation: for example, when forming
the sum of two numbers the exponents have to be matched by moving the
mantissa — hence floating decimal point (addition of the mantissae of two numbers
having the same exponent).

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

Floating-point number format in STEP 7

Floating-point numbers in STEP 7 conform to the basic format, single width,
described in the ANSI/IEEE Standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic. They consist of the following components:

e The signV
e The exponent e = E + bias, increased by a constant (bias = +127)
e The fractional part of the mantissa m.

The whole number part of the mantissa is not stored with the rest, because it is
always equal to 1 within the valid number range.

The three components together occupy one double word (32 bits):

Bit
3130 23|22 0

[Virr1fr1r11frrafrooooto111 1011100000
N VAN J

' 4
Exponent e Mantissa m
) (8 bits) (23 bits)
Sign
(1 bit)

Figure A-5 Representation of the Data Format
The following table shows the values of the individual bits in floating-point format.

Table A-5 REAL Data Type: Values of the Individual Bits

Component of the Floating-Point Bit Number Value
Number

Sign VvV 31

Exponent e 30 27
Exponent e 24 21
Exponent e 23 20
Mantissa m 22 21
Mantissa m 1 2722
Mantissa m 0 2723

WinAC Slot T-Kit Version 3.3
A5E00097452-02 A-7

SIMATIC S7 Data Types

Value range of floating-point numbers

A-8

Using the three components V, e and m, the value of a number represented in this

form is defined by the formula:

Number = 1.m * 2 (e- bias)

Where:

e el <e 254

e Bias: bias = 127. This means that an additional sign is not required for the

exponent.

e V: for a positive number, V = 0 and for a negative number, V = 1.

Using the floating-point format shown above, the following results:

¢ The smallest floating-point number = 1.0 * 2 to the power of (1-127) =1.0* 2 to
the power of (-126)
= 1.175 495E-38 and

¢ The largest floating-point number = 2-2 to the power of (-23) * 2 to the power of
(254-127) = 2-2 to the power of (-23) * 2 to the power of (+127) = 3.402

823E+38

The number zero is represented with e = m = 0; e = 255 and m = 0 stands for

"infinite.”

Table A-6 Format and Area of the REAL Data Type

Format

Area

Standard

Floating-point numbers conforming to ANSI/IEEE

-3.402 823E+38 to
-1.175 495E-38

and 0 and

+1.175 495E-38 to
+3.402 823E+38

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

The next table shows the signal state of the bits in the status word for the results of
operations with floating-point numbers that do not lie within the valid range.

Table A-7 Signal State of Bits in the Status Word When Results with Floating-Point
Numbers Do Not Lie within the Valid Range

Invalid Range for a Result 1A | A0 | OV | OS
-1.175494E-38 < result < -1.401298E-45 0 0 1 1
(negative number) underflow
+1.401298E-45 < result < +1.175494E-38 0 0 1 1
(positive number) underflow
Result < -3.402823E+38 (negative number) overflow 0 1 1 1
Result < -3.402823E+38 (positive number) overflow 1 0 1 1
Not a valid floating-point number or invalid instruction 1 1 1 1
(input value outside the valid value range)

Note when using mathematical operations:

The result "Not a valid floating-point number” is obtained, for example, when you
attempt to extract the square root from -2. You should therefore always evaluate
the status bits first in math operations before continuing calculations based on the
result.

Note in the case of “Force Variables”:

If the values for floating-point operations are stored in memory double words, for
example, you can modify these values with any bit patterns. However, not every bit
pattern is a valid number.

WinAC Slot T-Kit Version 3.3
A5E00097452-02 A-9

SIMATIC S7 Data Types

Accuracy when calculating floating-point numbers

ii Caution
Extensive calculations with numbers exhibiting very large differences (several
orders of magnitude) can produce inaccurate results.

The floating-point numbers in STEP 7 are accurate to 6 decimal places. You can
therefore only specify a maximum of 6 decimal places when entering floating-point
constants.

Note

The calculation accuracy of 6 decimal places means, for example, that the addition
of numberl + number2 = numberl if numberl is greater than number 2 * 10 to the
power of ¥, where y > 6:

100 000 000 + 1 = 100 000 000.

WinAC Slot T-Kit Version 3.3
A-10 A5E00097452-02

SIMATIC S7 Data Types

Examples of numbers in floating-point format

The following figure shows the floating-point format for the following decimal
values:

e 10.0

p (3.141593)

Square root of 2 (p2 = 1.414214)

The number 10.0 in the first example results from its floating-point format
(hexadecimal representation: 4120 0000) as follows:

e=21+27=2+128=130
m=22=0.25
This results in: 1.m * 2(€-Bias) = 1 25 » 2(130-127) = 1 75 * 23 = 10.0.

Decimal value 10.0
Hexadecimal value: 4 , 1 , 2 o 0 , 0 , 0 , 0
Bit : | | | | | l
31 28|27 24|23 20|19 16|15 12|11 8|7 43 0
lo[1:00[00:0 100 10 00 0000 0000 0000 0000 00
N J\ J
VT g
Expon_ent e Mantissa m
) (8 bits) (23 bits)
Sign
(1 bit)
Decimal value 3.141593
Hexadecimal value: 4 , 0 , 4 , 9 0 , F D C
Bit l . l |
31 28|27 24|23 20|19 16|15 12|11 8|7 43
|o[1:0:0[00:00[01:00 1001000011 1111011100
N J J
VT g
Expon_ent e Mantissa m
) (8 bits) (23 bits)
Sign
(1 bit)

Figure A-6 Examples of the REAL Data Type

WinAC Slot T-Kit Version 3.3
A5E00097452-02

A-11

SIMATIC S7 Data Types

A.6

A-12

Format of the S5TIME Data Type (time duration)

When you enter time duration using the S5TIME data type, your entries are stored
in binary coded decimal format. The following figure shows the content of the time
address with a time value of 127 and a time base of 1 s.

Bit |15 12|11 8|7 4|3 0

xx' 100001001001 11

Time 1 2 7 Time value in BCD format (0 to 999)
base

s
Irrelevant: These bits are ignored when the timer is started.

Figure A-7 Examples of the S5TIME Data Type

When working with S5TIME, you enter a time value in the range of 0 to 999 and
you indicate a time base (see the following table). The time base indicates the
interval at which a timer decrements the time value by one unit until it reaches 0.

Table A-8 Time Base for S5TIME

Time Base Binary Code for Time Base
10 ms 00
100 ms 01
ls 10
10s 1

You can pre-load a time value using either of the following syntax formats:
o L W#16#wxyz
Where: w = the time base (in other words, time interval or resolution)
xyz = the time value in binary coded decimal format
e L S5T#aH_bbM_ccS_dddMS
Where a = hours, bb = minutes, cc = seconds and ddd = milliseconds.

The time base is selected automatically and the value is rounded to the next
lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or 2H_46M_30S.

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

A7

Format of the TIME Data Type

A variable with TIME (time duration) data type takes up a double word. The
representation contains the details for days (d), hours (h), minutes (m), seconds (s)
and milliseconds (ms), it being possible to omit specific details. The contents of the
variable will be interpreted as milliseconds (ms) and stored as a signed 32-bit
fixed-point number.

You do not have to specify all units of time (for example, T#5h10s is valid).

If only one unit is specified, the absolute value for days, hours and minutes must
not exceed the upper or lower limit values.

T#-65535 and T#+65535 are the upper and lower limit values for seconds and
milliseconds.

If more than one unit of time is specified, the unit
e hours must not exceed a value of 23,

¢ minutes must not exceed a value of 59,

e seconds must not exceed a value of 59,

¢ milliseconds must not exceed a value of 999.

Byte O Byte 1 Byte 2 Byte 3
31 24123 16|15 8|7 0

7:6:5 4321076543210 765432 1076543210
MSB LSB

MSB: Most Significant Bit
LSB: Least Significant Bit

Figure A-8 Examples of the TIME Data Type

WinAC Slot T-Kit Version 3.3
A5E00097452-02 A-13

SIMATIC S7 Data Types

A.8

A.9

A-14

Format of the DATE Data Type

A variable with DATE (date) data type is stored in a word as an unsigned
fixed-point number. The contents of the variable corresponds to the number of
days since January 1, 1990. The representation contains the year, the month and
the day.

Byte O Byte 1
15 8|7 0

765432107654 3210
MSB LSB

MSB: Most Significant Bit
LSB: Least Significant Bit

Figure A-9 Examples of the DATE Data Type

Format of the TIME_OF_DAY Data Type

A variable with TIME_OF_DAY (time of day) data type takes up a double word. It
contains the number of milliseconds since the day commenced (0:00 hours) as an
unsigned fixed-point number. The representation contains details for hours,
minutes and seconds. Specification of the milliseconds is not necessary.

The TIME_OF_DAY data type is stored as an unsigned integer in milliseconds,
where zero is equal to midnight.

Byte O Byte 1 Byte 2 Byte 3
31 24123 16|15 8| 7 0

7:6:5 4321076543210 765432 1076543210
MSB LSB

MSB: Most Significant Bit
LSB: Least Significant Bit

Figure A-10 Example of the TIME_OF_DAY Data Type

WinAC Slot T-Kit Version 3.3
A5E00097452-02

SIMATIC S7 Data Types

A.10 Format of the STRING Data Type
A string is a string of ASCII characters of any length. The maximum length is 254
characters. If a length is not specified, the default setting is 254 characters.
Example: STRING [55]: 'The character string can consist of up to 55 characters.’

The following example shows the byte order when specifying the data type
STRING [4] with the output value 'AB’.

Byte O: Byte 1: Actual Byte 2: Byte 3:
String length 4 length 2 ASCII value of A ASCII value of B

000001000000/ 00 10010000 0101 0000 10

Figure A-11 Examples of the STRING Data Type

WinAC Slot T-Kit Version 3.3
A5E00097452-02 A-15

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Glossary

PC data format

By PC data format we mean the “little endian” format (also known as the Intel
format) as used within the PC, for example.

S

S7 data format

By S7 data format we mean the “big endian” format (also known as the Motorola
format) as used within the world of the SIMATIC S7, for example.

WinAC Slot T-Kit Version 3.3
A5E00097452-02 Glossary-1

WinAC Slot T-Kit Version 3.3
A5E00097452-02

Index

A

Address assignment, between the CPU 41x-2
PCI and dual-port RAM, 4-2
APl 1-1

B
Big endian, 4-1/ Glossary-1

C

C++ data, 3-6
Characteristic
data formats, 1-3
T-Kit, 1-3
Class
CWinACReadData, 4-4
CWinACReadWriteData, 4-11
CWinACReadData, 4-1, 4-4
CWinACReadWriteData, 4-1, 4-11

D

Data access classes, 4-1
Data consistency, 1-3
Data exchange, 1-2
Data format
big endian, Glossary-1
characteristics,|1-3
little endian, Glossary-1
Data type
complex, A-3
DATE, A-14
DINT, A-6
DWORD, A-4
elementary, A-2
INT,|A-5
REAL, A-6
S5TIME,| A-12
STRING,| A-15
TIME, A-13
TIME_OF_DAY, A-14
WORD, A-4

WinAC Slot T-Kit Version 3.3
A5E00097452-02

DATE,|A-14

DLL. Siehe Dynamic LinkLibrary
DP-Ram Offset,|3-2

Dual-port RAM, 1-2

DWORD, A-4

Dynamic Link Library, 1-1

E

Example applications, 1-4
Example program, 3-1, 3-3

F

Floating-point number,|A-7
accuracy of calculation, A-10
floating-point number format in STEP 7, A-7
presentation examples, A-11
range of values of floating-point numbers,
A-8
Function, T-Kit, 1-2

G
Getting Started, example program,|3-1

H

Hardware requirements, 2-1
Header file, 1-1,/3-6

I/O access error, 1-4
Implementation file, 3-10
Input range, 1-2
Installation, 2-1

Intel format, Glossary-1

L
Little endian, 4-1, Glossary-1

Index-1

Index

Load command, 1-3

M

Methods (read), 4-4

bool ReadS7Bool, 4-5

bool ReadS7BYTE, 4-6

bool ReadS7CHAR, 4-9

bool ReadS7DATE, 4-8

bool ReadS7DINT, 4-7

bool ReadS7DWORD, 4-6

bool ReadS7INT, 4-7

bool ReadS7REAL, 4-7

bool ReadS7S5TIME, 4-8

bool ReadS7STRING,|4-9

bool ReadS7STRING_LEN, 4-10

bool ReadS7TIME,|4-8

bool ReadS7TIME_OF_DAY,|4-9

bool ReadS7WORD, 4-6
Methods (write), 4-11

bool WriteS7Bool, 4-12

bool WriteS7BYTE,| 4-13

bool WriteS7TCHAR, 4-16

bool WriteS7TDATE, 4-15

bool WriteS7DINT,|4-14

bool WriteSTDWORD,|4-13

bool WriteS7INT,|4-14

bool WriteS7TREAL, 4-14

bool WriteS7S5TIME,|4-15

bool WriteS7STRING,|4-16

bool WriteS7TIE_OF_DAY, 4-16

bool WriteS7TIME, 4-15

bool WriteS7TWORD, 4-13
Motorola format,| Glossary-1

O
Offset, 4-2

Index-2

Output range,|1-2

P

PC data format, 1-2, Glossary-1
Polling,|1-2
PZF. Siehe Peripheriezugriffsfehler

S

S5TIME,| A-12

S7 data format,|1-2, Glossary-1
SIMATIC Manager,|3-5
Software requirements, 2-1
STEP 7 user program,|3-3
STRING,| A-15

System requirements,|2-1

T

T-Kit
characteristics,|1-3
example applications, 1-4
function,|1-2
hardware requirements, 2-1
software requirements,|2-1
system requirements, 2-1
TIME, A-13
TIME_OF_DAY, A-14
TKitStart, 3-2
Transfer command,|1-2

W

WORD, |A-4
Workspace, open, 3-4

WinAC Slot T-Kit Version 3.3
A5E00097452-02

	Title
	Preface
	Contents
	1 Product Overview
	2 System Requirements and Installation
	3 Getting Started with an Example Program
	4 Data Access Classes
	4.1 CWinACReadData Helper Class
	4.1.1 bool ReadS7Bool(long byteOffset, int bitNo, bool &value) method
	4.1.2 bool ReadS7BYTE(long byteOffset, BIT8 &value) method
	4.1.3 bool ReadS7WORD(long byteOffset, BIT16 &value) method
	4.1.4 bool ReadS7DWORD(long byteOffset, BIT32 &value) method
	4.1.5 bool ReadS7INT(long byteOffset, SINT16 &value) method
	4.1.6 bool ReadS7DINT(long byteOffset, SINT32 &value) method
	4.1.7 bool ReadS7REAL(long byteOffset, float &value) method
	4.1.8 bool ReadS7S5TIME(long byteOffset, Bit16 &value) method
	4.1.9 bool ReadS7TIME(long byteOffset, SINT32 &value)
	4.1.10 bool ReadS7DATE(long byteOffset, UINT16 &value) method
	4.1.11 bool ReadS7TIME_OF_DAY(long byteOffset, UINT32 &value) method
	4.1.12 bool ReadS7CHAR(long byteOffset, char &value) method
	4.1.13 bool ReadS7STRING(long byteOffset, UINT8 readMax, char* string) method
	4.1.14 bool ReadS7STRING_LEN(long byteOffset, UINT8 &maxLen, UINT8 &curLen) method

	4.2 CWinACReadWriteData Helper Class
	4.2.1 bool WriteS7BOOL(long byteOffset, int bitNo, bool &value) method
	4.2.2 bool WriteS7BYTE(long byteOffset, BIT8 &value) method
	4.2.3 bool WriteS7WORD(long byteOffset, BIT16 &value) method
	4.2.4 bool WriteS7DWORD(long byteOffset, BIT32 &value) method
	4.2.5 bool WriteS7INT(long byteOffset, SINT16 &value) method
	4.2.6 bool WriteS7DINT(long byteOffset, SINT32 &value) method
	4.2.7 bool WriteS7REAL(long byteOffset, float &value) method
	4.2.8 bool WriteS7S5TIME(long byteOffset, BIT16 &value) method
	4.2.9 bool WriteS7TIME(long byteOffset, SINT32 &value) method
	4.2.10 bool WriteS7DATE(long byteOffset, UINT16 &value) method
	4.2.11 bool WriteS7TIME_OF_DAY(long byteOffset, UINT32 &value) method
	4.2.12 bool WriteS7CHAR(long byteOffset, char &value) method
	4.2.13 bool WriteS7STRING(long byteOffset, char* string) method

	A SIMATIC S7 Data Types
	A.1 Data Types in SIMATIC S7
	A.2 Format of the WORD and DWORD Data Types for Binary-Coded Decimal Numbers
	A.3 Format of the INT Data Type (16-bit integer)
	A.4 Format of the DINT Data Type (32-bit integer)
	A.5 Format of the REAL Data Format (Floating-Point Number)
	A.6 Format of the S5TIME Data Type (time duration)
	A.7 Format of the TIME Data Type
	A.8 Format of the DATE Data Type
	A.9 Format of the TIME_OF_DAY Data Type
	A.10 Format of the STRING Data Type

	Glossary
	Index

