# SIEMENS

| Telecommunication        |
|--------------------------|
| Products                 |
| PowerLink 100 and Power- |
| Link 50                  |

V3.10 and higher

Equipment Manual

| Preface                               |    |
|---------------------------------------|----|
| Table of Contents                     |    |
| Safety Instructions                   | 1  |
| Functional Description                | 2  |
| Installation and Commissioning        | 3  |
| PowerSys and Auxiliary Software Tools | 4  |
| SNMP and Remote Access                | 5  |
| MCM Function                          | 6  |
| Planning Guide                        | 7  |
| Diagnostics and Error Handling        | 8  |
| Technical Data                        | 9  |
| Appendix                              | 10 |
| Index                                 |    |

C53000-G6040-C614-5



### NOTE

For your own safety, observe the warnings and safety instructions contained in this document, if available.

### **Disclaimer of Liability**

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract. Document version: C53000-G6040-C614-5.00

Edition: 09.2023

Version of the product described: V3.10 and higher

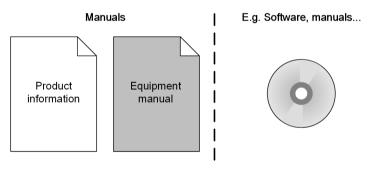
### Copyright

Copyright © Siemens 2023. All rights reserved. The disclosure, duplication, distribution and editing of this document, or utilization and communication of the content are not permitted, unless authorized in writing. All rights, including rights created by patent grant or registration of a utility model or a design, are reserved.

## Preface

#### Purpose of the Manual

This manual describes the control and monitoring functions for Smart Communications.


#### **Target Audience**

Smart Communications engineers, protection system engineers, commissioning engineers, persons entrusted with the setting, testing and maintenance of automation, selective protection and control equipment, and operating personnel in electrical installation and power plants.

#### Scope

This manual is valid for the PowerLink device family.

### **Further Documentation**



[dw\_Product-overview\_SWT3000\_Equipment-manual, 2, en\_U

Product Information

The **Product Information** includes general information about device installation, technical data, limit values for input and output modules, and conditions when preparing for operation. This document is delivered with each device.

 Equipment Manual The Equipment Manual describes the functions and applications of a specific PowerLink device.

#### **Additional Support**

For questions about the system, contact your Siemens sales partner.

#### **Customer Support Center**

Our Customer Support Center provides a 24-hour service.

Siemens AG Smart Infrastructure – Protection Automation Customer Support Center

Tel.: +49 911 2155 4466 E-Mail: energy.automation@siemens.com

#### Notes on Safety

This document is not a complete index of all safety measures required for operation of the equipment (module or device). However, it comprises important information that must be followed for personal safety, as well as to avoid material damage. Information is highlighted and illustrated as follows according to the degree of danger:



## DANGER

DANGER means that death or severe injury will result if the measures specified are not taken.

Comply with all instructions, in order to avoid death or severe injuries.



## WARNING

WARNING means that death or severe injury may result if the measures specified are not taken.

> Comply with all instructions, in order to avoid death or severe injuries.



## CAUTION

**CAUTION** means that medium-severe or slight injuries **can** occur if the specified measures are not taken.

♦ Comply with all instructions, in order to avoid moderate or minor injuries.



CAUTION



**ESD** (Electrostatic sensitive devices) means that a device or component **can** be damaged by common static charges built up on people, tools, and other non-conductors or semiconductors.

♦ Comply with all instructions, in order to avoid moderate or minor injuries.

### NOTICE

NOTICE means that property damage can result if the measures specified are not taken.

♦ Comply with all instructions, in order to avoid property damage.



#### NOTE

Important information about the product, product handling or a certain section of the documentation which must be given attention.

#### Selection of Used Symbols on the Device

| No. | Symbol      | Description                                                                        |
|-----|-------------|------------------------------------------------------------------------------------|
| 1   |             | Direct current, IEC 60417, 5031                                                    |
| 2   | $\sim$      | Alternating current, IEC 60417, 5032                                               |
| 3   | $\sim$      | Direct and alternating current, IEC 60417, 5033                                    |
| 4   | <u> </u>    | Earth (ground) terminal, IEC 60417, 5017                                           |
| 5   |             | Protective conductor terminal, IEC 60417, 5019                                     |
| 6   | 4           | Caution, risk of electric shock                                                    |
| 7   | $\triangle$ | Caution, risk of danger, ISO 7000, 0434                                            |
| 8   |             | Protective insulation, IEC 60417, 5172, safety class II devices                    |
| 9   | X           | Guideline 2002/96/EC for electrical and electronic devices                         |
| 10  | ERC         | Guideline for the Eurasian market                                                  |
| 11  | ¢           | Mandatory conformity mark for electronics and electrotechnical products in Morocco |
| 12  |             | Extra low voltage (ELV), IEC 60417, 5180, Safety Class III devices                 |

### OpenSSL

This product includes software developed by the OpenSSL Project for use in OpenSSL Toolkit (*http://www.openssl.org/*).

This product includes software written by Tim Hudson (*tjh@cryptsoft.com*).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

## **Table of Contents**

| 1 |  |
|---|--|

| Preface     |                                                        |    |
|-------------|--------------------------------------------------------|----|
| Safety Inst | ructions                                               | 21 |
| 1.1         | Scope of Delivery                                      |    |
| 1.2         | Transport, Package and Storage                         | 23 |
| 1.2.1       | Unpacking the Device                                   |    |
| 1.2.2       | Repacking the Device                                   | 23 |
| 1.2.3       | Storing the Device                                     |    |
| 1.3         | Incoming Inspection                                    | 24 |
| 1.3.1       | Safety Notes                                           |    |
| 1.3.2       | Performing a Follow-Up Inspection on a Device          |    |
| 1.3.3       | Checking Rated Data and Functions                      |    |
| 1.4         | Electrical Inspection                                  |    |
| 1.4.1       | Device Protection                                      |    |
| 1.4.2       | Grounding a Device                                     |    |
| 1.4.3       | Connecting the Device                                  | 25 |
| 1.4.4       | Safety Notes                                           |    |
| 1.4.5       | Performing the Electrical Inspection                   |    |
| 1.5         | Electrostatic Sensitive Devices                        |    |
| 1.6         | Installation                                           |    |
| 1.6.1       | Preparing Installation                                 |    |
| 1.6.2       | Power Supply                                           |    |
| 1.6.3       | Completing Installation                                |    |
| 1.7         | Replacement                                            |    |
| 1.7.1       | Preparing for Replacement                              |    |
| 1.7.2       | Completing Replacement                                 |    |
| 1.8         | Environmental Protection Hints                         |    |
| Functional  | Description                                            |    |
| 2.1         | System Description                                     |    |
| 2.1.1       | PowerLink – The Versatile Solution                     |    |
| 2.1.2       | Overview of the Features                               |    |
| 2.1.3       | PowerLink – Developed for the Challenges of the Future |    |
| 2.1.4       | Transmission Mode                                      | 40 |
| 2.1.5       | Frequency Range                                        | 40 |
| 2.1.6       | Automatic Gain Control (AGC)                           |    |
| 2.1.7       | Automatic Frequency Control (AFC)                      |    |
| 2.1.8       | Automatic Channel Equalization (ACE)                   |    |
| 2.1.9       | Automatic Crosstalk Canceller (AXC)                    |    |

| 2.1.10   | Parameterization                                                 |    |
|----------|------------------------------------------------------------------|----|
| 2.1.11   | VF Interfaces                                                    | 42 |
| 2.1.11.1 | VF Interfaces for Speech Channels                                | 42 |
| 2.1.11.2 | Compander                                                        |    |
| 2.1.11.3 | VF Interfaces for Data Channels                                  |    |
| 2.1.11.4 | VF Interface for External Protection                             | 42 |
| 2.1.12   | dPLC with the Data Pump Function                                 |    |
| 2.1.12.1 | X.21 Interface                                                   |    |
| 2.1.12.2 | G703.1 Interface                                                 |    |
| 2.1.12.3 | 10/100BASE-T Ethernet Interface                                  | 43 |
| 2.1.13   | RS232 Interface                                                  | 43 |
| 2.1.13.1 | Overview                                                         |    |
| 2.1.13.2 | Integrated FSK-Channels (iFSK)                                   |    |
| 2.1.13.3 | Connection of Local RTU in Polling Mode with Integrated Splitter |    |
| 2.1.13.4 | iMUX                                                             |    |
| 2.1.13.5 | vMUX                                                             |    |
| 2.1.14   | Transmit Power                                                   |    |
| 2.1.15   | Alarms                                                           |    |
| 2.1.15.1 | Alarm Outputs of the ALR Module                                  |    |
| 2.1.15.2 | Binary Inputs of the ALR Module                                  | 45 |
| 2.1.16   | Service Telephone (STEL)                                         | 46 |
| 2.1.17   | Remote Access                                                    | 46 |
| 2.1.17.1 | Overview                                                         |    |
| 2.1.17.2 | Remote Monitoring (RM)                                           | 46 |
| 2.1.17.3 | Remote Maintenance                                               |    |
| 2.1.17.4 | Remote Access Interface RM-2 for PowerLink 100                   |    |
| 2.1.17.5 | SNMP                                                             | 47 |
| 2.1.18   | Event Recorder                                                   |    |
| 2.1.19   | Real-Time Clock (RTC)                                            |    |
| 2.1.20   | Cyber Security                                                   |    |
| 2.1.20.1 | Overview                                                         |    |
| 2.1.20.2 | Certification                                                    |    |
| 2.1.20.3 | HTTPS Connection                                                 |    |
| 2.1.20.4 | PowerSys connection over SSL                                     | 51 |
| 2.2      | Functional Description                                           | 52 |
| 2.2.1    | PowerLink 100 - Carrier Frequency Section CFS-2                  | 52 |
| 2.2.1.1  | Mechanical Construction                                          | 52 |
| 2.2.1.2  | CFS-2 Part                                                       |    |
| 2.2.1.3  | Functions of the CSPi                                            | 53 |
| 2.2.2    | PowerLink 50 - Carrier Frequency Section                         | 54 |
| 2.2.2.1  | Mechanical Construction                                          |    |
| 2.2.2.2  | Functions of the CSPi                                            | 55 |
| 2.2.3    | Definition of the Transmission Capacity                          |    |
| 2.2.3.1  | General Information                                              |    |
| 2.2.3.2  | Examples                                                         | 57 |
| 2.2.4    | Analog Interfaces                                                | 57 |
| 2.2.4.1  | Interface Module VFx                                             |    |
| 2.2.4.2  | Block Diagram VFx                                                |    |
| 2.2.4.3  | Input/Output                                                     |    |
| 2.2.5    | Voice Transmission F2                                            |    |
| 2.2.5.1  | Interface Modules                                                |    |
| 2.2.5.2  | Voice Transmission Via vMUX                                      |    |
| 2.2.6    | Data Transmission F3                                             |    |
| 2.2.6.1  | Data Transmission via Analog VFx Interfaces                      | 61 |

| 2.2.7            | Data Transmission via Digital Interfaces                                  | 62  |
|------------------|---------------------------------------------------------------------------|-----|
| 2.2.7.1          | RS232 Interfaces                                                          |     |
| 2.2.7.2          | RS232 Splitter                                                            | 62  |
| 2.2.7.3          | Transparent Data Transmission via iFSK                                    | 63  |
| 2.2.8            | The Function Data Pump                                                    | 64  |
| 2.2.8.1          | Overview                                                                  | 64  |
| 2.2.8.2          | Modulation Method                                                         | 64  |
| 2.2.8.3          | Data Pump Latency                                                         | 64  |
| 2.2.8.4          | The Information Density                                                   | 65  |
| 2.2.8.5          | Coherence Bit Rate – SNR                                                  |     |
| 2.2.8.6          | Supervision of the Transmission Line                                      |     |
| 2.2.8.7          | Asynchronous Data Transmission via iMUX                                   |     |
| 2.2.8.8          | Asynchronous TCP/IP-DP Interface                                          |     |
| 2.2.8.9          | Synchronous ITU-T G703.1-DP Interface                                     |     |
| 2.2.8.10         | Synchronous X.21-DP Interface                                             |     |
| 2.2.9            | The Versatile Multiplexer vMUX                                            |     |
| 2.2.9.1          | In General                                                                |     |
| 2.2.9.2          | Structure of the PowerLink with vMUX                                      |     |
| 2.2.9.3          | User Interfaces                                                           |     |
| 2.2.9.4          | rFSK Channels                                                             |     |
| 2.2.9.5          | The StationLink (SL)                                                      |     |
|                  |                                                                           |     |
| 2.2.10           | PowerLink 100 - The PLPA Section                                          |     |
| 2.2.10.1         | Structural Design                                                         |     |
| 2.2.10.2         | The Power Supply PSPA2                                                    |     |
| 2.2.10.3         | PLPA Block Diagram                                                        |     |
| 2.2.11           | PowerLink 50 - The PLPA Section                                           |     |
| 2.2.11.1         | Structural Design                                                         |     |
| 2.2.11.2         | PLPA Block Diagram                                                        | 85  |
| 2.2.12           | Amplifier, Transmission Line Filter, Line Matching Module, Receive Module | 85  |
| 2.2.12.1         | Functional Description of the Amplifier                                   |     |
| 2.2.12.2         | The TXF1-XB Transmission Line Filter (single circuit)                     |     |
| 2.2.12.3         | The TXF2-XB Transmission Line Filter (dual circuit)                       |     |
| 2.2.12.4         | The LT100-XB Line Matching Module                                         | 88  |
| 2.2.12.5         | The RXF-XB Receiver Module                                                | 89  |
| 2.3              | Applications                                                              |     |
| 2.3.1            | Overview                                                                  |     |
| 2.3.2            | PowerLink for Telecontrol Transmission                                    |     |
|                  |                                                                           |     |
| 2.3.3            | PowerLink for Data Transmission                                           |     |
| 2.3.4            | PowerLink for Telephone Networks                                          | 94  |
| 2.3.5            | PowerLink for Protection Signal Transmission                              | 95  |
| 2.3.6            | Easy to Operate – the PowerLink Management System                         | 96  |
| 2.4              | Integrated Protection Signal Transmission with iSWT 3000                  | 99  |
|                  | Overview                                                                  |     |
| 2.4.1<br>2.4.1.1 | General Information                                                       |     |
| 2.4.1.1          | Integrated (iSWT) or Stand Alone Units SWT 3000                           |     |
| 2.4.1.2          |                                                                           |     |
|                  | Quick Overview of the Features                                            |     |
| 2.4.2            | Applications for Transmission                                             |     |
| 2.4.2.1          | Applications for Analog and/or Digital Transmission                       |     |
| 2.4.2.2          | Applications for Digital Transmission for PowerLink 100                   |     |
| 2.4.2.3          | Combination of Analog and Digital Interfaces for PowerLink 100            |     |
| 2.4.2.4          | Transmission Paths                                                        |     |
| 2.4.2.5          | Modes of Operation                                                        |     |
| 2.4.2.6          | Features                                                                  |     |
| 2.4.2.7          | Simplex TPS Transmission                                                  | 104 |

| 2.4.3<br>2.4.3.1 | Operating Modes with PowerLink Systems<br>Overview     | 104 |
|------------------|--------------------------------------------------------|-----|
| 2.4.3.2          | Single Purpose Operation (SP)                          |     |
| 2.4.3.3          | Multi Purpose Operation (MP)                           |     |
| 2.4.3.4          | Alternate Multi Purpose Operation (AMP)                | 106 |
| 2.4.4            | Teleprotection Repeater Service                        |     |
| 2.4.5            | iSWT Equipment Versions                                |     |
| 2.4.5.1          | Broadband Version                                      |     |
| 2.4.5.2          | Narrow Band Version                                    |     |
| 2.4.6            | Monitoring                                             |     |
| 2.4.7            | Protection Modes                                       |     |
| 2.4.7.1          | Overview                                               |     |
| 2.4.7.2          | Unblocking Mode                                        |     |
| 2.4.7.3          | iSWT Trip Frequencies                                  |     |
| 2.4.7.4          | Mode 1 (Double System Protection)                      |     |
| 2.4.7.5          | Mode 2 (Single Phase Protection)                       |     |
| 2.4.7.6          | Mode 3 (4 Commands with Priority)                      |     |
| 2.4.7.7          | Mode 3a (4 Independent Commands, 4iC)                  |     |
| 2.4.7.8          | Mode 3b (2 plus 2)                                     |     |
| 2.4.7.9          | Mode 4 (Only One Command Active)                       |     |
| 2.4.7.10         | Mode 5A (3 Independent Commands)                       |     |
| 2.4.7.11         | Mode 6 (Multi Command Modules)                         |     |
| 2.4.7.12         | Mode 7a (8 Independent Commands, 8iC)                  |     |
| 2.4.7.13         | Command Duration for Single Purpose Operation          |     |
| 2.4.7.14         | Command Duration for Alternate Multi-Purpose Operation |     |
| 2.4.8            | The PU4 Module                                         | 118 |
| 2.4.8.1          | Overview                                               | 118 |
| 2.4.8.2          | Functional Units                                       | 122 |
| 2.4.8.3          | Internal Power Supply                                  | 122 |
| 2.4.8.4          | Controller                                             | 122 |
| 2.4.8.5          | Analog Line Interface                                  | 122 |
| 2.4.8.6          | Control and Display Elements of the PU4 Module         | 122 |
| 2.4.8.7          | Access to the Integrated SWT 3000 (iSWT)               | 124 |
| 2.4.8.8          | Event Memory and Real-Time Clock                       | 124 |
| 2.4.8.9          | Master - Slave Clock Synchronization                   | 125 |
| 2.4.8.10         | The Digital Line Equipment (DLE) for PowerLink 100     | 125 |
| 2.4.9            | The Interface Modules IFC                              | 126 |
| 2.4.9.1          | General Information                                    |     |
| 2.4.9.2          | Description of Operation                               | 126 |
| 2.4.9.3          | Controller                                             | 129 |
| 2.4.9.4          | Test Mode                                              |     |
| 2.4.9.5          | Slot and Module Identifier                             |     |
| 2.4.9.6          | Signal Acquisition via Binary Inputs                   |     |
| 2.4.9.7          | Signal Output from the IFC-D/P Module                  |     |
| 2.4.9.8          | Signal Output from IFC-S Module                        |     |
| 2.4.9.9          | Pinout of the IFC-x Module                             |     |
| 2.4.9.10         | Block Diagrams of IFC Modules                          | 135 |
| 2.4.10           | Fiber-Optic Modem for PowerLink 100                    | 137 |
| 2.4.10.1         | Overview                                               | 137 |
| 2.4.10.2         | Connection to the PowerLink PLC System                 | 138 |
| 2.4.11           | Ethernet EN100 Module Functional Description           |     |
| 2.4.11.1         | Ethernet EN100 Module Functional Description           |     |
| 2.4.11.2         | IEC 61850 Application Mode for SWT 3000                |     |
|                  |                                                        |     |
| 2.4.12           | Remote Monitoring, Service Channel, and IP Network     |     |
| 2.4.12.1         | General Information for iSWT 3000                      |     |
| 2.4.12.2         | Service Channel                                        | 145 |

| Installation and   | Commissioning                                                                                | 147 |
|--------------------|----------------------------------------------------------------------------------------------|-----|
| 3.1                | Installation                                                                                 | 148 |
| 3.1.1              | Installation of the Module Frames                                                            | 148 |
| 3.1.1.1            | Introduction                                                                                 |     |
| 3.1.1.2            | Dimensions of the PowerLink System                                                           |     |
| 3.1.1.3            | Fire Prevention Kit                                                                          |     |
| 3.1.1.4            | Units of the PowerLink System                                                                |     |
| 3.1.1.5            | Protective Earth Connection                                                                  |     |
| 3.1.1.6            | Connection of the Supply Voltage                                                             |     |
| 3.1.1.7<br>3.1.1.8 | PLPA Interface PA – CFS-2<br>Power Supply Connector for an Internal Device for PowerLink 100 |     |
| 3.1.1.8            | Interconnection of the Power Supplies for PowerLink 100                                      |     |
| 3.1.1.10           | Module Slot Positions in the PowerLink                                                       |     |
| 3.1.1.11           | Mounting of Modules in the PowerLink System                                                  |     |
| 3.1.2              | The Connector Panel for PowerLink 100 and PowerLink 50                                       |     |
| 3.1.2.1            | Overview                                                                                     |     |
| 3.1.2.2            | Interconnection of PLPA 100 Unit and CFS-2                                                   |     |
| 3.1.2.3            | Interconnection of PLPA 50 Unit and CFS-2                                                    |     |
| 3.1.2.4            | Interconnection of PLPA Unit and HF-Connecting board                                         |     |
| 3.1.3              | RS232 Interfaces                                                                             | 164 |
| 3.1.3.1            | Overview                                                                                     |     |
| 3.1.3.2            | Assignment of the RS232-1A/B up to -2A/B Interfaces                                          |     |
| 3.1.3.3            | Assignment of the RS232-3A/B up to -4A/B Interfaces                                          |     |
| 3.1.3.4            | Assignment of the RS232-5 up to -8 Interfaces                                                |     |
| 3.1.4              | Assignment of the Analog Interfaces VFx                                                      |     |
| 3.1.4.1            | Overview                                                                                     |     |
| 3.1.4.2            | VFX1 Module in Mounting Position 1 for PowerLink 100                                         |     |
| 3.1.4.3            | VFX 2&3 Modules in Mounting Positions 2 and 3 for PowerLink 100                              | 169 |
| 3.1.4.4            | VFX1 P1-3 Module for PowerLink 50                                                            | 170 |
| 3.1.4.5            | VFX1 P4 Module for PowerLink 50                                                              |     |
| 3.1.4.6            | VFX2 Module for PowerLink 50                                                                 |     |
| 3.1.4.7            | PS E&M Connectors                                                                            |     |
| 3.1.4.8            | Connection of an External SWT 3000 to the VFx Modules                                        |     |
| 3.1.4.9            | Alarm Interface Connector                                                                    |     |
| 3.1.5              | Assignment of the X.21-DP Interface                                                          |     |
| 3.1.5.1            | Overview                                                                                     |     |
| 3.1.6              | Synchronous vMUX Interfaces X.21                                                             | 183 |
| 3.1.6.1            | Overview                                                                                     |     |
| 3.1.6.2            | Synchronous vMUX User Interface – X.21-1                                                     |     |
| 3.1.6.3            | Synchronous vMUX User Interface – X.21-2                                                     |     |
| 3.1.7              | Fractional E1 Interface                                                                      |     |
| 3.1.8              | Ethernet Interface                                                                           | 184 |
| 3.1.8.1            | Overview                                                                                     |     |
| 3.1.8.2            | Ethernet Electrically (IP-1, LCT)                                                            |     |
| 3.1.8.3            | Ethernet Optically (ETH)                                                                     |     |
| 3.1.9              | G703.1 Interface Connector (IP-2) for PowerLink 100                                          |     |
| 3.1.10             | StationLink Connector                                                                        | 185 |
| 3.1.11             | RM Interfaces                                                                                | 187 |
| 3.1.11.1           | RM Interface RM-1                                                                            |     |
| 3.1.11.2           | RM Interface RM-2 for PowerLink 100                                                          |     |
| 3.1.12             | Integrated SWT 3000                                                                          |     |
| 3.1.12.1           | Assignment of the Interface DLE for PowerLink 100                                            |     |
| 3.1.12.2           | Assignment of the Service Channel Interface SC for PowerLink 100                             | 190 |
| 3.1.12.3           | Pin Assignment of the IFC-x Module                                                           |     |

| 3.2                | General Commissioning Sequence                                      | 194 |
|--------------------|---------------------------------------------------------------------|-----|
| 3.2.1              | Removing of Printed Circuit Boards                                  | 194 |
| 3.2.2              | Software Release                                                    | 194 |
| 3.2.3              | PLPA Section                                                        | 194 |
| 3.2.4              | Carrier Frequency Section                                           | 194 |
| 3.2.5              | Test Setup and Tools                                                |     |
| 3.2.6              | Dummy Load for PowerLink                                            |     |
| 3.3                | Strapping Options of the PLPA Section                               | 202 |
| 3.3.1              | The PLPA Equipment                                                  | 202 |
| 3.3.1.1            | Structural Design                                                   | 202 |
| 3.3.1.2            | LB and HB Versions of PLPA Modules                                  | 203 |
| 3.3.2              | The Program PLPA Straps                                             |     |
| 3.3.2.1            | General                                                             |     |
| 3.3.2.2            | Application                                                         |     |
| 3.3.2.3<br>3.3.2.4 | The Menu <file><br/>Selecting an Existing File (Open Inputs)</file> |     |
| 3.3.2.5            | Configuration Inputs                                                |     |
| 3.3.2.6            | Straps Settings                                                     |     |
| 3.3.3              | Tuning of the Transmit Filter (TXF-XB)                              |     |
| 3.3.3.1            | General                                                             |     |
| 3.3.3.2            | Adjustment Module in PowerLink 50                                   |     |
| 3.3.3.3            | Coarse Tuning of the Transmit Filter                                |     |
| 3.3.3.4            | Fine Tuning of the TXF1 Line Filter 1                               |     |
| 3.3.3.5            | Tuning Procedure                                                    |     |
| 3.3.3.6            | Fine Tuning of TXF1 Line Filter 2                                   | 213 |
| 3.3.3.7            | Fine Tuning of the TXF2 Line Filter 1                               |     |
| 3.3.3.8            | Tuning Procedure                                                    |     |
| 3.3.3.9            | Fine Tuning of TXF2 Line Filter 2                                   |     |
| 3.3.4              | Tuning of the Receive Filter (RXF-XB)                               |     |
| 3.3.4.1            | General                                                             |     |
| 3.3.4.2<br>3.3.4.3 | Coarse Tuning of the Receive Filter<br>Fine Tuning of the RXF-XB    |     |
| 3.3.4.4            | Operation Mode                                                      |     |
| 3.3.4.5            | Level Adjustment                                                    |     |
| 3.4                | Dongle                                                              |     |
| 3.4.1              | Overview                                                            |     |
| 3.4.2              | Features Which Have to be Enabled                                   |     |
| 3.4.3              | Dongle Upgrade                                                      | 219 |
| 3.5                | Configuration with the Service PC                                   |     |
| 3.5.1              | Service PC Connection to PowerLink via Ethernet Interface           |     |
| 3.5.1.1            | DHCP Server                                                         |     |
| 3.5.1.2            | Service PC Network Setting for Windows                              |     |
| 3.5.2              | RS232 Serial Cable for Connecting PowerLink via RM-1 Connector      | 224 |
| 3.5.3              | PowerSys                                                            | 225 |
| 3.6                | System Configuration                                                | 230 |
| 3.7                | HF Configuration                                                    | 232 |
| 3.7.1              | The HF Configuration Form                                           | 232 |
| 3.7.2              | AXC Adaptive                                                        |     |
| 3.7.3              | AXC Automatically Activated                                         |     |
|                    | -                                                                   |     |
| 3.7.4              | AXC Manually Activated                                              |     |
| 3.7.5              | Definition of the Adjacent Mode                                     | 235 |

| 3.7.6              | Frequency Order Using Adjacent Tx- and Rx-Bands                        | 235 |
|--------------------|------------------------------------------------------------------------|-----|
| 3.8                | Configuration Options                                                  | 237 |
| 3.8.1              | ADC Adjustments                                                        | 237 |
| 3.8.2              | Output Gain                                                            | 237 |
| 3.8.3              | Auto Reset                                                             | 237 |
| 3.8.4              | Test Mode and Diagnostic LED                                           |     |
| 3.8.5              | Quality Data Interval                                                  | 237 |
| 3.8.6              | xMUX Supervision                                                       | 238 |
| 3.8.7              | Clock Synchronization                                                  |     |
| 3.8.7.1            | Sync. type                                                             |     |
| 3.8.7.2<br>3.8.7.3 | Active Signal Slope or Active Polarity (IRIG)<br>Clock Sync Alarm (NU) |     |
| 3.8.8              | CSPi Date/Time Setting                                                 |     |
| 3.9                | Configuration of the Services                                          |     |
| 3.9.1              | General Information                                                    |     |
| 3.9.2              | Service Allocation                                                     |     |
| 3.10               | Voice Transmission (Service F2)                                        |     |
| 3.10.1             | Overview                                                               |     |
| 3.10.1             | The VFS Module                                                         |     |
| 3.10.2             |                                                                        |     |
|                    | TP-Repeater Service                                                    |     |
| 3.11.1<br>3.11.2   | Overview                                                               |     |
| 3.11.2             | Configure the Services in PowerLink Terminal Station                   |     |
|                    | Configure Powerlink of the TP-Repeater Station                         |     |
| 3.11.4             | ACE with TP-Repeater                                                   |     |
| 3.12               | Service Telephone (STEL)                                               |     |
| 3.12.1<br>3.12.2   | Configuration and Operation of Service Telephone                       |     |
|                    | Service Telephone function in TP-Repeater stations                     |     |
| 3.13               | Data Transmission (Service F3)                                         |     |
| 3.13.1             | Possibilities of the Data Transmission                                 |     |
| 3.13.2             | Connection of an Modem via VFx Module                                  |     |
| 3.13.3             | Considerations About Level Adjustment                                  |     |
| 3.13.4             | System Configuration for iFSK Channel Transmission                     |     |
| 3.14               | Service Configuration F6 Protection                                    |     |
| 3.15               | Data transmission via Data Pump                                        |     |
| 3.15.1             | iMUX                                                                   |     |
| 3.15.2             | Synchronous Interface X.21-DP                                          |     |
| 3.15.3             | Synchronous Interface G703.1-DP                                        |     |
| 3.15.4             | Ethernet Multiplexer EMUX                                              |     |
| 3.15.5             | Dynamic DP 5 steps                                                     |     |
| 3.15.6             | Supervision of the Transmission Line with the Data Pump                |     |
| 3.16               | The Versatile Multiplexer vMUX                                         |     |
| 3.16.1             | Overview                                                               |     |
| 3.16.2             | System Configuration                                                   |     |
| 3.16.3             | Setting Options for the DP                                             |     |
| 3.16.4<br>3.16.4.1 | vMUX and Station Link<br>Overview                                      |     |
| 3.16.4.1 3.16.4.2  | StationLink Termination                                                |     |
| · · · -            |                                                                        |     |

| 3.16.4.3           | vMUX Station Address Form                                                      | 278 |
|--------------------|--------------------------------------------------------------------------------|-----|
| 3.16.5             | vMUX Configuration for Asynchronous Data                                       |     |
| 3.16.5.1           | vMUX Channel Setup - RS232                                                     |     |
| 3.16.5.2           | StationLink Connection for Multicast Function                                  |     |
| 3.16.6<br>3.16.6.1 | Configuration Voice<br>vMUX Channel Setup - Voice                              |     |
| 3.16.6.2           | vMUX Adjustments for Voice Transmission                                        |     |
| 3.16.7             | vMUX Configuration for Synchronous Data Channels (X.21, Ethernet)              |     |
| 3.16.8             | Setting Options for rFSK Channels via vMUX                                     |     |
| 3.16.9             | Setting Options for the StationLink                                            |     |
| 3.16.10            | StationLink Test Loops                                                         | 288 |
| 3.17               | Protection Signaling iSWT                                                      | 290 |
| 3.17.1             | Jumper Settings for iSWT 3000 Modules                                          | 290 |
| 3.17.2             | Jumper Settings for IFC Modules                                                | 290 |
| 3.17.2.1           | Overview                                                                       |     |
| 3.17.2.2           | DIP Switches on IFC Modules                                                    |     |
| 3.17.3             | Jumper Settings for PU4 Module                                                 |     |
| 3.17.4             | Jumper Settings for DLE Module                                                 |     |
| 3.17.4.1           | Overview<br>Jumper Settings for the Selection of Digital Line Interfaces LID-1 |     |
| 3.17.4.3           | Selection of the Input Gain for G703.6 Interfaces                              |     |
| 3.17.5             | System Configuration for iSWT 3000                                             |     |
| 3.17.6             | External SWT 3000 Connection to PowerLink                                      |     |
| 3.17.6.1           | Fiber-Optic Connection                                                         |     |
| 3.17.6.2           | iSWT 3000 via FOM for PowerLink 100                                            |     |
| 3.17.6.3           | CLE connection of an External SWT 3000 to the PowerLink 50/100                 |     |
| 3.17.7<br>3.17.7.1 | Operating Mode with PLC Equipment<br>Overview                                  |     |
| 3.17.7.2           | Single Purpose Operation                                                       |     |
| 3.17.7.3           | Multi Purpose Operation                                                        | 302 |
| 3.17.7.4           | Alternate Multi Purpose Operation                                              | 302 |
| 3.18               | Configuration of an iSWT                                                       | 305 |
| 3.18.1             | Single or Multi Purpose Operation                                              |     |
| 3.18.2             | Alternate Multi Purpose Operation                                              | 306 |
| 3.18.3             | Command Interface                                                              | 307 |
| 3.18.4             | Output Allocation                                                              | 309 |
| 3.18.5             | Timer Setting Options for the iSWT 3000                                        | 310 |
| 3.18.6             | Setting Recommendations for the iSWT 3000 Timer Configuration                  | 316 |
| 3.18.7             | iSWT 3000 Date/Time                                                            | 317 |
| 3.18.8             | Clock Synchronization                                                          | 317 |
| 3.19               | Tx Level Adjustment                                                            |     |
| 3.19.1             | TX Level Setting                                                               | 320 |
| 3.19.2             | TX Leveling with PLPA                                                          | 321 |
| 3.19.3             | Tx Level Setting DP                                                            | 321 |
| 3.19.4             | Measuring the Tx Levels at the PLPA Output                                     | 322 |
| 3.19.5             | TX Level Supervision                                                           | 324 |
| 3.20               | Receive Level Adjustment                                                       |     |
| 3.20.1             | General Information                                                            | 325 |
| 3.20.2             | Basic Level Setting                                                            | 325 |

| 3.20.3             | All Operations except Single Purpose                     |     |
|--------------------|----------------------------------------------------------|-----|
| 3.20.4             | Single Purpose Operation                                 | 329 |
| 3.20.5             | RX LED Indication                                        | 333 |
| 3.21               | Futher Configuration Settings and Adjustment Options     |     |
| 3.21.1             | Configuration of Automatic Channel Equalization ACE      | 334 |
| 3.21.2             | Adjustment Option ACE Bypass                             |     |
| 3.21.3             | Remote Monitoring / Remote Configuration RM              |     |
| 3.21.4             | PowerLink Alarm Configuration - ALR Module               |     |
| 3.21.5             | Adjustment Options: F6 Supervision and compander         | 342 |
| 3.21.6             | Command Blocking                                         | 342 |
| PowerSys ar        | nd Auxiliary Software Tools                              |     |
| 4.1                | Overview                                                 |     |
| 4.2                | PowerSys Installation                                    |     |
| 4.2.1              | Installation                                             |     |
| 4.2.2              | User Management                                          |     |
| 4.2.3              | Firmware Overview                                        | 352 |
| 4.2.4              | Parameter Compatibility                                  | 353 |
| 4.2.5              | Release Upgrade Check                                    | 354 |
| 4.2.6              | Multiple Language Support                                | 354 |
| 4.3                | PowerSys Connection via TCP/IP                           | 356 |
| 4.3.1              | Ethernet-Interface of PowerLink – Block Diagram          |     |
| 4.3.2              | Settings for Access to Local PowerLink via Service Port  |     |
| 4.3.3              | Settings for Access to remote PowerLink via Service Port |     |
| 4.3.4              | Settings for Access to any PowerLink via User Port       | 359 |
| 4.4                | PowerSys Online Connection                               |     |
| 4.4.1              | The PowerLink Event Log                                  |     |
| 4.4.2              | The iSWT 3000 Event Recorder                             |     |
| 4.4.3              | Configuration of the PowerLink Ethernet Interface        |     |
| 4.5                | MemTool for Firmware Upgrade Tool                        |     |
| 4.5.1              | General Information                                      |     |
| 4.5.2              | Installation of MemTool                                  |     |
| 4.5.3              | Basic Settings                                           |     |
| 4.5.4              | Getting Started                                          |     |
| 4.5.5              | Trouble Shooting                                         |     |
| 4.6                | Programming of CSPi Flash Memory                         |     |
| 4.6.1              | Connecting the PC                                        |     |
| 4.6.2              | Starting MemTool                                         |     |
| 4.6.3              | Connection to the PowerLink Target                       | 376 |
| 4.6.4              | Programming the Application into the Flash Memory        |     |
| 4.6.5              | Programming IPCON via Web UI                             |     |
| 4.6.5.1<br>4.6.5.2 | Overview<br>Enable IPCON Eirmware Lindate                |     |
| 4.6.5.2            | Enable IPCON Firmware Update<br>Firmware Update          |     |
| 4.7                | Programming of vMUX Flash Memory                         |     |
| 4.7.1              | Connecting the PC                                        |     |
| 4.7.2              | Starting MemTool                                         |     |
|                    |                                                          |     |

4

| 4.7.3                                                                                                     | Connection to the vMUX Target                                                                                                                                                                                                                                                              | 385                                                                              |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4.7.4                                                                                                     | Programming the Application into the Flash Memory                                                                                                                                                                                                                                          | 386                                                                              |
| 4.8                                                                                                       | Programming of PU4 Flash Memory                                                                                                                                                                                                                                                            | . 389                                                                            |
| 4.8.1                                                                                                     | Connecting the PC                                                                                                                                                                                                                                                                          | 389                                                                              |
| 4.8.2                                                                                                     | Starting MemTool                                                                                                                                                                                                                                                                           | 390                                                                              |
| 4.8.3                                                                                                     | Connection to the SWT 3000 Target                                                                                                                                                                                                                                                          | 392                                                                              |
| 4.8.4                                                                                                     | Programming the Application into the Flash Memory                                                                                                                                                                                                                                          | 392                                                                              |
| 4.9                                                                                                       | PLPAStraps for Jumper Settings                                                                                                                                                                                                                                                             | 397                                                                              |
| 4.9.1                                                                                                     | Overview                                                                                                                                                                                                                                                                                   | 397                                                                              |
| 4.9.2                                                                                                     | Installation                                                                                                                                                                                                                                                                               | 397                                                                              |
| 4.9.3                                                                                                     | Input of PLPA configuration                                                                                                                                                                                                                                                                | . 397                                                                            |
| 4.9.4                                                                                                     | The Menu <file></file>                                                                                                                                                                                                                                                                     | 399                                                                              |
| 4.9.5                                                                                                     | Selecting an Existing File                                                                                                                                                                                                                                                                 | . 399                                                                            |
| 4.10                                                                                                      | SWTStraps for Jumper Settings                                                                                                                                                                                                                                                              | 400                                                                              |
| 4.10.1                                                                                                    | Overview                                                                                                                                                                                                                                                                                   | 400                                                                              |
| 4.10.2                                                                                                    | SWTStraps Input Form                                                                                                                                                                                                                                                                       | . 400                                                                            |
| 4.10.3                                                                                                    | The Straps Settings windows                                                                                                                                                                                                                                                                |                                                                                  |
| 4.11                                                                                                      | MergeTool for IEC61850 with (i)SWT 3000                                                                                                                                                                                                                                                    |                                                                                  |
| 4.11.1                                                                                                    | Overview                                                                                                                                                                                                                                                                                   |                                                                                  |
| 4.11.2                                                                                                    | Parameter Generator                                                                                                                                                                                                                                                                        |                                                                                  |
| 4.11.3                                                                                                    | EN100 Settings                                                                                                                                                                                                                                                                             |                                                                                  |
| 4.12                                                                                                      | Measurement Tool                                                                                                                                                                                                                                                                           |                                                                                  |
| 4.12.1                                                                                                    | Measurement Tool                                                                                                                                                                                                                                                                           |                                                                                  |
| SNMP and Remo                                                                                             | ote Access                                                                                                                                                                                                                                                                                 | . 419                                                                            |
| 5.1                                                                                                       | Remote Access and Remote Monitoring                                                                                                                                                                                                                                                        | 420                                                                              |
| 5.1.1                                                                                                     | Overview                                                                                                                                                                                                                                                                                   |                                                                                  |
| 5.1.2                                                                                                     | Remote Access via Intranet (TCP/IP)                                                                                                                                                                                                                                                        | 420                                                                              |
| 5.1.3                                                                                                     | Remote Access via Modem                                                                                                                                                                                                                                                                    |                                                                                  |
| 5.1.4                                                                                                     | Remote Monitoring/Maintenance via In-band RM Channel                                                                                                                                                                                                                                       |                                                                                  |
| 5.2                                                                                                       | SNMP                                                                                                                                                                                                                                                                                       | 422                                                                              |
| 5.2.1                                                                                                     | General Information                                                                                                                                                                                                                                                                        | 422                                                                              |
|                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                  |
| 5.2.2                                                                                                     | SNMP Function                                                                                                                                                                                                                                                                              |                                                                                  |
| 5.2.2<br>5.2.3                                                                                            | SNMP Function                                                                                                                                                                                                                                                                              | 422                                                                              |
|                                                                                                           |                                                                                                                                                                                                                                                                                            | 422<br>425                                                                       |
| 5.2.3<br>5.2.4<br>5.2.4.1                                                                                 | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview                                                                                                                                                             | 422<br>425<br>426<br>426                                                         |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2                                                                      | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration                                                                                                                                     | 422<br>425<br>426<br>426<br>427                                                  |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3                                                           | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management                                                                                                              | 422<br>425<br>426<br>426<br>427<br>428                                           |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2                                                                      | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management                                                                                           | 422<br>425<br>426<br>426<br>427<br>428<br>430                                    |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.4                                                | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management                                                                                                              | 422<br>425<br>426<br>426<br>427<br>428<br>430<br>433                             |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.4<br>5.2.4.5                                     | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management<br>Key Reset                                                                              | 422<br>425<br>426<br>426<br>427<br>428<br>430<br>433<br>433                      |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.3<br>5.2.4.4<br>5.2.4.5<br>5.2.4.6               | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management<br>Key Reset<br>Notification                                                              | 422<br>425<br>426<br>426<br>427<br>428<br>430<br>433<br>433<br>436               |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.4<br>5.2.4.5<br>5.2.4.6<br>5.2.5                 | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management<br>Key Reset<br>Notification<br>NMS Commissioning.                                        | 422<br>425<br>426<br>427<br>428<br>430<br>433<br>433<br>433<br>436<br>437        |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.4<br>5.2.4.5<br>5.2.4.6<br>5.2.5<br>5.3          | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management<br>Key Reset<br>Notification<br>NMS Commissioning<br>Remote Access                        | 422<br>425<br>426<br>426<br>427<br>428<br>430<br>433<br>433<br>433<br>437<br>437 |
| 5.2.3<br>5.2.4<br>5.2.4.1<br>5.2.4.2<br>5.2.4.3<br>5.2.4.4<br>5.2.4.5<br>5.2.4.6<br>5.2.5<br>5.3<br>5.3.1 | SNMP Function<br>Spontaneous Indication SNMP Traps<br>Simple Network Management Protocol Version 3 (SNMPv3)<br>SNMPv3 Overview<br>SNMPv3 Configuration<br>USM User Management<br>VACM Management<br>Key Reset<br>Notification<br>NMS Commissioning<br>Remote Access<br>General Information | 422<br>425<br>426<br>426<br>427<br>428<br>430<br>433<br>433<br>433<br>437<br>437 |

| 5.4        | Web Interface                                                | 443 |
|------------|--------------------------------------------------------------|-----|
| 5.4.1      | Connection PowerLink – Service PC                            | 443 |
| 5.4.2      | Start Page before Login                                      | 443 |
| 5.4.3      | Start Page after Login                                       | 445 |
| 5.4.4      | Service Interface Settings                                   | 445 |
| 5.4.5      | User Interface Settings                                      | 447 |
| 5.4.6      | Ipcon Settings                                               | 449 |
| 5.4.7      | L2 Filter Settings                                           | 453 |
| 5.4.8      | QoS Settings                                                 | 455 |
| 5.4.9      | QoS Settings – Traffic Class Table                           | 456 |
| 5.4.10     | Change Access Password                                       | 457 |
| 5.4.11     | Activation of Settings                                       | 458 |
| MCM Funct  | ion                                                          | 461 |
| 6.1        | Overview                                                     |     |
| 6.2        | Functional Description                                       | 463 |
| 6.2.1      | Introduction                                                 | 463 |
| 6.2.2      | Structure and Requirements                                   | 463 |
| 6.2.3      | Alternate Multi Purpose Operation                            |     |
| 6.2.4      | Transmission Scheme                                          |     |
| 6.2.5      | Guard Alarm                                                  |     |
| 6.2.6      | Supervision Command                                          |     |
| 6.2.7      | Signaling Allocation                                         |     |
| 6.3        | Commissioning                                                |     |
| 6.3.1      | Overview                                                     |     |
| 6.3.2      | IFC-24 Module                                                |     |
| 6.4        | IFC-MCM                                                      |     |
| 6.4.1      | Overview                                                     |     |
| 6.4.2      | MCM-Basis-Module                                             |     |
| 6.4.3      | MCM-Sub-Module                                               |     |
| 6.5        | Equipment Configuration                                      | 485 |
| 6.5.1      | MCM Transmission with Voice                                  |     |
| 6.5.2      | MCM Transmission with Data Pump                              |     |
| 6.5.3      | Measuring Mode M6 Meas                                       |     |
| 6.6        | MCM 32                                                       |     |
| 6.6.1      | MCM 32 in 4 kHz bandwidth                                    |     |
| Planning G | uide                                                         |     |
| 7.1        | Overview                                                     |     |
| 7.2        | Frequency Planning                                           |     |
| 7.2.1      | General Information                                          |     |
| 7.2.1      | Frequency Plan                                               |     |
| 7.2.2      | Planning Rules                                               |     |
| 7.2.3      | Line Traps                                                   |     |
|            |                                                              |     |
| 7.2.5      | Summary of the Necessary Information for Frequency Planning: |     |
| 7.2.6      | Planning New Frequencies                                     |     |

6

7

| 7.3                                                                                                                                                                                                                                                                | Transmission Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 504                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.3.1                                                                                                                                                                                                                                                              | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504                                                                                                                                                                                                                   |
| 7.3.2                                                                                                                                                                                                                                                              | Power Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 504                                                                                                                                                                                                                   |
| 7.3.3                                                                                                                                                                                                                                                              | Services Transmitted in the PowerLink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 504                                                                                                                                                                                                                   |
| 7.3.4                                                                                                                                                                                                                                                              | Power Line Attenuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 505                                                                                                                                                                                                                   |
| 7.3.5                                                                                                                                                                                                                                                              | Coupling Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 505                                                                                                                                                                                                                   |
| 7.3.6                                                                                                                                                                                                                                                              | Noise Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |
| 7.3.7                                                                                                                                                                                                                                                              | Signal-to-Noise Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 506                                                                                                                                                                                                                   |
| 7.3.8                                                                                                                                                                                                                                                              | Formulas for the Calculation of the Transmission Range and the SNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |
| 7.4                                                                                                                                                                                                                                                                | Planning Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 507                                                                                                                                                                                                                   |
| 7.4.1                                                                                                                                                                                                                                                              | PowerLink with Data Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 507                                                                                                                                                                                                                   |
| 7.4.2                                                                                                                                                                                                                                                              | PowerLink with Analog Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 509                                                                                                                                                                                                                   |
| 7.5                                                                                                                                                                                                                                                                | PowerCalc xx xx.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 514                                                                                                                                                                                                                   |
| 7.5.1                                                                                                                                                                                                                                                              | <br>Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 514                                                                                                                                                                                                                   |
| 7.5.2                                                                                                                                                                                                                                                              | Input of the PowerLink Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 514                                                                                                                                                                                                                   |
| 7.5.3                                                                                                                                                                                                                                                              | Planning Examples with PowerCalc_xx_xx.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| 7.6                                                                                                                                                                                                                                                                | Examples of Using the vMUX and StationLink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| 7.6.1                                                                                                                                                                                                                                                              | In General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| 7.6.2                                                                                                                                                                                                                                                              | The vMUX Node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                       |
| 7.6.3                                                                                                                                                                                                                                                              | Example 1 Point-to-Multipoint Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |
| 7.6.4                                                                                                                                                                                                                                                              | Example 2 Routing of Voice Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |
| -                                                                                                                                                                                                                                                                  | Error Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |
| 8.1                                                                                                                                                                                                                                                                | Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       |
| 8.2                                                                                                                                                                                                                                                                | Control and Signaling Elements on the CSPi Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 535                                                                                                                                                                                                                   |
| 8.2<br>8.2.1                                                                                                                                                                                                                                                       | Control and Signaling Elements on the CSPi Module<br>General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 535<br>535                                                                                                                                                                                                            |
| 8.2<br>8.2.1<br>8.2.2                                                                                                                                                                                                                                              | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 535<br>535<br>535                                                                                                                                                                                                     |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3                                                                                                                                                                                                                                     | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 535<br>535<br>535<br>536                                                                                                                                                                                              |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1                                                                                                                                                                                                                          | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 535<br>535<br>535<br>536<br>536                                                                                                                                                                                       |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3                                                                                                                                                                                                                                     | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 535<br>535<br>536<br>536<br>536                                                                                                                                                                                       |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2                                                                                                                                                                                                               | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 535<br>535<br>535<br>536<br>536<br>536<br>536<br>536<br>537                                                                                                                                                           |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3                                                                                                                                                                                                    | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 535<br>535<br>536<br>536<br>536<br>536<br>537<br>537                                                                                                                                                                  |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5                                                                                                                                                                       | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 535<br>535<br>536<br>536<br>536<br>537<br>537<br>537                                                                                                                                                                  |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.4<br>8.2.5<br>8.2.5.1                                                                                                                                                   | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16                                                                                                                                                                                                                                                                                                                                                                          | 535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>540<br>540                                                                                                                                             |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.1<br>8.2.5.2                                                                                                                             | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20                                                                                                                                                                                                                                                                                                                                              | 535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>540<br>540<br>540                                                                                                                                      |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3                                                                                                                             | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40                                                                                                                                                                                                                                                                                                        | 535<br>535<br>535<br>536<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540                                                                                                   |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4                                                                                                                  | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41                                                                                                                                                                                                                                                                                 | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540                                                                                                   |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3                                                                                                                             | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42                                                                                                                                                                                                                                                         | 535<br>535<br>535<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540                                                                                     |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5                                                                                                     | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41                                                                                                                                                                                                                                                                                 | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540                                                                       |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6                                                                               | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H43                                                                                                                                                                                                                                                         | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541                                                                              |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7                                                         | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_Done LED H43<br>IPCON LED H44 to H45                                                                                                                                                                                                         | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541                                                                                     |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8                                                         | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_Done LED H43<br>IPCON LED H44 to H45<br>Diagnostic LED H22 to H29                                                                                                                                                                            | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>552                                                                |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8<br>8.3                                       | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi Deperation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_Done LED H43<br>IPCON LED H44 to H45<br>Diagnostic LED H22 to H29<br>Control and Signaling Elements on the vMUX.                                                                         | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541<br>552<br>552                                                         |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8<br>8.3<br>8.3.1                                         | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi Deeration Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_Done LED H43<br>IPCON LED H44 to H45<br>Diagnostic LED H22 to H29<br>Control and Signaling Elements on the vMUX<br>Overview<br>LED during Operation<br>vMUX Input Elements and Connectors | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541<br>541<br>541<br>552<br>552<br>552<br>552                             |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8<br>8.3<br>8.3.1<br>8.3.2<br>8.3.3<br>8.3.3.1            | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_USER LED H43<br>IPCON LED H24 to H45<br>Diagnostic LED H22 to H29<br>Control and Signaling Elements on the vMUX<br>Overview<br>LED during Operation<br>vMUX Input Elements and Connectors<br>vMUX Connectors                                 | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541<br>552<br>552<br>552<br>552<br>552<br>552                      |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8<br>8.3<br>8.3.1<br>8.3.2<br>8.3.3<br>8.3.3.1<br>8.3.3.2 | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20.<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_Done LED H43<br>IPCON LED H44 to H45<br>Diagnostic LED H22 to H29<br>Control and Signaling Elements on the vMUX<br>Overview<br>LED during Operation<br>vMUX Input Elements and Connectors<br>vMUX Connectors<br>vMUX Connectors<br>vMUX Connectors<br>StationLink Termination        | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541<br>552<br>552<br>552<br>552<br>552<br>552                      |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.3.1<br>8.2.3.2<br>8.2.3.3<br>8.2.3.4<br>8.2.4<br>8.2.5<br>8.2.5.1<br>8.2.5.2<br>8.2.5.1<br>8.2.5.2<br>8.2.5.3<br>8.2.5.4<br>8.2.5.5<br>8.2.5.6<br>8.2.5.7<br>8.2.5.8<br>8.3<br>8.3.1<br>8.3.2<br>8.3.3<br>8.3.3.1            | Control and Signaling Elements on the CSPi Module<br>General<br>CSPi Input Elements in the Front Cover<br>Input Elements Behind the Front Cover<br>Power Inhibit (Switch S1)<br>DIL-Switches<br>CSPi Connector X3 (BNC)<br>CSPi Connector X4 (USB)<br>CSPi Operation Signaling LED in the Front Cover<br>CSPi LED Behind the Front Cover<br>MODDSP LED H13 to H16<br>Data Pump LED H17 to H20<br>ETH User Interfaces LED H37 to H40<br>RFFPGA_DONE LED H41<br>MUXFPGA_USER LED H42<br>MUXFPGA_USER LED H43<br>IPCON LED H24 to H45<br>Diagnostic LED H22 to H29<br>Control and Signaling Elements on the vMUX<br>Overview<br>LED during Operation<br>vMUX Input Elements and Connectors<br>vMUX Connectors                                 | 535<br>535<br>535<br>536<br>536<br>536<br>537<br>537<br>537<br>537<br>537<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>540<br>541<br>541<br>541<br>552<br>552<br>552<br>552<br>552<br>554<br>554<br>554<br>554 |

| 8.3.4        | vMUX Diagnostic LED H1 to H8                                                  | 555 |
|--------------|-------------------------------------------------------------------------------|-----|
| 8.4          | Control and Signaling Elements on the PU4 module (iSWT 3000)                  | 560 |
| 8.4.1        | Overview PU4, LED and Input Elements                                          | 560 |
| 8.4.2        | Significance of LEDs on the PU4 Module                                        | 561 |
| 8.4.3        | PU4 Connectors                                                                | 562 |
| 8.5          | Control and Signaling Element on the Power Supply                             | 563 |
| 8.5.1        | Displays                                                                      | 563 |
| 8.6          | System Information                                                            | 565 |
| 8.6.1        | System Alarm Display                                                          | 565 |
| 8.6.2        | Dongle Info                                                                   | 565 |
| 8.7          | Test Modes                                                                    | 567 |
| 8.8          | CSPi Diagnostic Mode                                                          | 568 |
| 8.9          | Commands and Test Loops                                                       | 569 |
| 8.9.1        | Overview                                                                      | 569 |
| 8.9.2        | Periodic transmission time test configuration                                 | 574 |
| 8.9.3        | StationLink Test Loops                                                        | 574 |
| 8.10         | Quality Data QD                                                               | 576 |
| 8.10.1       | Overview                                                                      | 576 |
| 8.11         | Data Pump Block Error                                                         | 578 |
| 8.11.1       | Information                                                                   | 578 |
| 8.11.2       | Supervision                                                                   | 579 |
| 8.12         | Diagnosis of Ethernet EN100 Module                                            | 581 |
| 8.13         | Problem Tracking                                                              | 584 |
| 8.14         | Recommended Handling of Power Cycle                                           | 590 |
| Technical D  | ata                                                                           | 591 |
| 9.1          | Transmission Method                                                           |     |
| 9.2          | HF- Interface                                                                 |     |
| 9.3          | Transmission Characteristics                                                  |     |
|              | Analog Interface                                                              |     |
| 9.4<br>9.5   | Digital Interface                                                             |     |
|              |                                                                               |     |
| 9.6<br>9.6.1 | Integrated Teleprotection System SWT 3000                                     |     |
| 9.6.1        | Overview<br>Command Input/Output                                              |     |
| 9.6.3        | Terminals of IFC Modules                                                      |     |
| 9.6.4        | Command Transmission Via Analog Path                                          |     |
| 9.6.5        | Command Transmission Via Analog Pathanorks (Alternative Path) - PowerLink 100 |     |
| 9.7          | Miscellaneous                                                                 |     |
| 9.7.1        | Maintenance Interfaces                                                        |     |
| 9.7.2        | Network Management                                                            |     |
| 9.7.3        | Event Memory                                                                  |     |
| 9.7.4        | Alarm Modules Input/Output                                                    |     |
| 9.7.5        | Power Supply                                                                  |     |
| 9.7.6        | Climatic Conditions                                                           |     |
| 9.7.7        | EMC Immunity                                                                  |     |
| 9.7.8        | EMC Emission                                                                  |     |

|    | Index    |                                          | 617 |
|----|----------|------------------------------------------|-----|
|    | 10.1     | Abbreviations                            | 610 |
| 10 | Appendix |                                          | 609 |
|    | 517110   | <b>v</b>                                 |     |
|    | 9.7.13   | Mechanical Design                        | 608 |
|    | 9.7.12   | Mechanical Conditions                    | 608 |
|    | 9.7.11   | International Standards                  | 607 |
|    | 9.7.10   | Impulse Withstand Level 1.2/50 µs, 0.5 J | 607 |
|    | 9.7.9    | Insulation Withstand Voltage             | 607 |
|    |          |                                          |     |

## 1 Safety Instructions

| 1.1 | Scope of Delivery               | 22 |
|-----|---------------------------------|----|
| 1.2 | Transport, Package and Storage  | 23 |
| 1.3 | Incoming Inspection             | 24 |
| 1.4 | Electrical Inspection           | 25 |
| 1.5 | Electrostatic Sensitive Devices | 27 |
| 1.6 | Installation                    | 29 |
| 1.7 | Replacement                     | 31 |
| 1.8 | Environmental Protection Hints  | 33 |

## 1.1 Scope of Delivery

The equipment is delivered with:

- The **Product Information** with a system description and instructions for installation, commissioning and operation, decommissioning and disposal.
- The corresponding software package (formerly delivered on DVD) is available for download on SIOS (Siemens Industry Online Support) platform free of charge, a registration is required.
- Test protocols are available for download under *Energy Automation Testreports* Enter BF code of device to view the requested test protocol in pdf format. The installed firmware package version loaded into the device can be seen in the protocol.

For further details, see the information that can be found in the manual.

### 1.2 Transport, Package and Storage

### 1.2.1 Unpacking the Device

### NOTE

Devices are tested prior to delivery. The verification certificate is part of the device and can be called up with the product.

Devices are packed on site in a way that meets the requirements.

- Check the packing for external transport damage. Damaged packing may indicate that the devices inside have also a damage.
- ♦ Unpack devices carefully; do not use force.
- ♦ Visually check the devices to ensure that they are in perfect mechanical condition.
- ♦ Check the enclosed accessories against the delivery note to make sure that everything is complete.
- ♦ Keep the packing in case the devices must be stored or transported elsewhere.
- Return damaged devices to the manufacturer, stating the defect. Use the original packaging or transport packaging that meets the requirements.

### 1.2.2 Repacking the Device

- ♦ If you store devices after incoming inspection, pack them in suitable storage packaging.
- ♦ If devices are to be transported, pack them in transport packing.
- ♦ Put the accessories supplied and the test certificate in the packing with the device.

### 1.2.3 Storing the Device

- Only store devices on which you have carried out an incoming inspection, thus ensuring that the warranty remains valid. For incoming inspection refer to chapter Incoming inspection.
- $\diamond$  The device must be stored in rooms, which are clean, dry, and dust-free. Devices or associated spare parts must be stored at a temperature between  $-40^{\circ}$  C and  $+70^{\circ}$  C.
- Siemens recommends that you observe a restricted storage temperature range of +10° C to +35° C in order to prevent the electrolytic capacitors used in the power supply from aging prematurely.
- If the device shall be stored for a long time, connect it every 2 years to an auxiliary voltage for 1 to 2 days. This will cause the electrolytic capacitors to form on the printed circuit board assemblies again.
- If devices must be shipped elsewhere, you can reuse their transport packaging. If using other packaging, ensure that the transport requirements are met.

## 1.3 Incoming Inspection

### 1.3.1 Safety Notes



## DANGER

Danger during incoming inspection.

If you do not comply with the safety notes, this will result in death, severe injury, or considerable material damage.

- ♦ Comply with all given safety notes when carrying out the incoming inspection.
- If you identify a defect during incoming inspection, do not correct it yourself. Repack the device and return it to the manufacturer, stating the defect. Use the original packaging or transport packaging that meets the requirements.

Siemens recommends that you check the device and the connectors which are not assembled.

### **Double Pole/Neutral Fusing**





## CAUTION

The fuse is used in the neutral of single-phase equipment either permanently connected or provided with a non-reversible plug.

After operation of the fuse, parts of the equipment that remain energized might represent a hazard during servicing.

### If you do not comply with the safety notes, this will result in medium severe or slight injuries.

 $\diamond$  Comply with all instruction in order to avoid moderate or minor injuries.

### 1.3.2 Performing a Follow-Up Inspection on a Device

Visually check for external damage as soon as you have unpacked the devices; they must not show any signs of dents or cracks.

### 1.3.3 Checking Rated Data and Functions

- Check the rated data and functions using the complete order designation/the product code. The Equipment Manual contains all technical data and a description of the functions.
- Check the information provided on the name plate too. The device features a product label sticker, which contains the technical data.
- ♦ Make sure that the rated data of the device properly matches the system data. You can find the necessary information in the Equipment Manual.

### 1.4 Electrical Inspection

### 1.4.1 Device Protection



### DANGER

Danger when connecting the device.

If you do not comply with the safety notes, this will result in death, severe injury, or considerable material damage.

- The device must be situated in the operating area for at least 2 hours before you connect it to the power supply for the first time. This avoids condensation to occur in the device.
- ♦ Perform the electrical inspection (refer to 1.4.5 Performing the Electrical Inspection).

### 1.4.2 Grounding a Device

The device has to be connected to the protective earthing conductor of the cabinet prior to commissioning.



## CAUTION

The cross-section of the ground wire must be equal to or greater than the cross-section of any other control conductor connected to the device. The cross-section of the ground wire must be at least 2.5 mm<sup>2</sup> (AWG14).

The following consequences can occur if the cross-section of the ground wire is not properly installed:

- The device can be damaged.

- Touching the device can cause a flashover and health damage if the device is not sufficiently grounded.

- A faulty activation can occur by undefined states.

♦ The cross section of the ground wire and the laying of the wire must comply with the regulations applicable for the place of installation.

Ground the device with solid low-resistance system grounding (cross-section  $\ge$  4.0 mm<sup>2</sup>, grounding area  $\ge$  M4).

### 1.4.3 Connecting the Device

- ♦ Connect all cables and lines. Use the connection diagrams stated in the Equipment Manual.
- ♦ Tighten the terminal screws.

### 1.4.4 Safety Notes



## DANGER

Danger during electrical inspection.

If you do not comply with the safety notes, this will result in death, severe injury, or considerable material damage.

- $\diamond$  Comply with all given safety notes when carrying out the electrical inspection.
- $\diamond$  Note that hazardous voltages are present when you perform the electrical inspection.
- During the electrical inspection, check that the device becomes ready for operation once it has been connected to the power supply.



## DANGER

Danger of over voltage.

#### To prevent the risk of possible over voltage

- The cable shield of the communication cable between Line Matching Unit (LMU, AKE) and the power line carrier communication devices (PowerLink, PowerLink with iSWT or detached SWT 3000) must be grounded on both ends.
- The grounding of the cable shield must be carried out on the LMU side itself and once again before entering the station building or a ground connection within the building in which the PowerLink devices or any other powerline carrier communication device are installed.
- The grounding must be carried out using a connection that cannot be detached without tools. The grounding of the cable shields must not be removed until it is ensured that by closing the short circuit switch on the LMU and attaching an additional grounding rod to the HV input, the LMU is voltage-free and safely grounded.

### 1.4.5 Performing the Electrical Inspection

- $\diamond$  Connect the power supply.
- $\diamond$  Activate the power supply.
- The device must have the normal operating state (process mode) if the configuration, connection, and transmission have been set up successfully. The device must communicate with the PC. If not, disconnect and check the installation of the device and the installation and configuration of the service program PowerSys (refer to *Chapter 4*).
- If a defect of the device is suspected, please contact the Customer Support prior to a return to manufacturer. If the suspect for a defect is confirmed by Customer Support, pack the device and return it to the manufacturer, stating the defect. Use transport packaging that meets the requirements.

## 1.5 Electrostatic Sensitive Devices

### NOTE

This Manual is written for **service and operation personnel** in the high voltage power line environment. All existing safety instructions in the **environment of the user** must be observed and **only trained and instructed** personnel shall be allowed to work with the equipment.

# 



Electrostatic sensitive devices are protected against destruction by electrostatic charge with protective structures at the inputs and outputs. In unfavorable cases, however, plastic floor coverings, non-conductive work surfaces, or clothing containing artificial fibers can result in such high charges.

These charges can damage or even destroy the electrostatic sensitive devices despite the protective networks mentioned. If a device is damaged, its reliability decreases drastically although the effects of the damage are noticeable a long time before.

- In order to ensure that electrostatic charges are completely eliminated when working on the system, comply with the following instructions in order to avoid moderate or minor damage:
- ♦ Before carrying out any work on the system, ground yourself with a wrist strap.
- ♦ When working on modules, always place them on a grounded conductive surface.
- ♦ Transport modules only in suitable protective bags.

The following points must also be observed during installation:

- Before installing the device, lay and connect the grounding wire to ground potential.
- Connect the grounding wire immediately after installing the device or setting up the cabinet.
- Use shoe grounding strips.

## DANGER

The device can be damaged if not installed in a locked room.

Death or severe injuries can occur if a foreign person has access to the equipment.

Install the device in a locked room with admission for commissioning personnel and trained operating personnel only.

### NOTICE

The temperature in the room shall not exceed the temperatures specified in the operating rules.

The device can be damaged if it is not operated in accordance with regulations of the operation.

♦ Provide sufficient cooling or heating (for outside operation in cold areas or during cold times).



## WARNING

There is a risk of electrostatic discharge until the grounding wire has been connected, even if you are wearing a wrist strap.

The grounding wire must not be disconnected until all work has been completed if you are disassembling the system.

♦ If possible, do not touch the modules and wiring before the work has been completed.

### 1.6 Installation

### 1.6.1 Preparing Installation



## DANGER

Danger due to live voltage when installing the plug-in modules.

If you do not comply with the safety advice, this will result in death or severe injuries.

♦ Install plug-in modules on the electrically deactivated device only.



## CAUTION

This equipment is suitable for mounting on concrete or other non-combustable surface only.

 In case the Powerlink System is mounted on a combustable surface, the use of the mounting kit (7VR9656, Fire prevention kit) is obligatory.



## CAUTION

Exercise caution with laser beams of the optical plug-in modules.

The laser beams can damage your eyes. If you do not comply with the safety notes, this will result in medium severe or slight injuries.

- Do not look directly into the optical fiber terminals of the active optical plug-in modules, not even with optical devices.
- ♦ De-energize the device.

# i

### NOTE

Laser class 1 is adhered to in compliance with EN 60825-1 and EN 60825-2, in the case of  $\leq$  62.5  $\mu m/125~\mu m$  optical fibers.

♦ Undo the fastening screw and remove the cover plate from the plug-in module position.

### 1.6.2 Power Supply

 Dangerous voltages are present within this power supply. Perform the installation/removal following the safety notes.



## DANGER

Do not connect the redundant power supply while the equipment is powered.

If you do not comply with the safety notes, this will result in death, severe injury, or considerable material damage.

♦ Make sure that the power is turned OFF before installing or removing the power supply.

♦ If delivered separately, plug the power supply into the device without any modification.

### 1.6.3 Completing Installation

- ♦ Set the jumpers of the module for operation mode.
- ♦ The device shall recognize the new plug-in module.
- ♦ In case you installed a new module, configure the settings of the new module in PowerSys.

## NOTE

Only qualified electrical engineering personnel is authorized to reset the hardware parameters.

### 1.7 Replacement

### 1.7.1 Preparing for Replacement

### **General Information**

The device can be supplied as stand-alone device or installed in a cabinet with other system components. If the device is **delivered in a cabinet**, the cabling of the individually installed devices is installed at the factory up to the connection terminals on the assembly board. In this case, the **connection points for the cabling can be found in the supplied documentation**.



### NOTE

The modules available for reordering are not preconfigured.

 Before any maintenance work, disconnect the equipment from all energy sources to ensure that no dangerous voltage is present.

#### Laser Guide



## CAUTION

Exercise caution with laser beams of the optical plug-in modules.

### If you do not comply with the safety notes, this will result in medium severe or slight injuries.

- Do not look directly into the optical fiber terminals of the active optical plug-in modules, not even with optical devices. The laser beams can damage your eyes.
- ♦ De-energize the device.

# i

### NOTE

Laser class 1 is adhered to in compliance with EN 60825-1 and EN 60825-2, in the case of  $\leq$  62.5  $\mu m/125~\mu m$  optical fibers.



### NOTE

If you have not cabled the optical fiber plug-in modules, then seal the terminals with protective covers. This prevents soiling of the terminals.

### **Replacement Description**



## DANGER

Danger due to live voltage when replacing the plug-in modules.

#### If you do not comply with the safety notes, this will result in death or severe injuries.

- ♦ Install plug-in modules on the electrically deactivated device only.
- $\diamond$  Remove the front plate from the device.
- ♦ Carefully pull out the plug-in module.

- ♦ Configure the jumper settings prior to installation.
- Push in the new plug-in module on the inner guide as far as it is possible.
- ♦ Connect the leads to the terminals.
- ♦ Then check for secure attachment of the connectors.
- ♦ Mount and fasten the front plate on the device.

### 1.7.2 Completing Replacement

- ♦ Set the jumpers of the module for operation mode.
- ♦ The device shall recognize the new plug-in module.
- ♦ In case you installed a new module, configure the settings of the new module in PowerSys.

# i

### NOTE

Only qualified electrical engineering personnel is authorized to reset the hardware parameters.

### 1.8 Environmental Protection Hints

## Disposal of Old Equipment and Batteries (Applicable only for European Union and Countries with a Recycling System)

The disposal of our products and possible recycling of their components after decommissioning has to be carried out by an accredited recycling company, or the products/components must be taken to applicable collection points. Such disposal activities must comply with all local laws, guidelines and environmental specifications of the country in which the disposal is done. For the European Union the sustainable disposal of electronic scrap is defined in the respective regulation for "waste electrical and electronic equipment" (WEEE).



The crossed-out wheelie bin on the products, packaging and/or accompanying documents means that used electrical and electronic products and batteries must not be mixed with normal house-hold waste.

## According to national legislation, penalties may be charged for incorrect disposal of such waste.

By disposing of these products correctly you will help to save valuable resources and prevent any potential negative effects on human health and the environment.



### NOTE

Our products and batteries must not be disposed of as household waste. For disposing batteries it is necessary to observe the local national/international directives.

### Disposal of Mobile Storage Devices (e.g. USB Sticks and Memory Cards)

When disposing of/transferring mobile storage devices, using the **format** or **delete** functions only changes the file management information and does not completely delete the data from your mobile storage device. When disposing of or transferring a mobile storage device, Siemens strongly recommends physically destroying it or completely deleting data from the mobile storage device by using a commercially available computer data erasing software.

### **REACH/RoHS** Declaration

You can find our current REACH/RoHS declarations at:

https://www.siemens.com/global/en/home/products/energy/ecotransparency/ecotransparency-down-loads.html



### NOTE

You can find more information about activities and programs to protect the climate at the EcoTransparency website:

https://www.siemens.com/global/en/home/products/energy/ecotransparency.html

## 2 Functional Description

| 2.1 | System Description                                       | 36 |
|-----|----------------------------------------------------------|----|
| 2.2 | Functional Description                                   | 52 |
| 2.3 | Applications                                             | 91 |
| 2.4 | Integrated Protection Signal Transmission with iSWT 3000 | 99 |

## 2.1 System Description

### 2.1.1 PowerLink – The Versatile Solution

PowerLink uses the high-voltage line between transformer substations as a communication path for data, protection signals, and voice. This technology, which has been tried and tested over decades and adapted to the latest standards, has two main application areas:

- as a communications link between substations where a fiber-optic connection does not exist or would not be economically viable, and
- as a backup system for transmitting protection signals parallel to an installed fiber-optic link.

A basic distinction is made between analog (aPLC) and digital (dPLC) systems. Newer digital systems allow more efficient use of the frequency band, while traditional analog PLC systems offer advantages in cases where transmission conditions are less favorable (low signal/noise ratio, for example). With PowerLink, both operating modes are open to you. You can even combine aPLC and dPLC services in a single communications network.

PowerLink is available in 2 frame types:

• PowerLink 100

The double frame system offers full flexibility concerning transmission power (20 W – 100 W) and modular expandability.

• PowerLink 50

Tis system is a smart and compact power line carrier single frame system with up to 50 W transmission power.



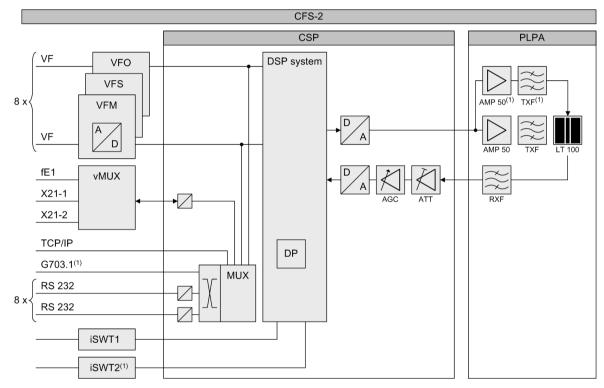

#### [ph\_PowerLink\_50\_100, 1, --\_

Figure 2-1 The PowerLink 100 and PowerLink 50

### Advantages at a glance

- Cost-effective for small to medium data volumes over long distances
- Processes analog and digital signals
- Dynamic transmission rate

- Adjustable transmission power
- Variable bandwidth
- Transmission capacity up to 320 kbps
- Integrated TCP/IP interface
- Voice compression
- Versatile multiplexer
- Integrated teleprotection systems
- Cross-functional management system for all integrated services
- Can be used effectively in combination with broadband technologies for optimal availability



[dw\_plcfs2\_011214, 1, en\_US]

Figure 2-2 PowerLink - The versatile Solution

- 1) for PowerLink 100
- DSP Digital signal processing
- VF Voice frequency
- VFO Voice frequency interface FXO
- VFS Voice frequency interface FXS
- VFM Voice frequency interface E & M
- X.21-x Synchronous digital interface
- RS232 Asynchronous digital interface
- iSWT Integrated SWT 3000
- vMUX Versatile multiplexer
- DP Data pump
- AGC Automatic gain control
- ATT Attenuator

| fE1    | Fractional E1 2 Mbps          |  |  |
|--------|-------------------------------|--|--|
| CFS-2  | Carrier frequency section     |  |  |
| PLPA   | PowerLink power amplifier     |  |  |
| CSP    | Central signal processor unit |  |  |
| AMP50  | 50-W power amplifier          |  |  |
| RXF    | Receive filter                |  |  |
| TXF    | Transmit filter               |  |  |
| TCP/IP | LAN interface                 |  |  |
| LT 100 | Line transformer              |  |  |
|        |                               |  |  |

# High performance

PowerLink offers a transmission capacity of 320 kbps and an integrated TCP/IP interface. Many different types of IP terminals can use the power line communications network effectively.

# Easy to manage

PowerLink not only simplifies communications, it also makes communications cost-effective. The PowerSys software administers all of PowerLink's integrated applications under a standard user interface. This ensures higher operating security while keeping training time and costs to a minimum.

# 2.1.2 Overview of the Features

| Features                                                                                 | Digital PLC<br>system | Analog<br>PLC<br>system |
|------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| Universally applicable in analog, digital, or mixed operation                            | Х                     | Х                       |
| Carrier frequency range 24 kHz to 1000 kHz                                               | X                     | Х                       |
| Bandwidth selectable 2 kHz to 32 kHz                                                     | X                     | Х                       |
| Data rate up to 320 Kbps @ 32 kHz                                                        | X                     |                         |
| Transmission power                                                                       | X                     | Х                       |
| 20 W / 50 W / 100 W, Fine adjustment through software                                    |                       |                         |
| Operation with or without frequency band spacing                                         | Х                     | Х                       |
| with automatic cross talk canceller                                                      |                       |                         |
| Digital interface                                                                        |                       |                         |
| Synchronous X.21 (max. 2 channels)                                                       | Х                     |                         |
| Asynchronous RS 232 (max. 8 channels)                                                    | X                     |                         |
| TCP/IP (2 x electrical, 1 x optical)                                                     | X                     |                         |
| E1 (2 Mbps) for voice compression                                                        | X                     |                         |
| G703.1 (64 kbps) <sup>1)</sup>                                                           | X                     |                         |
| Analog interface                                                                         |                       |                         |
| VF (VFM, VFO, VFS), max. 8 channels for voice, data, and protection signal <sup>2)</sup> | Х                     | Х                       |
| Asynchronous RS232 (max. 4) via FSK                                                      |                       | х                       |
| Miscellaneous                                                                            |                       |                         |
| Adaptive dynamic data rate adjustment                                                    | Х                     |                         |
| TCP/IP Layer 2 Bridge                                                                    | X                     |                         |

| Features                                                                                                                                     | Digital PLC<br>system | Analog<br>PLC<br>system |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| Integrated versatile multiplexer for voice and data                                                                                          | Х                     |                         |
| Max. 5 compressed voice channels via VF interface <sup>3)</sup>                                                                              | Х                     |                         |
| Max. 8 voice channels via E1 interface                                                                                                       | X                     |                         |
| StationLink bus for the cross-connection of max. 4 PLC transmission routes (compressed voice and data without voice compression on repeater) | Х                     |                         |
| Reverse FSK analog RTU/modem data via dPLC (2 x)                                                                                             | x                     |                         |
| Protection signal transmission system SWT 3000                                                                                               |                       |                         |
| Integration of 2 devices in PowerLink 100 and 1 in PowerLink 50                                                                              | Х                     | Х                       |
| Remote operation via cable or fiber-optic cable <sup>1)</sup> identical to the integrated version                                            | Х                     | Х                       |
| Single purpose or multi purpose/alternate multi purpose mode                                                                                 | Х                     | х                       |
| Element manager, based on a graphical user interface for the control and monitoring of PLC and teleprotection systems                        | Х                     | Х                       |
| Command interface binary and in accordance with IEC 61850                                                                                    | Х                     | Х                       |
| Remote access to PowerLink                                                                                                                   |                       |                         |
| Via TCP/IP connection                                                                                                                        | Х                     | Х                       |
| Via in-band service channel                                                                                                                  | X                     | Х                       |
| SNMP compatibility for integrating NMS                                                                                                       | Х                     | Х                       |
| Event memory with time stamp                                                                                                                 | Х                     | Х                       |
| Simple feature upgrade through software                                                                                                      | Х                     | Х                       |
| <sup>1)</sup> Not applicable in PowerLink 50                                                                                                 |                       |                         |
| <sup>2)</sup> Max. 7 VF channels for PowerLink 50                                                                                            |                       |                         |
| <sup>3)</sup> 4 compressed voice channels via VF for PowerLink 50                                                                            |                       |                         |

# 2.1.3 PowerLink – Developed for the Challenges of the Future

PowerLink has numerous outstanding features and functionality, many of which are patented. The real hallmark of the system, however, is its openness and flexibility, which offers you a host of technical options for the best operation of your communication networks. You can use PowerLink for the transmission of:

- Protection signals
- Telecontrol signals
- Voice
- Data
- TCP/IP communication

For this purpose, PowerLink has analog and all current digital interfaces. Because these can be combined flexibly, you can protect investments you have already made, and continue to use the older analog terminals while you gradually switch over to the new communication technologies. At the same time, with Power-Link, you already have at your disposal all the possibilities of TCP/IP communication – which is increasingly emerging as the standard in the power supply area as well.

# Best transmission performance under all operating conditions

# Variable transmission power

The transmission power can be configured via software in two ranges (20 - 50 W or 40 - 100 W), based on the requirements of the transmission path. This makes it easy to comply with national regulations and to enable optimized frequency planning.

### Optimal data throughput under changing environmental conditions

PowerLink adapts the data rate to changes in ambient conditions, thus guaranteeing maximum data throughput. Thanks to PowerLink's integral prioritization function, which can be configured for each channel, routing of the most important channels is assured even in poor weather conditions.

#### Integrated versatile multiplexer (vMUX)

The vMUX is a statistical multiplexer with priority control. Asynchronous data channels can be transmitted in "guaranteed" or "best effort" modes, to guarantee optimal utilization of available transmission capacity. The priority control ensures reliable transmission of the most important asynchronous and synchronous data channels and voice channels even under poor transmission conditions. Naturally, the vMUX is integrated into PowerLink's management system, and – with its extended options for transmitting digital voice and data signals – perfectly equipped for the power line communication requirements of the future. For highest bandwidth efficiency, PowerLink offers integrated voice compression with different compression rates between 5.3 and 8 kbps. To prevent any impairment of voice quality, the compressed voice bands are routed transparently through transit stations without requiring additional decompression and compression.

#### Bridge to IP

This functionality is best suited for the migration from TDM to packet-switched networks. PowerLink offers electrical and optical Ethernet interfaces, including an integrated L2 switch, extending the IP network to remote substations with a bit rate up to 320 kbps.

### Integrated teleprotection system SWT 3000

For PowerLink 100, two independent SWT 3000 systems can be integrated. Each iSWT 3000 system can be used to transmit up to 4 commands in different operation modes. For maximum availability, an alternate transmission path via a digital communication link can be connected.

For PowerLink 50, one SWT 3000 system can be integrated. The iSWT 3000 system can be used to transmit up to 4 commands in different operation modes.

# 2.1.4 Transmission Mode

The signals are transmitted using the single side band method (amplitude modulation) with suppressed carrier:

SSB advantages:

- Large ranges due to maximum utilization of the transmitter energy for signal transmission.
- The smallest possible bandwidth and therefore optimum utilization of the spectrum space of the frequency range permitted for the transmission.

# 2.1.5 Frequency Range

The transmission is carried out in the frequency range from 24 kHz to 1000 kHz. The frequency positions of the HF send and receive band can be freely selected. The following frequency orders are possible:

Regular:

The VF band is only shifted linear in the frequency (lowest frequency remains the lowest frequency).

Inversed:

The VF band is shifted linear and turned around the center of the band (lowest frequency becomes the highest frequency).

The adjacent band operation is possible in both frequency orders.

## **Frequency Grid**

The frequency grid is adjustable to 2.5 kHz resp. 4 kHz. The frequency adjustment is possible in steps of the half grid (1.25 kHz resp. 2 kHz).

#### **HF-Bandwidth**

The HF bandwidth for each directional transmission is adjustable to 2, 2.5, 3.75, 4, 5, 7.5, 8, 12, 16, 24 kHz or 32 kHz. It is divided via Software Configuration into the sub channels for the services to be transmitted.

# 2.1.6 Automatic Gain Control (AGC)

When used as a transmission path, the attenuation of a high-voltage line is depending on the switching status and the weather conditions. The resultant variations in attenuation have to be off-set by the receiver with the AGC.

The deviation of the amplitude of the system pilot tone is used as the control variable.

# 2.1.7 Automatic Frequency Control (AFC)

Frequency deviations between the send and receive signal are compensated by the automatic frequency control in the receive path.

# 2.1.8 Automatic Channel Equalization (ACE)

Attenuation distortion can arise within a transmission channel due to the frequency response of the transmission line. To compensate for this distortion within a transmission channel, line equalizers are fitted. Line equalization is carried out automatically in the receive path.

With automatic channel equalization (ACE), the frequency characteristics of the transmission path are measured and compensated. For voice and data channels, equalization is carried out separately. The voice channel is equalized completely automatically during the speech-free time so that, even when the transmission characteristics of the high-voltage line change, there is always an optimum transmission channel available. Data-channel equalization is always initiated via the service PC.

Every restart (reset) of the device causes an automatic channel equalization of the voice and also of the data channel.

# 2.1.9 Automatic Crosstalk Canceller (AXC)

In the PLC line equipment, a part of the transmit signal is reflected to the input of the system. This is disturbing particularly in the adjacent band operation. To reduce this effect and to avoid overload in the receive path, the function AXC (Automatic Crosstalk Canceller) is integrated on the CSPi module. The service program PowerSys offers the following possibilities for executing the function AXC:

- Off
- Single (AXC executed at each startup of PowerLink)
- Alarm triggered/AXC Automatically Activated (AAA)
- Adaptive

For most common conditions with adjacent transmission bands the setting **adaptive AXC** is the best choice for crosstalk cancellation. It allows a continuously adaption of the AXC to the changing of the line conditions. However, the setting **alarm triggered AXC activation** allows an activation of AXC depending on the behavior of selected alarm sources. In quantifying different levels for an **automatic AXC activation**, digital resp. analog alarm sources of the PowerLink system can be defined.

Refer to Chapter 3.7.3 AXC Automatically Activated for details.

# 2.1.10 Parameterization

The service program PowerSys enables all settings in the PowerLink system to be made such as:

- Defining operating frequencies and bandwidth
- Services to be transmitted
- Channel equalization
- Tx and Rx level adjustment
- Alarm thresholds

# 2.1.11 VF Interfaces

## 2.1.11.1 VF Interfaces for Speech Channels

Depending on the communication equipment the following modules are available for the speech transmission:

- VFM Voice Frequency E&M
- VFS Voice Frequency Subscriber
- VFO Voice Frequency Office

The modules are different in the realization of port 1 (for the service F2). Additionally port 2 from each module provides an E&M speech interface. Also the ports 3 and 4 on the modules are identical. (see also 2.2.4.1 Interface Module VFx

### 2.1.11.2 Compander

Voice channels (F2) can be equipped with companders for improving the signal-to-noise ratio. The compander, consisting of a compressor on the transmission side and expander on the receive side, increases the separation between the noise level and the received speech level. In no-speech periods, it almost completely suppresses the noise level.

If transmission sections are connected in series, companders may only be inserted at the beginning and end of the total route. Companders in nodal switching centers are switched on and off by the automatic exchange. In the PowerLink, the compander function is also implemented in the form of an SW module of the signal processors and, depending on the application, can be switched on or off continuously or can be controlled from the exchange via control wires.

#### 2.1.11.3 VF Interfaces for Data Channels

The ports 2 up to 4 of the VFM, VFS resp. VFO modules can be used for connecting a modem. In the VFx slot position 1, max. 3 data interfaces are available and in the slot position 2, 2 data channels can be connected.

# 2.1.11.4 VF Interface for External Protection

The ports 3 and 4 of the VFM, VFS resp. VFO modules are designed for connecting an external protection signaling equipment. In the VFx slot position 1, max. 2 protection signaling interfaces are available and in the slot position 2, 1 protection signaling device can be connected. The possible operating modes with the PowerLink system are single purpose, multi purpose resp. alternate multi purpose.

# 2.1.12 dPLC with the Data Pump Function

# 2.1.12.1 X.21 Interface

Additional to the analog interfaces digital interfaces according ITU-T X.21 are available in the PowerLink system, which allow the transparent transmission of information up to 320 Kbps (in a 32-kHz channel) via the Data Pump. This results in an extension of the operating possibilities such as:

- Increase of the transmission capacity
- Optimal use of the available frequency band
- Transmission of fast data channels
- Access to digital broadband networks
- Integral part of digital communication networks
- Back up system to digital networks
- Cross linking of digital voice communications systems with ISDN connection S0 (in combination with external multiplexer)

### 2.1.12.2 G703.1 Interface

In addition, an ITU-T G703.1 interface is part of the PowerLink 100. G703.1 is an alternative to the X.21-DP interface.

For PowerLink 100, the interface also allows the transparent serial synchronous data transmission with 64 Kbps (in an 8-kHz channel).

### 2.1.12.3 10/100BASE-T Ethernet Interface

PowerLink also offers 10/100BASE-T Ethernet interfaces, 2 electrically and 1 optical interface. 1 electrical interface is dedicated for the communication with the service PC that runs the program PowerSys.

They can be used for transmission of serial IP data up to 320 Kbps (in a 32-kHz channel) via the high voltage line ("remote bridging"). The IEC 60870-5-104 protocol is supported as well as the IEC 61850 protocol (except real-time applications).

The embedded IP controller enables a layer 2 switching functionality according IEEE 802.3 between the LAN ports including the PLC transmission line.

Multiplexed Ethernet and vMUX data (voice, X.21, RS232) can be transmitted via PowerLink.

# 2.1.13 RS232 Interface

#### 2.1.13.1 Overview

In the PowerLink system, 8 RS232 interfaces are existing. They can be transmitted via an internal multiplexer and the service Data Pump or via integrated iFSK channels (max. 4) and the service data (F3). The following bitrates are possible:

- 50 bps up to 2400 bps when transmitting via the iFSK channels
- 1.2 Kbps up to 19.2 Kbps when transmitting via the internal multiplexer iMUX resp.
   1.2 Kbps up to 115.2 Kbps via vMUX and the service Data Pump

#### 2.1.13.2 Integrated FSK-Channels (iFSK)

Transparent data transmission is possible via the integrated FSK (iFSK) channels. For the iFSK channels, a frequency band in the range from 300 Hz up to max. 3840 Hz has to be defined.

The frequency deviation as well as the channel level results from the adjusted bit rate and is calculated by the system. The system makes sure, that the channels do not overlap and the grid distance is observed. The transmit levels for the different systems are determined automatically from the PowerLink equipment and

adjusted accordingly.

#### 2.1.13.3 Connection of Local RTU in Polling Mode with Integrated Splitter

The RS232-1A up to -4A resp. RS232-1B up to -4B interfaces of the PowerLink system provide an **RS232** splitter.

The RS232 splitter is used in the polling mode of RTU (Remote Terminal Unit) via integrated FSK channels resp. iMUX and integrated Data Pump of the PowerLink equipment to connect a requested RTU in the direction to the telecontrol center.

All RTUs assigned to the same group will receive the polling request from the control center. If the local RTU is addressed, the RTS (Request To Send) signal will switch the transmit data line (TxD) to the local RTU.

# 2.1.13.4 iMUX

The iMUX is an integrated statistical multiplexer with a priority management function. It allows asynchronous data transmission from up to 8 data channels with 1.2 Kbps up to 19.2 Kbps.

The statistical multiplexer functionality allows to assign an overall higher bit rate to the ports than the aggregate bit stream can handle. The priority management function assigns "guaranteed bit rates" to ports 1 through 4 (for example 4 x 19.2 Kbps) and "best effort" to ports 5 through 8 (for example, 4 x 19.2 Kbps). Channels with guaranteed bit rates will always be transmitted. "Best effort" channels will be transmitted if transmission capacity is available (1 or more ports from 1 to 4 is/are in an idle state).

# 2.1.13.5 vMUX

The vMUX is an integrated versatile multiplexer in the PowerLink. It makes it possible for PowerLink to compress speech, process data services with 1.2 Kbps to 115.2 Kbps, multiplex speech and different data services and transmit them via PLC. The integration of theses capabilities in PowerLink renders external multiplexers obsolete.

# 2.1.14 Transmit Power

For the PowerLink equipment, transmit amplifiers with 50 W and 100 W peak power ratings are available. All transmit amplifiers have a built-in transmitter supervisory. An automatic gain control adapts the transmit power to the changing impedance of the high voltage line. This makes an optimal utilization of the transmit power with less distortion possible.

# 2.1.15 Alarms

# 2.1.15.1 Alarm Outputs of the ALR Module

In PowerLink 100, the alarms are distributed via up to 2 alarm modules (ALR) with 3 relay outputs respectively. Therefore, up to 6 alarm outputs are available.

In PowerLink 50, the alarms are distributed via one alarm module (ALR) with 3 relay outputs.

Alarms can be arbitrary allocated to the outputs of the ALR modules with the service program PowerSys. The following alarms are available in the PowerLink System:

- GENALR (General alarm)
- TXALR (Transmitter alarm)
- RXALR (Receiver alarm)
- SNALR (Signal to Noise alarm)
- NUALR (Non-urgent alarm)
- REMALR (Alarm in the remote terminal)
- F6SV-Service1 up to -Service4 (F6 supervision alarm for service 1 up to 4 depending which service is used for protection signaling in mode AMP).
- DPALR Data Pump alarm. Activated when the secondary transmission rate is used. (Only in case of dynamic Data Pump).
- FSK1ALR up to FSK4ALR Alarm from the integrated FSK channels 1 up to 4
- RXALR-iSWT-1 / -2 (output of the iSWT Rx alarm, unblocking impulse, or impulse limitation alarm; depending on the alarm configuration of the iSWT)

|               | ALR1-1 | ALR1-2 | ALR1-3 | ALR2-1      | ALR2-2       | ALR2-3       |   |
|---------------|--------|--------|--------|-------------|--------------|--------------|---|
| GENALR        |        |        |        |             |              |              |   |
| TXALR         |        |        |        |             |              |              |   |
| RXALR         |        |        |        |             |              |              |   |
| SNALR         |        |        |        |             |              |              |   |
| NUALR         |        |        |        |             | $\checkmark$ |              |   |
| REMALR        |        |        |        |             |              | $\checkmark$ |   |
| F6SV-Service1 |        |        |        |             |              |              |   |
| F6SV-Service2 |        |        |        |             |              |              |   |
| F6SV-Service3 |        |        |        |             |              |              |   |
| F6SV-Service4 |        |        |        |             |              |              |   |
| DPALR         |        |        |        |             |              |              |   |
| FSK1ALR       |        |        |        |             |              |              |   |
| FSK2ALR       |        |        |        |             |              |              |   |
| FSK3ALR       |        |        |        |             |              |              |   |
| FSK4ALR       |        |        |        |             |              |              |   |
| RXALR-iSWT-1  |        |        |        |             |              |              |   |
| RXALR-iSWT-2  |        |        |        |             |              |              |   |
| Alarm delay   |        |        |        |             |              |              |   |
|               |        |        |        | Alarm delay |              |              | 5 |

Figure 2-3 Example of an alarm configuration with 2 ALR modules

ALR1-1 up to ALR1-3 = ALR module 1 alarm output 1 up to 3

ALR2-1 up to ALR2-3 = ALR module 2 alarm output 1 up to 3

The output ALR1-3 can be allocated to the output of the RXALR from the iSWT1. The output ALR2-3 can be allocated to the output of the RXALR from the iSWT2. In this case **no additional alarm allocation** to these outputs is possible. Additional a common relay activation time delay (effective for all relays) can be adjusted in the range from 1 up to 15 seconds.

# 2.1.15.2 Binary Inputs of the ALR Module

It provides 3 alarm relays, 2 binary inputs as well as indication LEDs.

The DC input voltage for each binary input is adjustable to 24 V, 48 V/60 V, 110 V resp. 250 V. The binary input 1 can be used for the time synchronization of the PowerLink system clock and the iSWT. Either an external sync pulse is connected or the input is alternatively configurable as an input for IRIG-B signals. The ALR module provides an LED for visual indication of the state of each binary input and of each alarm output. The LEDs are visible after removal of the front cover. For more details refer to Chapter *Commissioning*. The input 2 is provided for future use.

# 2.1.16 Service Telephone (STEL)

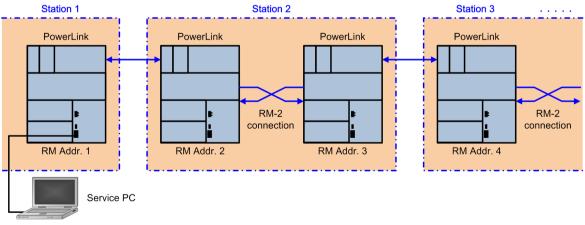
For commissioning and maintenance purposes each PowerLink system which is parameterized for voice transmission can be equipped with a service telephone. The transmission is carried out via the service F2 or alternatively to the service Data Pump. When operating the STEL the corresponding service is interrupted. For voice input and output, a headset is used. The operation of the service telephone is controlled with the "STEL-button". The STEL operation mode is displayed additionally with a LED.

# 2.1.17 Remote Access

# 2.1.17.1 Overview

The TCP/IP connection via Intranet as well as a optional remote access server (RAS) connection serves the complete system functionality administration for remte PowerLink devices identical to local on-site operation. Standard TCP/IP network protocols are used for easy access to each PowerLink from anywhere within a company Intranet. The system can interface with your own network security systems and firewalls, providing you with just the right security level your company requires.

# 2.1.17.2 Remote Monitoring (RM)


In the event that no Intranet or modems are available, remote terminals can be monitored or configured using the in-band RM channel. With the optional service "Remote Monitoring" (RM), data can be transmitted between the devices of one or more PowerLink routes. The RM function enables the user to have access via a serial interface with the PowerSys service program to the following function:

- Query of the device data (configuration, parameter, status) of the remote device
- Temporary adjustments (for example test loops)
- Producing a reset

In PowerLink 100, via an additional interface (RM-2) up to 5 transmission routes can be coupled. It is possible to mix PowerLink transmission links with SWT 3000 links in arbitrary sequence.

In PowerLink 50, the RM-2 interface is not available.

When using transmission links with SWT 3000 devices the correct baud rate (9600) must be adjusted.



[dw\_exroco\_011214, 1, en\_L

Figure 2-4 Example of a route coupling with the RM function - PowerLink 100

- OHL Overhead line
- RM-2 Service interface backplane

## 2.1.17.3 Remote Maintenance

Changing of the configuration and parameter (Remote Maintenance), except HF and System Configuration, in the remote device is possible with this service but the **configuration** via the in band RM-channel has to be **enabled** in the corresponding device

#### 2.1.17.4 Remote Access Interface RM-2 for PowerLink 100

Via the service interface remote access (RM-2) it is possible to connect the PowerLink to a remote access server (RAS). This allows users to gain access to the system from a remote location.



The modems are connected via remote access servers (RAS) that also control the dial up or termination of the connections.

[dw\_erawpl\_011214, 1, en\_US

Figure 2-5 Example for the remote access to the PowerLink

The user has access to the PowerLink systems in the stations A and B via the intranet and the RAS. In this case, a corresponding TCP/IP address has to be entered into the service program PowerSys. Access is also possible to the PowerLink in station C when an RM connection between stations B and C is parameterized. The bit rate between RAS and PowerLink RM-2 is 19.2 Kbps. In this case, RM-2 has to be configured as "Slave".

#### 2.1.17.5 SNMP

The module CSPi includes an SNMP (v2/3) functionality. This feature enables the user for instance:

- Working with a central NMS (Network Management System) via TCP/IP
- Spontaneous alarm indication (traps)
- Remote access to PowerLink (without additional hardware)

# 2.1.18 Event Recorder

A non volatile CSPi event recorder is part of PowerLink. The events are marked with a date and time information. By using the service program PowerSys the content of the event recorder can be displayed, saved as file and printed.

# 2.1.19 Real-Time Clock (RTC)

The integrated real-time clock (RTC) in PowerLink delivers the time information for the CSPi event recorder. The RTC can be synchronized by external clocks. If PowerLink is equipped with iSWT which also includes an event recorder and an RTC, all RTC are synchronized by the same external signal.

Alternative, if PowerLink should work without external time synchronization the RTC from the CSPi can generate a synchronization impulse for the iSWT RTC to avoid different times inside PowerLink.

# 2.1.20 Cyber Security

# 2.1.20.1 Overview

Cyber security is designed to protect PowerLink devices against common IT security threats and to minimize the impact of these threats on system operations. If PowerLink devices are under network attack, no device reset and telecommunication interruption should occur. For PowerLink, the reset of CSPi controller and IP controller is decoupled. Therefore, a possible manipulation of the network configuration via the CSPi web page by a cyber attack will only cause an IP controller reset and the PowerLink device will not restart. *Table 2-1* shows the communication protocols of PowerLink.

| Service                                             | Layer 4<br>Protocol | Layer 7<br>Protocol                   | Client                | Client Port | Server                | Server Port |
|-----------------------------------------------------|---------------------|---------------------------------------|-----------------------|-------------|-----------------------|-------------|
| Web Server                                          | ТСР                 | HTTP                                  | Web browser           | >1024       | PowerLink             | 80          |
| Web Server with SSL<br>Encryption                   | TCP/TLS             | HTTPS                                 | Web browser           | >1024       | PowerLink             | 443         |
| Time Synchroniza-<br>tion                           | UDP                 | NTP                                   | PowerLink             | >1024       | NTP Server            | 123         |
| DHCP Client                                         | UDP                 | DHCP                                  | PowerLink             | 68          | DHCP Server           | 67          |
| DHCP Server                                         | UDP                 | DHCP                                  | DHCP client           | 68          | PowerLink             | 67          |
| SNMP                                                | UDP                 | SNMP                                  | NMS                   | >1024       | PowerLink             | 161         |
| SNMP Inform<br>Acknowledge                          | UDP                 | SNMP                                  | SNMP Trap<br>Receiver | 162         | PowerLink             | >1024       |
| SNMP Trap/Inform                                    | UDP                 | SNMP                                  | PowerLink             | >1024       | SNMP Trap<br>Receiver | 162         |
| PowerLink Configu-<br>ration                        | ТСР                 | PowerSys<br>Protocol<br>(Proprietary) | PowerSys              | >1024       | PowerLink             | 10001       |
| PowerLink Configu-<br>ration with SSL<br>Encryption | TCP/TLS             | PowerSys<br>Protocol<br>(Proprietary) | PowerSys              | >1024       | PowerLink             | 10001       |
| PowerLink Measure-<br>ment                          | ТСР                 | PowerSys<br>Protocol<br>(Proprietary) | PowerSys              | >1024       | PowerLink             | 10002       |

 Table 2-1
 List of Communication Protocols of PowerLink Service Interface

Supported secure network communication protocols for PowerLink devices:

• SNMPv3 protocol:

Simple Network Management Protocol Version 3 (SNMPv3) addresses the cryptographic security by adding authentication service (MD5 or SHA-1) and privacy service (DES). The entire SNMP messages are encrypted.

For details on SNMPv3 features, refer to the related chapters in the Equipment Manuals or in the Application Notes.

HTTPS protocol:

Hypertext Transfer Protocol Secure (HTTPS) is a communication protocol for a secure communication between Web browser and Web server. The HTTP protocol is running on top of standard Transport Layer Security (TLS) protocol or predecessor Secure Sockets Layer (SSL). The entire HTTP messages are encrypted.

• PowerSys connection over SSL protocol: PowerSys TCP/IP connection is running on top of TLS/SSL protocol. The entire device configuration parameters are encrypted including sensitive data (for example, Password).

The supported SSL cipher suite is listed in *Table 2-2*:

| Table 2-2 | SSL Version and Cipher Suite |
|-----------|------------------------------|
|-----------|------------------------------|

| SSL Feature              | PowerLink   |
|--------------------------|-------------|
| Version                  | SSLv3/TLSv1 |
| Public Key Cryptography  | RSA         |
| Symmetric Cipher         | 3DES        |
| Message Digest Algorithm | SHA         |

### 2.1.20.2 Certification

Each device creates a self-signed certificate which has to be trusted on all clients used to access this device. The IP addresses of both service port and user port are part of this certificate. Therefore, create the certificate once again after the IP address is changed. Otherwise, a certificate warning message is shown with an IP address mismatch in the Web browser.

| Create Certificate |  |
|--------------------|--|
|                    |  |

creatc-080513-01.tif, 1, en\_US]

Figure 2-6 Parameter: Create Certificate

The certificate creation is done via the device web page: **PowerLink > Service Interface Settings**. After having activated the settings, the certificate is created and stored into flash. The system is restarted automatically.



# NOTE

If HTTPS is enabled and no valid certificate is created before, a default certificate will be created for PowerLink after the system startup.

# 2.1.20.3 HTTPS Connection

HTTPS connection is configured in PowerSys of PowerLink > Configuration > Ethernet > IP (service port).

#### [schttpsc-080513-01.tif, 1, en\_U

Figure 2-7 Parameter: HTTP Connection

| Disabled | HTTP and HTTPS are disabled                                                  |
|----------|------------------------------------------------------------------------------|
| HTTP     | HTTP is enabled (default option).                                            |
|          | You can access the web page via HTTP protocol (e.g. http://192.168.20.200)   |
| HTTPS    | HTTPS is enabled.                                                            |
|          | You can access the web page via HTTPS protocol (e.g. https://192.168.20.200) |

When accessing the device web page using an HTTPS protocol for the first time, an error message occurs mentioning that the certificate is not trusted. In order to enable the trust, you have to install the certificate in **Trusted Root Certification Authorities Store**. Continue to this website as shown in *Figure 2-8*.

2.1 System Description

| Certificate Error: Navigation Blocked - Windows Internet Explorer                                                                                                                                 |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                   | <b>P</b> •     |
| File Edit View Favorites Tools Help                                                                                                                                                               |                |
| 🚖 Favorites 🌈 Certificate Error: Navigation Blocked                                                                                                                                               |                |
| There is a problem with this website's security certificate.                                                                                                                                      |                |
| The security certificate presented by this website was not issued by a trusted certificate aut<br>The security certificate presented by this website was issued for a different website's address |                |
| Security certificate problems may indicate an attempt to fool you or intercept any data you server.                                                                                               | ı send to the  |
| We recommend that you close this webpage and do not continue to this website.                                                                                                                     |                |
| Click here to close this webpage.                                                                                                                                                                 |                |
| Solution continue to this website (not recommended).                                                                                                                                              |                |
| More information                                                                                                                                                                                  |                |
|                                                                                                                                                                                                   |                |
| 😜 Internet                                                                                                                                                                                        | 🖓 🔻 🄍 100% 🔻 🛒 |

[scerrorm-080513-01.tif, 1, en\_US

Figure 2-8 Certficate Error Message

The device homepage can now be opened.

Open the certificate window by clicking on the certificate error message in the address bar of the Web browser (see *Figure 2-9*).

| C https://192.168.20.200/ - Windows Internet Explorer |                       |             |
|-------------------------------------------------------|-----------------------|-------------|
|                                                       | 💌 😵 Certificate Error | <b>*7</b> × |

[scuntrus-080513-01.tif, 1, en\_US

Figure 2-9 Untrusted Certificate

You can view the detailed certificate information in the opened certificate window (see *Figure 2-10*).

By clicking on the **Install Certificate** button and afterwards on the **OK** button in the certificate import wizard, the certificate will be installed in the **Trusted Root Certification Authorities Store** automatically.

You can find the installed certificate under IE browser > Internet Options > Content > Certificates > Trusted Root Certification Authorities.

| Certificate ? 🔀                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Details Certification Path                                                                                                                                       |
| Certificate Information<br>This CA Root certificate is not trusted. To enable trust,<br>install this certificate in the Trusted Root Certification<br>Authorities store. |
| Issued to: 192.168.20.200                                                                                                                                                |
| Issued by: 192.168.20.200                                                                                                                                                |
| <b>Valid from 3/11/2013 to 1/1/10000</b>                                                                                                                                 |
| Install Certificate] Issuer Statement                                                                                                                                    |
| ОК                                                                                                                                                                       |

sccertwi-080513-01.tif, 1, en\_US]

Figure 2-10 Certificate Window

After the certification has been successfully installed, no error message occurs again when reopening the device homepage again (see *Figure 2-11*).



Figure 2-11 Trusted Certificate

# 2.1.20.4 PowerSys connection over SSL

The PowerSys SSL connection is configured in Configuration > Ethernet > IP (service port).

| PowerSys TCP/IP connection | ~ | SSL encryption |
|----------------------------|---|----------------|
|                            |   |                |

Figure 2-12 Parameter: PowerSys TCP/IP Connection

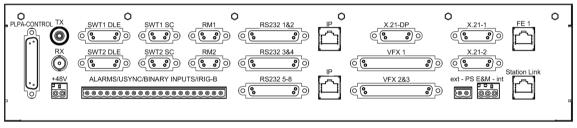
Checked SSL Encryption is enabled for PowerSys TCP/IP connection Unchecked SSL Encryption is not enabled for PowerSys TCP/IP connection

If the certificate has not been installed before, PowerSys will open a certificate window automatically. After you finish the installation of the certificate on your PC, connect again PowerSys to the device. The exchanged data message between PowerSys and device is encrypted with SSL.

# 2.2 Functional Description

# 2.2.1 PowerLink 100 - Carrier Frequency Section CFS-2

# 2.2.1.1 Mechanical Construction


PowerLink 100 system consist of 2 module frames, the carrier-frequency section (CFS-2) and the line equipment section (PLPA).

For the PLPA section, a distinction is made between 50 W and 100 W transmit power.

The terminals are built to the proven ES 902-C design pattern. The dimensions of these module frames correspond to the 19" mounting system in accordance with DIN 41494 and can be installed directly into 19" swing frame cubicles or mounting frames without any additional fixing brackets.

The modules of a module frame are electrically connected to each other via a backplane with the appropriate sockets and plug connectors. The module frames are connected to each other by plug-in connectors and cables with integral connectors.

The ports for the external interfaces are mainly centralized on a connector panel. It is connected via the backplane with the CFS-2 part and located between the PLPA and the CFS-2. For VF and telephone channels Sub-D 37 pin sockets, for RS232 channels Sub-D 25 pin sockets, for fractional E1, for 10/100 Base TCP/IP and for G703.1 RJ45 sockets are existing, which are accessible from the front.



[dwconpls-220813-01.tif, 1, en\_US]

Figure 2-13 PowerLink connector panel

# 2.2.1.2 CFS-2 Part

The module frame for the carrier frequency section (CFS-2) consists of a 19" module rack with a height of 6-tier. It contains, depending on the configuration:

- the power supply (PSCF2)
- the central signal processing module (CSPi)
- max. 2 alarm modules (ALR)
- up to 2 integrated SWT 3000 (PU, IFC)
- max. 3 VF interface modules (VFx)
- 1 vMUX module

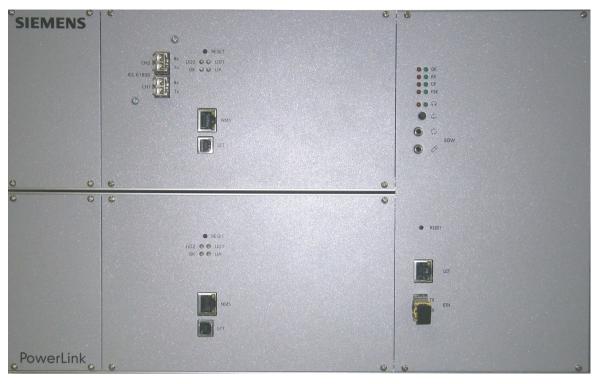



Figure 2-14 The CFS-2 module frame

At the right-hand part of the frame module slots are located for the mounting of the modules CSPi, VFx and vMUX in double-height euro card format. The modules have a common front cover with a cut-out for the service interface, the optical TCP/IP interface and the displays resp. operating elements of the CSPi module. Alongside to the left the slot positions, the power supply PSCFS and the 2 alarm modules are located. The mounting positions for the integrated SWT 3000 can be equipped with the processing unit PU4 and 2 interface modules IFC.

# 2.2.1.3 Functions of the CSPi

The CSPi module is the central component of the PowerLink and contains all functions except the analog VF inputs and outputs, the integrated protection signaling, and the PLC line equipment PLE. The module can be subdivided into the following functions:

• Digital signal processing

For the function modulation, Data Pump and transmitting of FSK and rFSK data channels.

• Control unit

With the micro controller, the memory, the RTC (real-time clock) and the nonvolatile event memory.

• Data interface

Which can be programmed either as synchronous multiplexer (SMUX) for transmission via the X.21 interface, or iMUX for transmission of up to 8 RS232 asynchronous data interfaces, the G703.1, or the 10/100Base TCP/IP interface.

- High frequency analog Containing the HF output resp. input part.
- Input part Including attenuator and automatic gain control (AGC)
- Ethernet interface IP controller for service PC connection, Ethernet bridging and SNMP

# 2.2.2 PowerLink 50 - Carrier Frequency Section

# 2.2.2.1 Mechanical Construction

The PowerLink 50 system consist of the carrier-frequency section (CFS-2) and the line equipment section (PLPA). The terminals are built to the proven ES 902-C design pattern. The dimensions of these module frames correspond to the 19" mounting system in accordance with DIN 41494 and can be installed directly into 19" swing frame cubicles or mounting frames without any additional fixing brackets.

The Ports for the external interfaces are available on the front of the device and on the backplane.

The following sockets are accessible from the front

- 2 Sockets for IEC 61850 interface
- Service interface
- TCP/IP interface

The operating elements of the CSPi module are located on the front of the device.



Figure 2-15 PowerLink 50 - Front

The following sockets are accessible from the rear side of the device:

- Sub-D 25 pin sockets for VF and telephone channels
- Sub-D 25 pin sockets for RS232 channels
- Sockets for fractional E1
- Sockets for 10/100 Base TCP/IP
- RF interface
- TX RX interface
- HF test jack

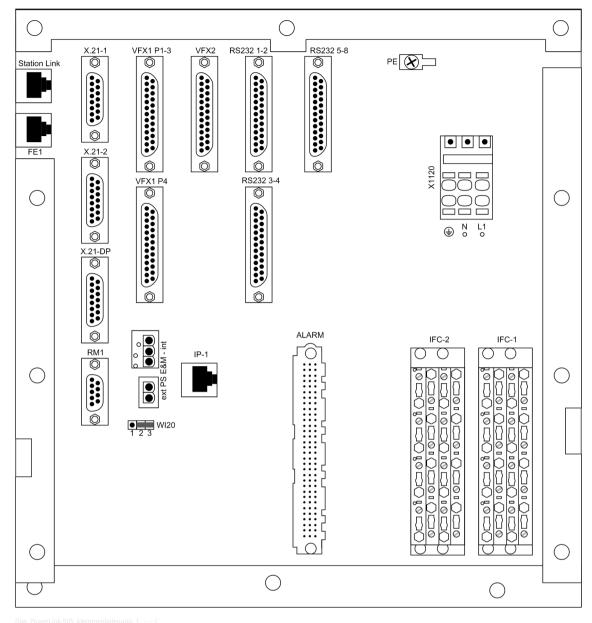



Figure 2-16 PowerLink 50 - Connectors

# 2.2.2.2 Functions of the CSPi

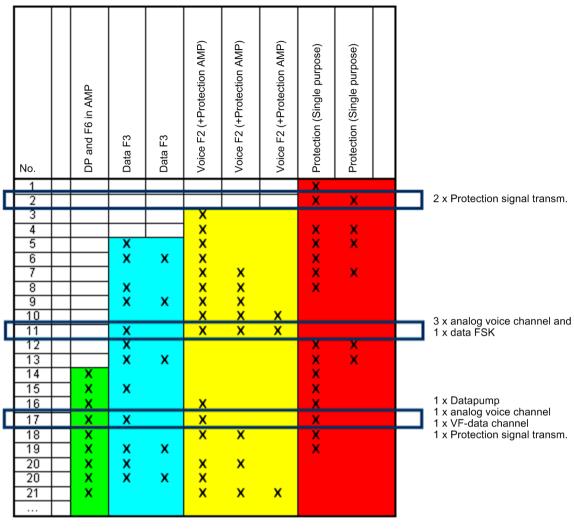
The CSPi module is the central component of the PowerLink and contains all functions except the analog VF inputs and outputs, the integrated protection signaling, and the PLC line equipment PLE. The module can be subdivided into the following functions:

- Digital signal processing For the function modulation, Data Pump and transmitting of FSK and rFSK data channels.
- Control unit With the micro controller, the memory, the RTC (real-time clock) and the nonvolatile event memory.
- Data interface

Which can be programmed either as synchronous multiplexer (SMUX) for transmission via the X.21 interface, or iMUX for transmission of up to 8 RS232 asynchronous data interfaces or the 10/100Base TCP/IP interface.

- High frequency analog Containing the HF output resp. input part.
- Input part Including attenuator and automatic gain control (AGC)
- Ethernet interface IP controller for service PC connection, Ethernet bridging and SNMP

# 2.2.3 Definition of the Transmission Capacity


# 2.2.3.1 General Information

With PowerLink, you can plan beyond the limitations imposed by single- or double-channel terminals. Power-Link gives you all the flexibility you need to configure your various services within the available bandwidth. The transmission capacity for the different services like voice, data, and protection signal transmission is shown in the following table.

# Table 2-3 Transmission capacity of the PowerLink system

| Service                                                                                       | Max.<br>Number |
|-----------------------------------------------------------------------------------------------|----------------|
| Analog voice channel with / without protection signaling in alternate multi purpose operation | 3              |
| Data transmission bands                                                                       | 2              |
| Data Pump with / without protection signaling in alternate multi purpose operation            | 1              |
| Protection signaling in single purpose operation                                              | 2              |
| Simultaneous transmission of different services                                               | 4              |

#### 2.2.3.2 Examples



w\_tcefts-021214, 1, en\_US]

Figure 2-17 Combination examples for the transmission of services in the PowerLink system

# NOTE

The services must fit into the available HF bandwidth observing a defined gap between the single services and the transmission band limits. An accurate power calculation is required.

# 2.2.4 Analog Interfaces

# 2.2.4.1 Interface Module VFx

The analog interface modules VFx are used for the connection of analog signals in the frequency range from 300 Hz up to max. 3840 Hz to the PowerLink.

The following communication equipment can be connected via the VFx to the PowerLink:

- 2-/4-wire PABX systems with E&M signaling via separate links (service F2)
- 2-wire PABX systems with signaling via the voice link FXO (foreign-exchange office) (service F2)
- 2-wire subscriber terminal FXS (service F2)

- 4-wire data modem (service F3)
- 4-wire protection signal transmission equipment (service F6)

Each VFx module has 4 analog ports. Depending on the type of module and port, one of the above mentioned equipment can be connected.

For PowerLink 100, up to 3 VFx modules for max. 8 analog ports can be equipped.

For PowerLink 50, up to 2 VFx modules for max. 7 analog ports can be equipped.

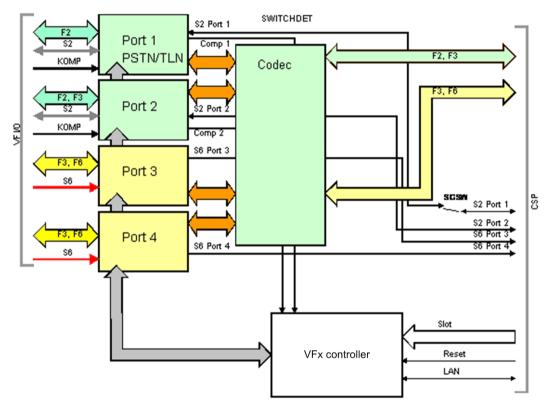
The modules are different in the realization of the port 1. The ports 2 to 4 are identical on each module.

The figure below shows the segmentation of the max. 8 ports to the VFx modules in the mounting places 1 to 3 of PowerLink 100. From the module in place 2, only the ports 1 to 3 and in mounting place 3 only port 1 can be used.

| <u>VFx-Slot 1</u> | <u>VFx-Slot 2</u> | <u>VFx-Slot 3</u> |
|-------------------|-------------------|-------------------|
| Port1 F2          | Port1 F2          | Port1 F2          |
| Port2 F2/F3       | Port2 F2/F3       |                   |
| Port3 F3/F6       | Port3 F3/F6       |                   |
| Port4 F3/F6       |                   |                   |
|                   |                   |                   |
|                   |                   |                   |

[scpoivfx-040111-02.tif, 1, e

Figure 2-18 Possible occupation of the inputs on the VFx modules - Example for PowerLink 100


| Slot 1-3 | Mounting place 1-3             |
|----------|--------------------------------|
| F2       | Voice                          |
| F3       | Data                           |
| F6       | Protection signals             |
| VFx      | VFM resp. VFS resp. VFO module |

#### Table 2-4VFx module types

| Module type | Port | Communication equipment                             |  |
|-------------|------|-----------------------------------------------------|--|
| VFM         | 1    | E&M 2-wire (F2); E&M 4-wire (F2); (4- wire data F3) |  |
|             | 2    | E&M 2-wire (F2); E&M 4- wire (F2); 4- wire data F3  |  |
|             | 3    | 4- wire data (F3); 4- wire protection (F6)          |  |
|             | 4    | 4- wire data (F3); 4- wire protection (F6)          |  |

| Module type            | Port                                                 | Communication equipment                            |  |
|------------------------|------------------------------------------------------|----------------------------------------------------|--|
| VFS                    | 1                                                    | 2-wire foreign-exchange station FXS (F2)           |  |
|                        | 2                                                    | E&M 2-wire (F2); E&M 4- wire (F2); 4- wire data F3 |  |
|                        | 3                                                    | 4- wire data (F3); 4- wire protection (F6)         |  |
| 4                      |                                                      | 4- wire data (F3); 4- wire protection (F6)         |  |
| VFO 1 2-wire foreign-e |                                                      | 2-wire foreign-exchange office FXO (F2)            |  |
|                        | 2 E&M 2-wire (F2); E&M 4- wire (F2); 4- wire data F3 |                                                    |  |
|                        | 3                                                    | 4- wire data (F3); 4- wire protection (F6)         |  |
|                        | 4                                                    | 4- wire data (F3); 4- wire protection (F6)         |  |

# 2.2.4.2 Block Diagram VFx



#### [dw\_bdovfx-021214, 1, en\_US]

# Figure 2-19 Block diagram of the VFx modules

| F2      | Voice                 |
|---------|-----------------------|
| F3      | Data                  |
| F6      | Protection signals    |
| S2      | Signaling voice       |
| S6      | Control wire F6       |
| Comp    | Compander             |
| Codec   | Coding / Decoding     |
| Commuté | Evaluation S2 signal  |
|         | VFS resp. VFO         |
| SIGSW   | S2 Signal switch over |

# 2.2.4.3 Input/Output

The assignment of the VFx modules input is carried out via the service program. After that the input- resp. output- level as well as the bandwidth of the VF band in the range from 300 Hz to 3600 Hz/3840 Hz in case of data transmission for each service can be defined.

| Service 1 | F2 E&M 🔻 🗌                | SERTEL                  | RM           |              |       |
|-----------|---------------------------|-------------------------|--------------|--------------|-------|
|           | I/O select                | Input level             | Output level |              |       |
|           | VFM-1/P1<br>2 wire switch | -3.5<br>• 4 wire switch | dB -3.5      | dB 0300-2040 |       |
|           | AMP                       |                         |              |              |       |
|           |                           |                         |              |              |       |
| 200 kF    | łz                        |                         | CF           |              | 208 k |
|           |                           |                         |              |              |       |

[sc\_service\_F2\_em, 1, -

Figure 2-20 Assignment of a VFM input for the voice transmission F2

# 2.2.5 Voice Transmission F2

### 2.2.5.1 Interface Modules

Depending on the communication equipment the following modules are available for the voice transmission:

| VFM | Voice Frequency E&M        |
|-----|----------------------------|
| VFS | Voice Frequency Subscriber |
| VFO | Voice Frequency Office     |

The modules are different in the realization of port 1 (for the service F2). The ports 2 to 4 on the modules are identical.

The max. number of analog voice channels per equipment is 3. The minimum required bandwidth for a voice channel is defined from 0.3 kHz up to 2.04 kHz. The upper limit is 3.6 kHz. It can be adjusted in steps of 120 Hz.

Each service F2 needs a pilot signal for transmitting the dialing information (S2). Each pilot requires a bandwidth of 120 Hz. The gap to the voice channel is also 120 Hz. Thus the bandwidth of a voice channel results in: Frequency range + gap + pilot bandwidth.

# 2.2.5.2 Voice Transmission Via vMUX

The vMUX offers 2 possibilities for transmitting voice channels via dPLC:

- Up to 5 compressed voice channels connected via VFx modules. In this case 3 VFx modules (VFx = VFM, VFS resp. VFO) are required.
- It is possible to transmit up to 8 voice channels from a 2 Mbps E1 frame of a digital telephone exchange. The exchange is connected via the FE1 interface on the PowerLink 50/100 connector panel.

# 2.2.6 Data Transmission F3

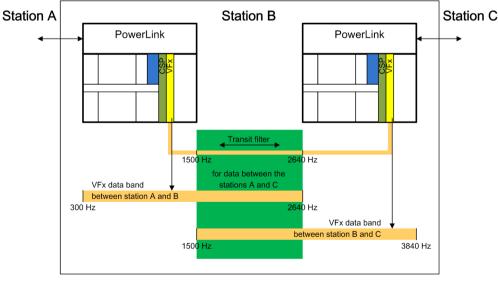
# 2.2.6.1 Data Transmission via Analog VFx Interfaces

The number of usable ports on the VFx modules for data transmission depends on the number of modules and the slot position. In slot position 1 three ports and in slot position 2, two ports are available. The ports 2 to 4 can be used on each VFx module for connecting analog data signals.

| Table 2-5 | Usable VFx ports for analog data signals |
|-----------|------------------------------------------|
|-----------|------------------------------------------|

| Port | VFM Module                | VFS Module                | VFO Module                |
|------|---------------------------|---------------------------|---------------------------|
| 1    | analog voice with E&M     | Subscriber                | 2 wire exchange           |
| 2    | analog voice or data      | analog voice or data      | analog voice or data      |
| 3    | analog data or protection | analog data or protection | analog data or protection |
| 4    | analog data or protection | analog data or protection | analog data or protection |

A VF bandwidth must be assigned to each port. The **lower start frequency** is 300 Hz and can be increased in steps of 60 Hz up to max. 3840 Hz. The following bandwidths are selectable:


| Table 2-6 | Selectable F3 | bandwidth |
|-----------|---------------|-----------|
|           | Sciectubicit  | Sanaviati |

| F3 Bandwidth in Hz |     |      |      |  |  |
|--------------------|-----|------|------|--|--|
| 120                | 600 | 1080 | 1560 |  |  |
| 240                | 720 | 1200 | 2340 |  |  |
| 360                | 840 | 1320 | 3300 |  |  |
| 480                | 960 | 1440 | 3540 |  |  |

The input and output level for each port have to be defined with the service program.

# **Transit Filter**

With through connection of data between 2 PowerLink devices in a substation, a transit filter can be created by the adjustment of different VF bandwidth for the F3 service like shown in the figure below.



[dw\_tfdt2l-021214, 1, en\_US

Figure 2-21 Transit filter for data transmission between 2 PLC links

The VF band for the data transmission between the station A and B is adjusted from 300 Hz up to 2640 Hz, and between the station B and C from 1500 Hz up to 3840 Hz. When connecting the VFx data ports between

the PowerLink devices in the station B a transit filter for data from 1500 Hz up to 2640 Hz between the stations A and C is established.

# 2.2.7 Data Transmission via Digital Interfaces

# 2.2.7.1 RS232 Interfaces

In the PowerLink system 8 RS232 interfaces are available. They can be transmitted via an internal multiplexer (iMUX) and the service Data Pump or via iFSK channels (max. 4) and the service data (F3). The following bitrates are possible:

- 50 bps up to 2400 bps when transmitting via the FSK channels
- 1.2 Kbps up to 19.2 Kbps when transmitting via the internal multiplexer iMUX and the Data Pump
- 1.2 Kbps up to 115.2 Kbps when transmitting in configuration with vMUX and the Data Pump

# 2.2.7.2 RS232 Splitter

The RS232-1A up to -4A resp. RS232-1B up to -4B interfaces of the PowerLink system provide an **RS232** splitter.

The splitter is used in the polling mode of RTU (remote terminal unit) via integrated FSK channels resp. iMUX and integrated Data Pump of the PowerLink equipment in order to connect a requested RTU in the direction to the telecontrol center. The principle is shown in the following figure:

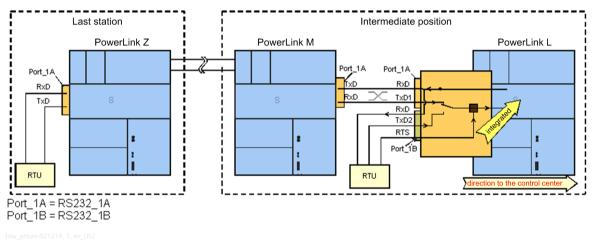


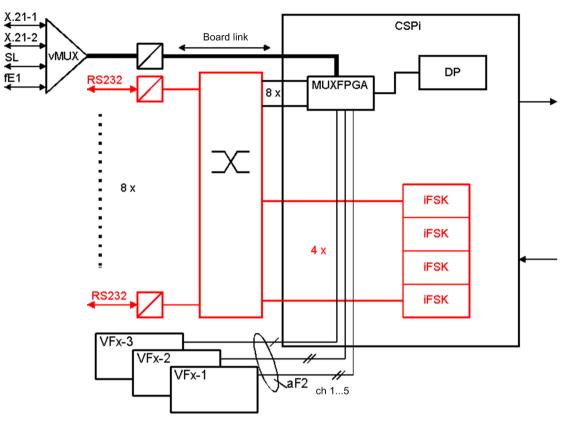

Figure 2-22 Polling mode of RTU with PowerLink systems. e.g. via RS232\_1

# Intermediate station:

The polling messages coming from the telecontrol center (TCC) are connected from receiver output of the Port\_1A from PowerLink L, to the transmitter input of the Port\_1A from the PowerLink M, and parallel to the stations **RTU which is connected to the Port\_1B**.

Response messages to the (TCC) from other RTUs are connected from the receiver output of the Port\_1A from PowerLink M to the transmitter input of the Port\_1A from PowerLink L.

A message addressed to the stations RTU is recognized with the corresponding station address. At first the **RTS** (request to sent) signal has to be activated in order to transmit the response messages to the TCC. This causes a switchover from **TxD1of the Port\_1A** to the **TxD2 of the Port\_1B**.


The RTU deactivates the own RTS signal after it has completed the response messages. This establishes the "normal" connection between the Port\_1A interfaces again and allows the through connection of the response messages from the other stations to the TCC.

# Last station:

In the last station (PowerLink Z) the RTU is direct connected to the Port\_1A interface because a switchover for transmission of response messages is not necessary.

## 2.2.7.3 Transparent Data Transmission via iFSK

In the PowerLink system up to 4 integrated FSK channels (iFSK) are available. They have to be located in 1 or 2 frequency bands. The bands are adjustable in the range from 300 Hz up to 3840 Hz. The connection to the iFSK channels is carried out via the interfaces RS232-1A up to RS232-4A resp. B on the PowerLink connector panel.



[dw\_tddifsk-021214, 1, en\_US]

Figure 2-23 Transparent data transmission via up to 4 iFSK channels

The required bandwidth for the iFSK channels results from the baud rate.

#### Table 2-7 Definition of the iFSK baud rates

| No. | System       | Nominal<br>Baud rate | max.<br>Baud rate | Grid<br>distance<br>Hz | Bandwidth Hz | FM de-<br>viation Hz | Nominalchannel<br>level dBr |
|-----|--------------|----------------------|-------------------|------------------------|--------------|----------------------|-----------------------------|
| 1   | FM 120 *)    | 50                   | 85                | 120                    | 100          | ± 30                 | -22.5                       |
| 2   | FM 240 *)    | 100                  | 170               | 240                    | 200          | ± 60                 | -19.5                       |
| 3   | FM 480 *)    | 200                  | 340               | 480                    | 400          | ± 120                | -16.5                       |
| 4   | 50 Bd NB     | 50                   | 60                | 90                     | 75           | ± 22.5               | -24.5                       |
| 5   | 100 Bd<br>NB | 100                  | 120               | 180                    | 150          | ± 45                 | -21.5                       |
| 6   | 200 Bd<br>NB | 200                  | 240               | 360                    | 300          | ± 90                 | -18.5                       |
| 7   | 600 Bd       | 600                  | 880               | 1140                   | 1000         | ± 200                | -13.5                       |
| 8   | 1200 Bd      | 1200                 | 1300              | 1710                   | 1440         | ± 400                | -10.5                       |
| 9   | 2400 Bd      | 2400                 | 2500              | 3400                   | 2720         | ± 800                | -7.5                        |

\*) The systems FM 120, FM 240 and FM 480 comply with the ITU-T requirements R35, R37, R38A and R38B concerning the transmission rate, bandwidth, transmit level, frequency deviation etc.

The center frequency of each iFSK channel is determined from the system. The frequency deviation as well as the channel level depends on the adjusted bit rate and is also calculated from the system. This makes sure, that the channels do not overlap and the grid distance is observed.

The send levels for the different systems are determined automatically from the PowerLink equipment and adjusted accordingly.

# 2.2.8 The Function Data Pump

# 2.2.8.1 Overview

The Data Pump function allows a fast and transparent data transmission up to max. 320 Kbps via power lines.

# 2.2.8.2 Modulation Method

For the modulation the multicarrier method is used. The information which has to be transmitted is divided in blocks (with approx. 700 bit). Then the information of 1 block is distributed to many single carriers. Each carrier is QAM modulated.

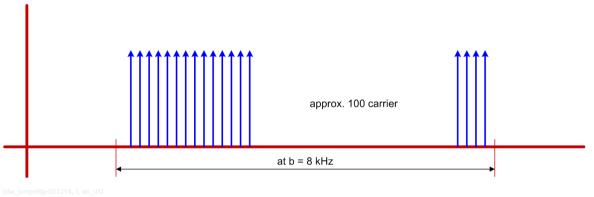



Figure 2-24 The modulation principle of the Data Pump

The following sync modes are available:

# Adapted

This is a connection between the 2 Data Pumps with the best adaptation to the transmission path. The latency (data throughput delay) of the Data Pump is for example 80 ms in case of 7.5-kHz bandwidth (see also chapter *technical data*) and the sync time in this case is approximately 10 s.

# Dynamic

In this sync mode a primary and a secondary bit rate can be adjusted. In normal case the Data Pump is working always with the "primary" bit rate. The secondary bit rate is used as fallback-bit rate for adverse weather conditions. The latency (data throughput delay) of the Data Pump is for example 80 ms in case of 7.5-kHz bandwidth (see also chapter *technical data*) and the sync time in this case is approximately 10 s. **The dynamic mode offers a higher availability than the adapted mode!** 

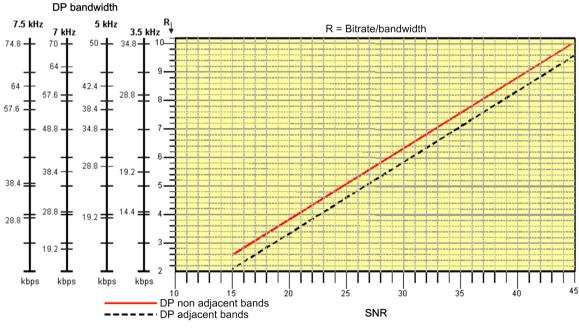
# 2.2.8.3 Data Pump Latency

The data transmission time of the Data Pump (latency) depends on the selected Data Pump bandwidth.

#### Table 2-8Data Pump latency

| Data Pump bandwidth                        | Data Pump latency |  |
|--------------------------------------------|-------------------|--|
| 31 500 Hz, 23 500 Hz, 15 500 Hz, 11 500 Hz | 40 ms             |  |
| 7500 Hz, 7200 Hz, 7000 Hz, 6500 Hz         | 80 ms             |  |
| 5500 Hz, 5000 Hz, 4700 Hz, 4500 Hz         | 120 ms            |  |
| 4000 Hz, 3700 Hz, 3500 Hz                  | 160 ms            |  |

## 2.2.8.4 The Information Density

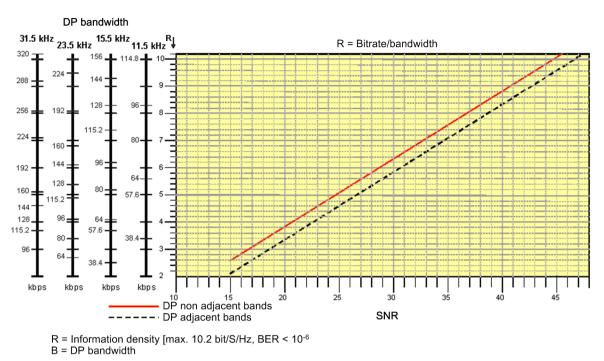

#### Unit of Measurement:

The performance of a data transmission via analog lines is measured with the information density, showing the bit rate via the bandwidth. The unit of measurement is bit/s/Hz. For PowerLink the highest possible information density is 10.2 bit/sec./Hz.

#### 2.2.8.5 Coherence Bit Rate – SNR

Between the max. attainable transmission rate and the signal-to-noise ratio for instance, an approximately linear connection exists. From the information density R (bit/s/Hz), multiplied by the used PLC bandwidth, the rate of the Data Pump in Bit/s results. The SNR depends on many factors of uncertainty such as line, weather etc..

For the DP bandwidths 5 kHz resp. 3.5 kHz and 7 kHz resp. 7.5 kHz the bit rate can be read off directly in the following diagram.




R = Information density [max. 10.2 bit/S/Hz, BER <  $10^{-6}$  B = DP bandwidth

[dw\_dpfldp-021214, 1, en\_US]

Figure 2-25 Derivation of the DP bit rate from the lower DP bandwidth and the information density

For the DP bandwidths 11.5 kHz, 15.5 kHz, 23.5 kHz, and 31.5 kHz the bit rate can be read off directly in the following diagram.



#### [dw\_dpfhdp-021214, 1, en\_U

Figure 2-26 Derivation of the DP bit rate from the higher DP bandwidth and the information density

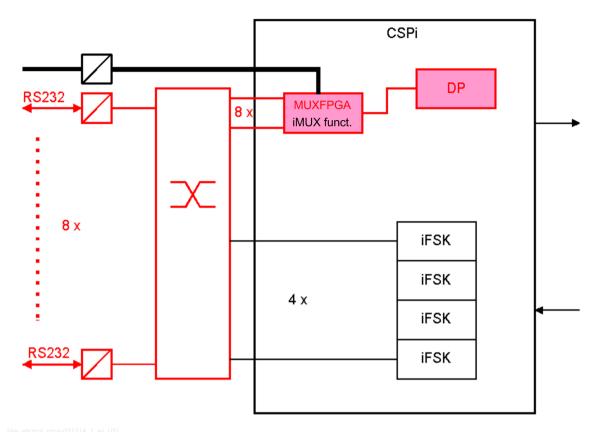
#### 2.2.8.6 Supervision of the Transmission Line

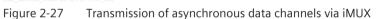
Each transmission error is recognized in the Data Pump as a block error. The block error rate is supervised continuously serving the criteria for restart with regard to:

- A number of continuous following errored blocks. This is recognized as loss of the transmission channel and a restart is executed. The adjustment is made in the menu <**DP**>/<**Alarm**> **Block error sequence**
- The increase of block error rate without attention of impulse noise. A restart is executed. The adjustment is made in the menu <**DP**>/<**Alarm**> **Block window size** and **Threshold**. The number of blocks which have to be supervised is adjusted with "Block window size" and the number of errored blocks per window with "Threshold". If the threshold is exceeded in 3 successive windows a restart is executed.

#### Example:

#### Block error sequence = 100


More than **100 blocks defective in sequence** (short disturbers) will cause a Restart. The duration of a block depends on the bandwidth of the DP (15 ms for 7.5 + 8 kHz; 22.5 ms for 5 kHz). A new synchronization is carried out after 100\* 15 ms (in case of 8-kHz bandwidth), that means after a disturbance from 1.5-s duration. 1.5 s is the maximum bypass time for a disturbance. Higher values for the block error sequence are not sensible. Normally the restart is already carried out due to the second criterion:


#### Block window size = 50 Threshold = 30

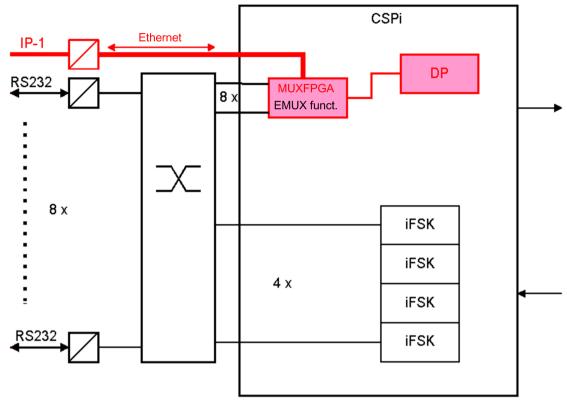
With this adjustment 50 blocks are permanent supervised. If more than 30 of the 50 blocks mentioned before are faulty in 3 successive windows in any sequence (ratio 90 : 150 = 0.6) a new start is carried out. The ratio between block error rate and bit error rate is about 100 : 1. The threshold for the new start corresponds to a bit error rate of 0.6 /  $100 = 6 * 10^{-3}$ .

#### 2.2.8.7 Asynchronous Data Transmission via iMUX

With the function Data Pump it is possible to transmit up to 8 asynchronous data channels (RS232-1 up to RS232-8) via the multiplexer iMUX which is integrated in the PowerLink.






The iMUX is a statistical multiplexer with 4 resp. 8 inputs and priority management. The ports RS232-1 up to 4 are always transmitted (the aggregated bit rate of the DP may not be exceeded). The bitrates assigned to the ports 5 to 8 will be transmitted, if the transmission capacity is available. Therefore these interfaces operate with handshake signals RTS/CTS.

Each channel can be adjusted to 1200, 2400, 4800, 9600 resp. 19 200 bps. The transmission capacity is up to 76.8 Kbps. The supported UART modes are:

7N1, 7N2, 7E1, 7E2, 7O1, 7O2, 8N1, 8N2, 8E1, 8E2, 8O1, 8O2 (data bits, parity, stop bits).

# 2.2.8.8 Asynchronous TCP/IP-DP Interface

The EMUX interface (IP-1) is used for connection to 10/100Base TCP/IP data. The value of the primary and the secondary transmission rate of the Ethernet only channel (EMUX) can be adjusted up to 320 Kbps. The transmission is carried out with the service Data Pump.



lw\_adtcml\_emux-021214, 1, en\_US]

Figure 2-28 Transmission of asynchronous TCP/IP data channels via EMUX

#### **Header Compression**

Enhancement with PowerSys ≥P3.5.131

The PowerLink device provides an Ethernet channel, which can enable a whole range of IP applications such as VoIP, remote maintenance, and centralized monitoring. But with limited resources, the number of VoIP channels is restricted.

**Header Compression** is the process of compressing excess protocol headers before transmitting them on a link and decompressing them to their original state on reception.

PowerLink supports RFC1144 and RFC 3095 header compression standards:

- RFC3095: **Robust Header Compression** (ROHC) is a highly robust and an efficient header compression scheme for RTP/UDP/IP, UDP/IP, and ESP/IP headers.
- RFC1144: Header compression for low-speed serial links

Generally, the VoIP (Voice over IP) payload of the IP packets has almost of the same size or even a smaller size than the header. Over the point-to-point connection, comprised of multiple hops, these protocol headers are important but over just one link. Under optimal conditions, on one side, a RTP/UDP/IP-header can be compressed from 40-bytes to approximatively 3-bytes, saving 37-bytes (see *Figure 2-29*) and providing more than 90 % savings in many cases in many cases more than 90 % savings. This compression makes also the saving of the bandwidth and the better use of the resource possible. On the other side, ROHC also provides other important benefits such as the reduction of packet losses and the improvement of the interactive response time.

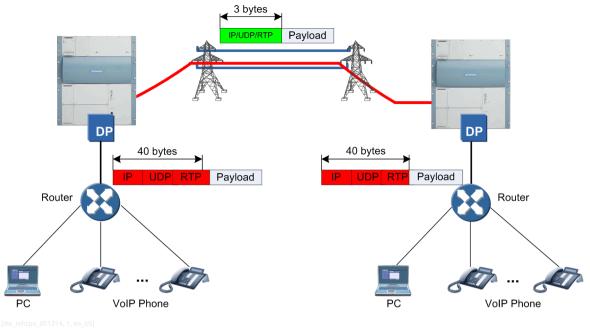
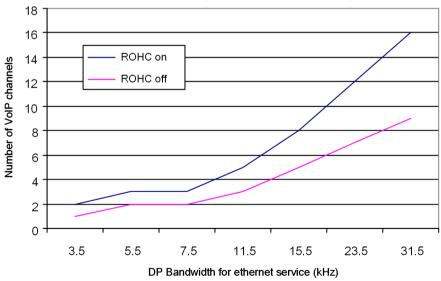
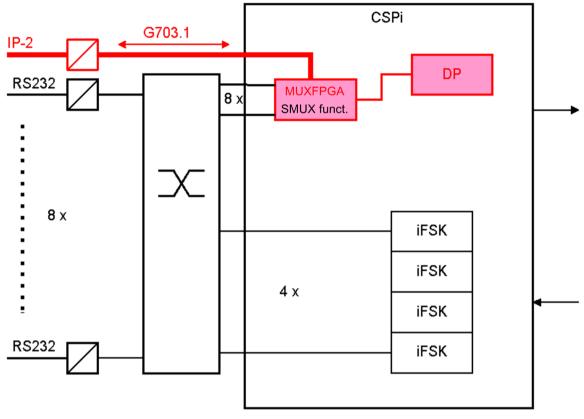




Figure 2-29 ROHC Compression and Decompression

*Figure 2-30* shows the number of supported VoIP channels for the datapump in PowerLink when ROHC is enabled and disabled. It was tested with 8 Kbit/s VoIP codec (G.729) with 20-ms interval. Maximal 16 bidirectional VoIP channels can be supported when ROHC is enabled.



ROHC Benefit (G.729, 8 kBit/s, 20 ms interval)


Figure 2-30 ROHC Benefit

# NOTE

ROHC can be configured for the 10/100Base TCP/IP User Interface of EMUX and vMUX Data Pump Service.

# 2.2.8.9 Synchronous ITU-T G703.1-DP Interface

The interface IP-2 is used for connecting a synchronous ITU-T G703.1 interface which is normally working in the "co- directional clock timing" mode. The interface can be parameterized as clock master (DCE) or clock slave (DTE). When this interface is selected the bit rate is automatically fixed by the service program PowerSys to 64 Kbps The transmission is carried out with the service Data Pump.



[dw\_fdemdp\_smux-021214, 1, en\_U

Figure 2-31 Functional diagram for the connection of an external multiplexer to the G703.1-DP interface

In this operation mode the iMUX resp. vMUX cannot be used.



# NOTE

Using this interface is only possible in combination with adapted sync modes.

#### 2.2.8.10 Synchronous X.21-DP Interface

The interface is used for connecting a synchronous X.21 interface. The interface can be parameterized as clock master (DCE) or clock slave (DTE). The bit rate is adjustable from 9.6 up to 64 Kbps in steps of 400 bps or in fixed settings to 80 Kbps, 96 Kbps, 128 Kbps, 144 Kbps, 160 Kbps, 192 Kbps, 224 Kbps, 256 Kbps, 288 Kbps, and 320 Kbps. The transmission is carried out with the service Data Pump.

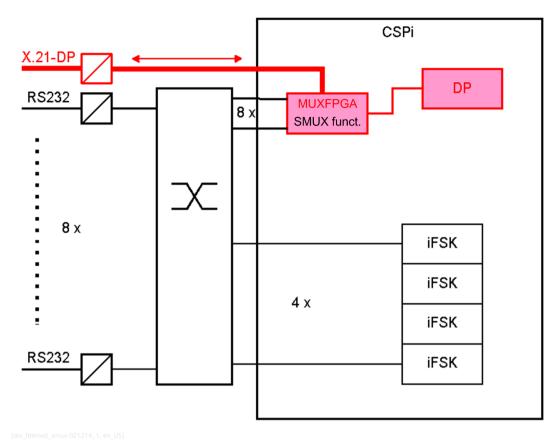
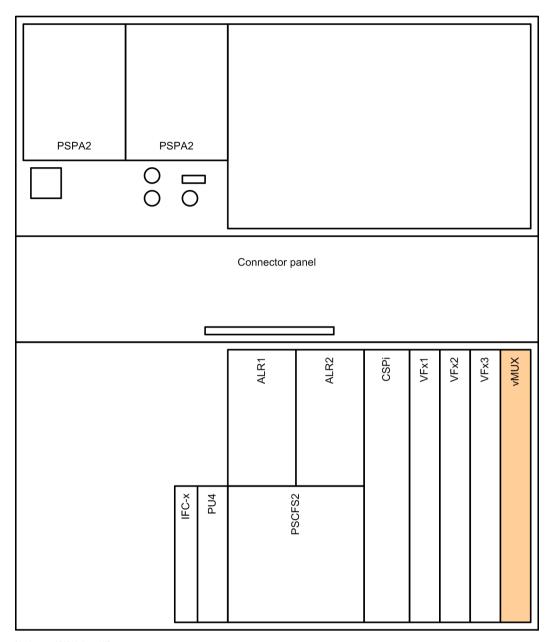



Figure 2-32 Functional diagram for the connection of an external multiplexer to the X.21-DP interface

In this operation mode the iMUX resp. vMUX cannot be used.

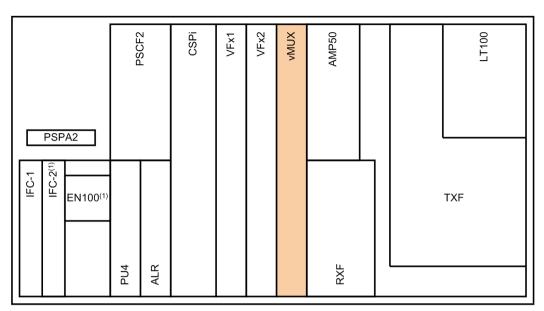
# NOTE

When the **DP** is adjusted to the **dynamic** sync mode, the connected **multiplexer** must be adapted to the primary resp. secondary transmission rate. Therefore the X.21-DP interface of the PowerLink has to be set to **DCE** mode.


# 2.2.9 The Versatile Multiplexer vMUX

# 2.2.9.1 In General

The vMUX is an integrated statistical multiplexer in the PowerLink. It makes it possible for PowerLink to compress speech, process data services, multiplex speech and different data services and transmit them via PLC. The integration of these capabilities in PowerLink renders external multiplexers obsolete.


For the transmission via the high voltage line, the function Data Pump is used. In this case the X.21-DP and the G703.1 interfaces of the PowerLink are not available. Instead of that the synch. interfaces X.21-1 and X.21-2 are available for synchronous data transmission via the vMUX. Without the vMUX module, the PowerLink functionality and the user interfaces remain unchanged.

The vMUX is a separate module and located in the PowerLink carrier frequency section CFS-2. The CFS-2 backplane provides the necessary electrical and mechanical extensions.



[dw\_lovmux\_051214, 1, er

Figure 2-33 Location of the vMUX in the PowerLink 100

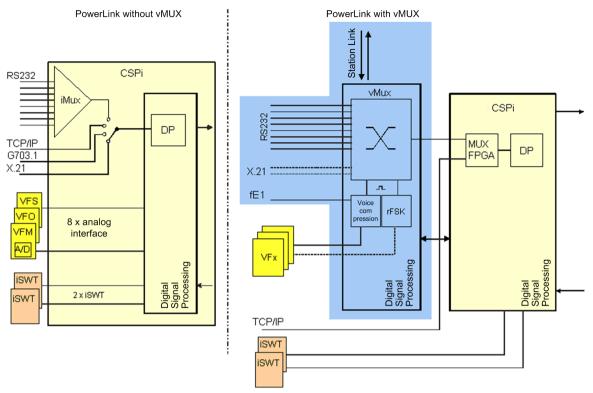


dw\_powerlink50s\_vMUX-231014, 1, --\_--]

Figure 2-34 Location of the vMUX in the PowerLink 50

(1) IFC-2 or EN100

#### Features

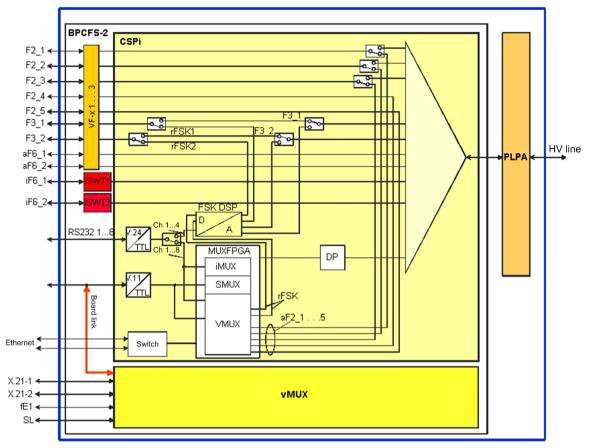

The vMUX provides the following features:

- Transmission of up to 8 compressed voice channels
- Transmission of up to 8 asynchronous data channels (RS232)
- Transmission of up to 2 synchronous data channels (X.21)
- Mixed transmission of asynchronous and synchronous data channels
- Embedded switching matrix for data channels and compressed voice (StationLink)
- Transmission of up to 2 analog FSK channels in digital mode (reverse FSK, rFSK)
- Transmission of Ethernet channel

All other analog services like voice (F2), data (F3), protection signal transmission (F6) as well as iFSK remain unchanged but the following restrictions have to be observed:

- In case a VF-x port is used for the transmission via vMUX, it cannot be used for an analog service and vice versa.
- When the vMUX is used, the X.21-DP interface is not available but the interfaces X.21-1 and X.21-2 can be operated. (vMUX may not be mounted if X.21-DP is used.)
- When the vMUX is mounted, the G703.1 interface is not available. (vMUX may not be mounted if G703.1 is used.)

2.2 Functional Description




[dw plvmul-021214, 1, en U

Figure 2-35 The PowerLink 100 without and with vMUX, Example

# 2.2.9.2 Structure of the PowerLink with vMUX

The structure of the PowerLink system with vMUX is shown in the figure below:



v\_plwvmu-081214, 1, en\_US]

Figure 2-36 PowerLink 100 system with vMUX, Example

| CSPi   | central signal processing                | BPCFS-2 | backplane carrier frequency section    |
|--------|------------------------------------------|---------|----------------------------------------|
| F2_x   | analog voice channel x                   | X.21-x  | synchronous data interfaces            |
| F3_x   | analog data channel x                    | aF6_x   | external protection signaling device x |
| iF6_x  | integrated protection signaling device x | PLPA    | PowerLink power amplifier              |
| FSKDSP | FSK signal processor                     | aF2_15  | analog voice channels 1 -5             |
| rFSK   | reverse FSK                              | SL      | station link interface                 |
| fE1    | fractional E1 interface                  |         |                                        |

#### 2.2.9.3 User Interfaces

### **RS232** Interfaces

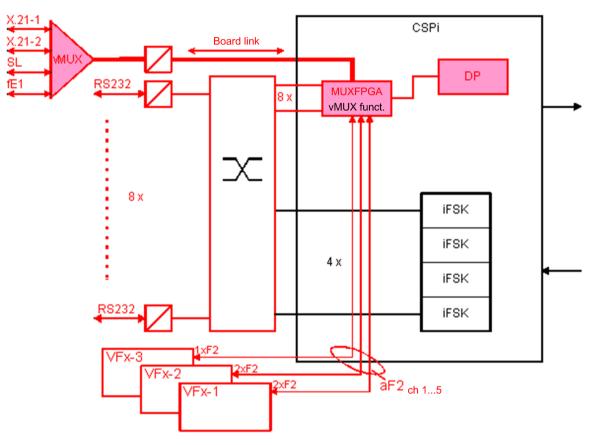
The connection of the data is carried out via SUB-D plug sockets on the PowerLink connector panel. The RS232 interfaces are located on the CSPi module. The data channels are routed to the vMUX via the board link. Max. 8 channels can be transmitted simultaneously.

Each channel can be adjusted to 1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6 resp. 115.2 Kbps.

The supported UART modes are: 7N1, 7N2, 7E1, 7E2, 7O1, 7O2, 8N1, 8N2, 8E1, 8E2, 8O1 resp. 8O2 (data bits, parity, stop bits).

#### Synchronous User Interfaces X.21-x

The synchronous data interfaces X.21-1 and X.21-2 are located on the vMUX module. The connection of the data channels is carried out via 15-pin SUB-D plug sockets on the PowerLink connector panel. Data rates from 9600 bps up to 192 000 bps can be transmitted.


### 10/100Base TCP/IP User Interfaces

The 10/100 Base TCP/IP data interfaces are located on the CSPi module. The connection of the data channels is carried out via RJ45 plug socket (IP-1) on the PowerLink connector panel and via an optical module (SFP) located on the module CSPi.

#### **Analog Voice Channels**

A total number of 5 analog voice channels can be transmitted with the vMUX.

The interfaces for the analog voice channels are located on the VFx modules in the slot positions VFx-1 up to VFx-3. The voice channels are routed to the vMUX via the board link. The connection of the voice channels is carried out via SUB-D plug sockets on the PowerLink connector panel. Via the modules in slot position 1 and 2 respectively 2 voice channels and via the module in slot position 3, one voice channel can be connected.



[dw\_fd-vmux-funct-021214, 1, en\_US]

Figure 2-37 Functional diagram for the vMUX with voice and data transmission

| X.21-x   | synchronous data                                       |
|----------|--------------------------------------------------------|
| RS232    | asynchronous data                                      |
| SL       | StationLink                                            |
| aF2ch1 5 | analog voice channels via VFx modules                  |
| VFx-1-3  | VFx modules in slot pos. 1 – 3 (VFx = VFM; VFS or VFO) |
| fE1      | fractional E1                                          |

### **Digital Voice Channels fE1**

With the function fractional E1 it is possible, to transmit up to 8 digital voice channels from a 2 Mbps E1 signal. The channels are connected to the FE1 interface on the PowerLink 50/100 connector panel. The interface can be configured in NT (Network terminal) and in TE (Terminal equipment) mode. The default configuration is the NT mode, and in such a case a direct cable can be used to connect the PBX to the FE1

interface. If the interface is configured as TE, an NT system will be connected to the PowerLink with a **crossed** cable.

#### **Dynamic Voice Groups**

This is a group of configured channels (connected terminals/telephones), that are being transmitted through some common PowerLink channel. If no channel is active, nothing is being sent. If there is only 1 configured PowerLink voice channel and is being used, a second telephone of the same voice group would get the busy tone if it tries to make a call.

#### **Voice Activity Detection**

To reduce the required bit rate during the idle state of the voice channel, the voice channel can be monitored by the voice activity detection. A reduction of approximately 75 % can be reached during voice inactivity (idle state). vMUX can use this bit rate for transmitting RS232 best effort channels or the TCP/IP channel.

### 2.2.9.4 rFSK Channels

The rFSK channels are converting analog FSK data channels into digital signals. The connection of the data channels is carried out via the ports 2, 3 or 4 of the VFx modules using the SUB-D plug sockets on the PowerLink connector panel. The data channels are routed to the vMUX via the FSKDSP on the CSPi module and the board link. 1 rFSK channel occupies up to 2 iFSK channels. The corresponding RS232 inputs for the iFSK channels are disabled in this case.

The data rate of the rFSK channels is adjustable to 50, 100, 200, 300, 600, 1200 and 2400 bps. The data rate 300 bps is only adjustable with UART mode.



# NOTE

For more details of the PowerLink connector panel and the pin assignment of the connectors refer to Chapter *Installation*.

#### Supported rFSK Systems with UART Mode

#### Table 2-9 Supported rFSK systems with UART mode

| rFSK Systems with UART Mode |                 |                 |  |
|-----------------------------|-----------------|-----------------|--|
| Frequency range             | Frequency shift | System/Baudrate |  |
|                             | ±22.5 Hz        | 50 Bd NB        |  |
|                             | ±30 Hz          | 50 Bd FM120     |  |
|                             | ±45 Hz          | 100 Bd NB       |  |
| 0.3 kHz to 3.8 kHz          | ±60 Hz          | 100 Bd FM240    |  |
|                             | ±90 Hz          | 200 Bd NB       |  |
|                             | ±120 Hz         | 200 Bd FM480    |  |
|                             | ±200 Hz         | 300 Bd          |  |
|                             | ±200 Hz         | 600 Bd          |  |
|                             | ±400 Hz         | 1200 Bd         |  |
|                             | ±800 Hz         | 2400 Bd         |  |

The following UART modes are supported: 7N1, 7N2, 7E1, 7E2, 7O1, 7O2, 8N1, 8N2, 8E1, 8E2, 8O1, 8O2 (data bits, Parity, Stop bits).

#### Transmission of rFSK Channels in Transparent Mode

| rFSK Systems with unknown (transparent) Mode |                 |                |         |  |
|----------------------------------------------|-----------------|----------------|---------|--|
| Frequency range                              | Frequency shift | Nom. Baud rate | Max.    |  |
|                                              | ±22.5 Hz        | 50 Bd          | 60 Bd   |  |
|                                              | ±30 Hz          | 50 Bd          | 85 Bd   |  |
|                                              | ±45 Hz          | 100 Bd         | 120 Bd  |  |
| 0.3 kHz to 3.8 kHz                           | ±60 Hz          | 100 Bd         | 180 Bd  |  |
|                                              | ±90 Hz          | 200 Bd         | 240 Bd  |  |
|                                              | ±120 Hz         | 200 Bd         | 340 Bd  |  |
|                                              | ±200 Hz         | 600 Bd         | 600 Bd  |  |
|                                              | ±400 Hz         | 1200 Bd        | 1200 Bd |  |
|                                              | ±800 Hz         | 2400 Bd        | 2400 Bd |  |

### Table 2-10 rFSK channels with unknown (transparent) mode

When the transmission mode of the rFSK channels is not known, the channels are transmitted in the transparent mode with oversampling. The oversampling bit rate depends on the required distortion.

| Table 2-11 | Configuration of o | oversampling bit rate |
|------------|--------------------|-----------------------|
|            |                    |                       |

| Maximum distortion | Oversampling bit rate       |
|--------------------|-----------------------------|
| Up to 25.0 %       | 4 x rFSK channel baud rate  |
| Up to 12.5 %       | 8 x rFSK channel baud rate  |
| Up to 6.25 %       | 16 x rFSK channel baud rate |

### 2.2.9.5 The StationLink (SL)

The station link SL is a 2 wire bus system. It provides the routing of vMUX voice and data channels between max. 4 PowerLink 50/100 in 1 substation each with up to 16 user channels.

#### Features:

- Bus interface for catenation of up to 4 PowerLink 50/100 systems on a multi-repeater station.
- Interconnection of compressed voice channels without decompression over several PLC hops.
- Forwarding of data channels point-to-point
- Point-to-multipoint connection for asynchronous data (multicast mode)

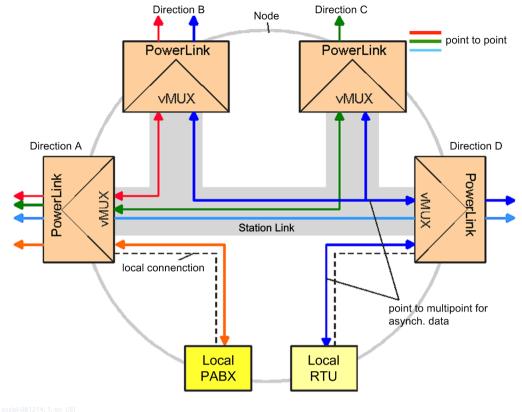



Figure 2-38 Example of a station link with 4 PowerLink systems

# Multicast Function via StationLink

Multicast for vMUX over SL means, that an RTU message is not only sent to 1 SL target but to all which are selected. Normally in RTU mode there is a multiplexing between a local port and 1 SL port. If multicast is enabled, all SL targets are possible.

With multicast function via StationLink, asynchronous data from 1 source can be transmitted to up to 3 destination directions and to local port.

SL-Node = 0 Link Link Term = A Term = B ž N Device  $\overline{a}$  $\overline{\Omega}$ PLC ports ports ř local ocal P3 Device = 1 Link = Link = l ink = Term = B Term = B Term = A Term = A ž N ž ž Device = 3 5 5 5 PLC PLC ports ports ports Ž Ž local local ocal ñ ocal 5 **P1** P4 **P**2 Link = 4Link = 4Term = A Term = B RM ž Device 5  $\overline{\alpha}$ Interface for local RTU PLC local ports orts Ž Ž **P**5

[dw\_dexofmf-081214, 1, en\_U

Figure 2-39 Example of a multicast function

In the figure above, StationLink device 1 is set to multicast to all other StationLink members. That means all data sent to local port P2 are also sent to all SL members (device 2, device 3, device 4). In the opposite direction, the StationLink receives all incoming data from all StationLink members and multiplex it with local port P2 (initiator). The definition of RTU (polling mode) prevents collisions.

# 2.2.10 PowerLink 100 - The PLPA Section

# 2.2.10.1 Structural Design

The PowerLink 100 can be equiped with the following PLPA sections:

• PLPA 50

The PLPA 50 section consists of a single-tier (5 units) module frame, and contains the power supply PSPA2 (PSPA2 is the successor of PSPLE shown in the picture), the power amplifier AMP50, line filter TXF, line transformer unit LT100 and the RXF receiver module.

PLPA 100

The PLPA 100 section contains 2 power supplies supply PSPA2 (PSPA2 is the successor of PSPLE shown in the picture), 2 power amplifier AMP50, 2 line filter TXF, 1 line transformer unit LT100 and the RXF receiver module.

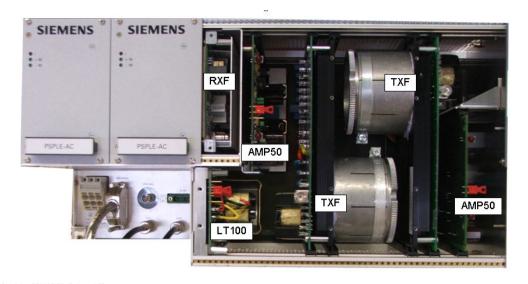



Figure 2-40 Structural design of the 100 W PLPA module frame

The AMP50 printed-circuit board with the amplifier circuit, the TXF printed-circuit boards with filter capacitors CB and the tuning coil, the LT100 printed-circuit board with the line adapter and the coil of the line filter are fitted in this frame. The modules can be removed for jumper settings.

The measuring socket and connecting sockets are located on the bottom left corner of the PLPA module frame. The PLPA module frame is mounted above the section CFS-2.



# NOTE

For carrier frequencies in the range from 24 kHz to 500 kHz and 500 kHz to 1000 kHz different modules have to be used like shown in the table below:

| Carrier Frequency<br>range [kHz] | Amplifier type           | TX Filter               | Line transformer         | Receiver               |
|----------------------------------|--------------------------|-------------------------|--------------------------|------------------------|
| 24 to 500                        | AMP50– <b>LB</b> C53207- | TXF1- <b>LB</b> C53207- | LT100- <b>LB</b> C53207- | RXF- <b>LB</b> C53207- |
|                                  | A367-B210 4              | A367-B230 2             | A367-B240 2              | A367-B220 2            |
| 500 to 1000                      | AMP50- <b>HB</b> C53207- | TXF1- <b>HB</b> C53207- | LT100- <b>HB</b> C53207- | RXF- <b>HB</b> C53207- |
|                                  | A367-B211 4              | A367-B231 2             | A367-B241 2              | A367-B221 2            |

### Table 2-12 Module versions for the PLPA section

For more details refer to Chapter *Commissioning*. The following description applies to the low band and high band versions of the modules. Therefore the module names are extended with XB.

#### 2.2.10.2 The Power Supply PSPA2

The power supply PSPA2 is available in DC and AC versions.

#### Table 2-13 PSPA2 versions

| PSPA2 version | Input voltage                     |
|---------------|-----------------------------------|
| PSPA2-DC      | DC 38 V to 72 V                   |
| PSPA2-AC      | AC 93 V to 264 V (47 Hz to 63 Hz) |
|               | DC 88 V to 264 V                  |

Each power amplifier has its own power supply. The first power supply feeds the power supply in the carrier frequency section (PSCFS) as well. The connection is carried out via the **PLPA control cable**.

### Interconnection of the Power Supplies PowerLink 100

The principle of the voltage distribution in the PowerLink 100 system is shown in the figure below.



[dw\_dicpspl-150914, 1, en\_

Figure 2-41 Interconnection of the power supplies in the PowerLink system

Enable/disable of the power supply is carried out with the switch S1 on the CSPi module. The switch is behind the front cover and controls the PSPA2 via an inhibit conductor (in the PLPA control connection cable).



#### NOTE

When the PSPA2 is disabled and the external supply voltage is connected the red LED "i" (inhibited) lights up.

# 2.2.10.3 PLPA Block Diagram

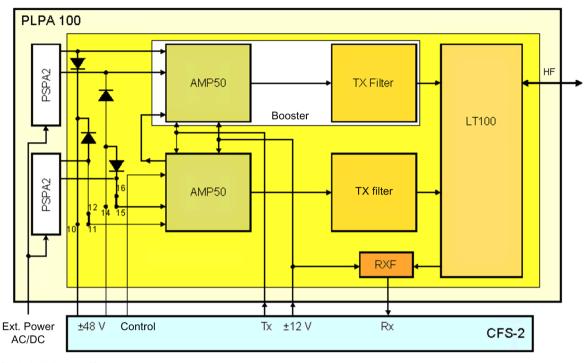



Figure 2-42 Electrical structure of a PLPA 100

# 2.2.11 PowerLink 50 - The PLPA Section

# 2.2.11.1 Structural Design

The PLPA 50 section contains one power supply PSPA2, one power amplifier AMP50, one line filter TXF, one line transformer unit LT100 and the RXF receiver module.

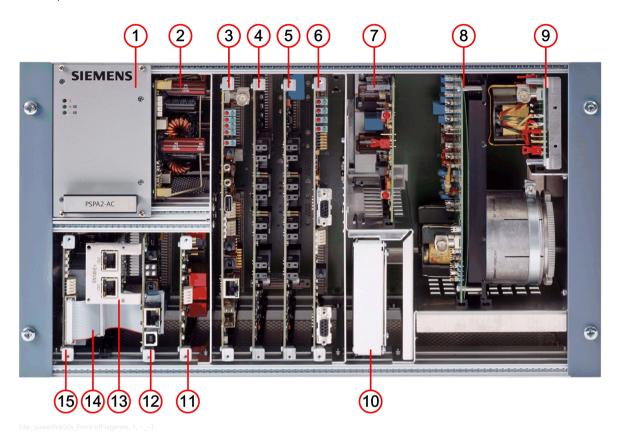



Figure 2-43 Structural design of ther PowerLink 50 module frame

| (1)  | PSPA2          |
|------|----------------|
| (2)  | PSCF2          |
| (3)  | CSPi           |
| (4)  | VFX1           |
| (5)  | VFX2           |
| (6)  | VMUX           |
| (7)  | AMP50          |
| (8)  | TXF            |
| (9)  | LT100          |
| (10) | RXF            |
| (11) | ALR            |
| (12) | PU4 (iSWT3000) |
| (13) | EN100          |
| (14) | IFC2           |
| (15) | IFC1           |
|      |                |

The AMP50 printed-circuit board with the amplifier circuit, the TXF printed-circuit boards with filter capacitors CB and the tuning coil, the LT100 printed-circuit board with the line adapter and the coil of the line filter are fitted in this frame. The module can be removed for jumper settings.

The measuring socket and connecting sockets are located on the rear side of the device.



# NOTE

For carrier frequencies in the range from 24 kHz to 500 kHz and 500 kHz to 1000 kHz different modules have to be used as shown in the table below:

| Table 2-14 | Module versions for the PLP | A section |
|------------|-----------------------------|-----------|
|            |                             |           |

| Carrier Frequency<br>range [kHz] | Amplifier type           | TX Filter               | Line transformer         | Receiver               |
|----------------------------------|--------------------------|-------------------------|--------------------------|------------------------|
| 24 to 500                        | AMP50– <b>LB</b> C53207- | TXF1- <b>LB</b> C53207- | LT100- <b>LB</b> C53207- | RXF- <b>LB</b> C53207- |
|                                  | A367-B210 4              | A367-B230 2             | A367-B240 2              | A367-B220 2            |
| 500 to 1000                      | AMP50- <b>HB</b> C53207- | TXF1- <b>HB</b> C53207- | LT100- <b>HB</b> C53207- | RXF- <b>HB</b> C53207- |
|                                  | A367-B211 4              | A367-B231 2             | A367-B241 2              | A367-B221 2            |

For more details refer to Chapter *Commissioning*. The following description applies to the low band and high band versions of the modules. Therefore the module names are extended with XB. The power supply PSPA2 is available in DC and AC versions.

### Table 2-15 PSPA2 versions

| PSPA2 version | Input voltage                     |
|---------------|-----------------------------------|
| PSPA2-DC      | DC 38 V to 72 V                   |
| PSPA2-AC      | AC 93 V to 264 V (47 Hz to 63 Hz) |
|               | DC 88 V to 264 V                  |

### 2.2.11.2 PLPA Block Diagram



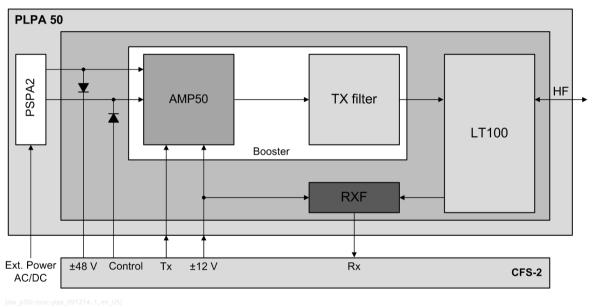




Figure 2-44 PowerLink 50 - Electrical structure of a PLPA

# 2.2.12 Amplifier, Transmission Line Filter, Line Matching Module, Receive Module

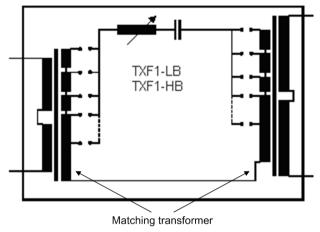
### 2.2.12.1 Functional Description of the Amplifier

| HF_Tx signals: | The HF signal from the CSPi module enters the power amplifier via the HF-TX connector. The input signal is first sent to 2 amplifier components. 1 component returns the signal to the X1 connector where it is available for operation with a second amplifier (for 100 Watt operation). The other component is a voltage-controlled amplifier (VCA) whose power is controlled by the dynamic control unit. |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 W / 50 W:   | At the subsequent pre-amplifier component, the rated power of 50 Watt can be changed to 25 Watt by means of a jumper.                                                                                                                                                                                                                                                                                        |

Output stage: The amplified signal is connected to the transmission-line filter via the output transformer. The output transformer can be set to the specific in-put impedance of the band-pass filter with 5 kHz, 8 kHz, 12 kHz, 16 kHz, 24 kHz, 32 kHz bandwidth. Switching operations in the high-voltage network, in addition to climatic conditions, can lead to an alteration of the impedance in the high-voltage line. This affects the output current and the output voltage of the amplifier adapted to the line.
 Function: In order to prevent overdriving when the amplifier is driven to full output, the module contains a controller. At the amplifier output, the values of the voltage and current are fed to a section of the circuit where exceeding of the stipulated limit values is detected. In this case, a control loop is activated with the voltage controlled amplifier acting as the actuator in order to fix the output signal of the AMP50 amplifier at a permitted maximum value.



[dw bdamp5-121214, 1, en U


Figure 2-45 Block diagram of the AMP50 amplifier module

| VCA  | Voltage | controlled | amplifier |
|------|---------|------------|-----------|
| VC/V | vonuge  | controlled | umphilei  |

CSPi Central Signal Processing unit

Transmitter monitoring:The transmitter monitor is used to monitor functioning of the amplifier. At the<br/>rated level of the amplifier, a voltage is produced at the monitoring output. This<br/>voltage is then fed to the CSPi module. There, the signal is monitored. If the<br/>voltage fails to reach the set threshold value, a transmitter alarm and general<br/>alarm on the ALR module are triggered by the CSPi. The CSPi also activates an<br/>alarm LED (red) on the PLPA via the transmit alarm line.Voltage monitoring:In order to prevent destruction of the output stage if voltage supply is cut off,<br/>the latter is monitored. If the voltage drops a signal block ensures at the input<br/>of the amplifier by means of the VCA.

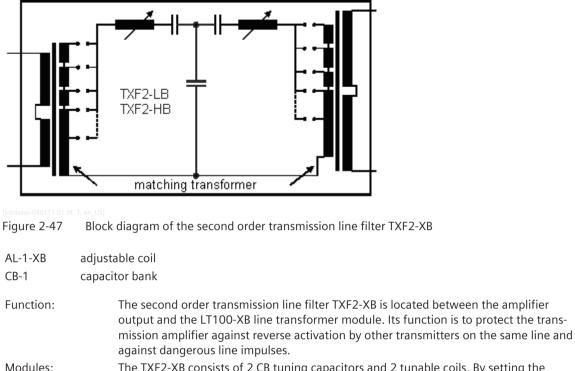
# 2.2.12.2 The TXF1-XB Transmission Line Filter (single circuit)



w\_bdfior-161214, 1, en\_

F

| igure 2-46 | Block diagram of the first order transmission line filter TXF1-XB      |
|------------|------------------------------------------------------------------------|
| Iguic Z IO | block alaquatit of the mist of def transmission interniter first i vib |


| AL-1-XB<br>CB-1 | adjustable coil<br>capacitor bank                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function:       | The first order transmission line filter TXF1-XB is located between the amplifier output and the LT100-XB line transformer module. Its function is to protect the transmission amplifier against reverse activation by other transmitters on the same line and against dangerous line impulses.                                                                               |
| Modules:        | The TXF1-XB consists of the CB tuning capacitors and 1 tunable coil. By setting the capacitor values with soldering straps (coarse tuning) and by adjusting the coil (fine-tuning), the filter can be tuned to all frequency slots of the PLC transmission range from 24 to 1000 kHz. For the fre-quency range 500 to 1000 kHz the high band version TXF1- HB has to be used. |
|                 | The transmission line filter TXF1-XB can be tuned to bandwidths 5 kHz, 8 kHz, 12 kHz and 16 kHz.                                                                                                                                                                                                                                                                              |
|                 | Outside the pass band, the impedance of the filter becomes high so that other termi-<br>nals operating on the same line are practically load-free.                                                                                                                                                                                                                            |

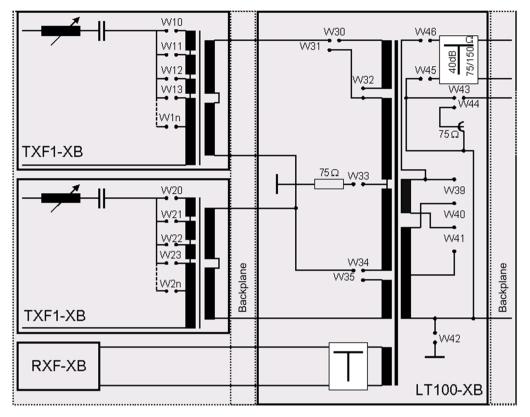
i

# NOTE

For information on setting the capacitor values and the measuring setup for fine-tuning of the filter, see Chapter *Commissioning*.

# 2.2.12.3 The TXF2-XB Transmission Line Filter (dual circuit)



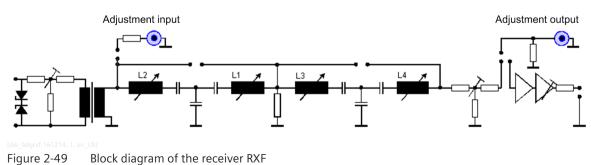

Modules:The TXF2-XB consists of 2 CB tuning capacitors and 2 tunable coils. By setting the<br/>capacitor values with soldering straps (coarse tuning) and by adjusting the coils (fine-<br/>tuning), the filter can be tuned to all frequency slots of the PLC transmission range<br/>from 24 to 1000 kHz. For the fre-quency range 500 kHz to 1000 kHz the high band<br/>version TXF2-HB has to be used.The transmission line filter TXF2-XB can be tuned to bandwidths 24 kHz and 32 kHz.Outside the pass band, the impedance of the filter becomes high so that other termi-<br/>nals operating on the same line are practically load-free.

# NOTE

For information on setting the capacitor values and the measuring setup for fine-tuning of the filter, see Chapter Commissioning.

# 2.2.12.4 The LT100-XB Line Matching Module

The following functional circuit diagram shows the paths of the send and receive signal through the LT100-XB:




[dw\_fclt10-161214, 1, en\_

Figure 2-48 Functional circuit diagram of the LT100-XB module

| Structure of the LT100: | The LT100-XB module basically consists of the line transformer, a filter trans-<br>former, a voltage divider for adapting the receiver (RXF-XB) and voltage<br>dividers for safe measurement of the transmit signal.                                                                                                                                                                                                                                                                           |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line transformer:       | The line transformer which adapts the unit to the 75 $\Omega$ or 150 $\Omega$ impedance of the transmission line can be used for connecting 2 line amplifiers (for doubling the transmission power).                                                                                                                                                                                                                                                                                           |
|                         | For changing over to the many possible operating modes and different impe-<br>dances, there are soldering straps and plug-in jumpers on the module. The<br>positions of these jumpers are described in the section commissioning.                                                                                                                                                                                                                                                              |
| Structure:              | The RXF-XB receiver module contains an HF receive filter and an HF amplifier.<br>A transformer at the input of the circuit ensures that the filter's impedance is<br>adapted and that the filter circuits which are connected to ground by 1 pole<br>are electrically isolated from the different ground voltages of the LT100-XB<br>receiver output. Limiter diodes at the input of the circuit protect the receiver<br>module against high-power pulse voltages from the transmission lines. |

### 2.2.12.5 The RXF-XB Receiver Module



| Structure:         | The RXF-XB receiver module contains an HF receive filter and an HF amplifier.<br>A transformer at the input of the circuit ensures that the filter's impedance is<br>adapted and that the filter circuits which are connected to ground by 1 pole are<br>electrically isolated from the different ground voltages of the LT100-XB receiver<br>output. Limiter diodes at the input of the circuit protect the receiver module<br>against high-power pulse voltages from the transmission lines. |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Function:          | Due to the connection method with a "high-resistance receiver input", the input<br>is adapted in the receive frequency band to the impedance of the line. The HF<br>receive filter selects the receive band.                                                                                                                                                                                                                                                                                   |  |
| Amplification:     | The receive signal is not amplified until it has passed through the receive filter.<br>The level of the receive signal is increased again in an amplifier.                                                                                                                                                                                                                                                                                                                                     |  |
| Measuring sockets: | 2 BNC measuring sockets are used for tuning the filter. For details refer to Chapter Commissioning.                                                                                                                                                                                                                                                                                                                                                                                            |  |

# 2.3 Applications

# 2.3.1 Overview

PowerLink's high degree of flexibility becomes readily apparent when we take a closer look at each of its potential applications. No matter what tasks are assigned to the system: PowerLink's high quality and protective function are first-class in every case.

The PowerLink system permits carrier frequency transmission of speech, data, telecontrol, and teleprotection signals via high voltage overhead power lines and cables.

Carrier frequency equipment must match the particular characteristics of the high-voltage line. High interference levels over the transmission link and the high attenuation over longer transmission routes require particularly powerful transmission. The requirements for reliability and availability are especially high in relation to the transmission of protection signals. For the most efficient utilization of the available frequency range, a high degree of selectivity is necessary.

In opposition to other PLC systems, there is no hardware provided transmission channel allocation. For the different applications like voice, data or protection signal transmission the equipment can be extended by integrating modules for connecting a modem or external teleprotection as well as for various telephony duties.

With the Remote Monitoring function "RM", device data can be requested with the service PC between 1 or several PLC-links.

# 2.3.2 PowerLink for Telecontrol Transmission

RTU – remote terminal unit polling is, together with protection signal transmission, still a core requirement and use case for PowerLink. This is why RTU polling is available in many different ways. Typically, a number of RTUs are spread over several substations and connected in a daisy chain to a centralized power system control center (SCADA). PowerLink can be applied in analog mode via FSK channels or in digital mode via the implemented data pump to transmit RTU information. Even "old" RTUs with a VF modem can be connected directly to PowerLink. Our integrated multiplexer and the StationLink function offer pointto- point and point-to-multipoint operation for remote terminal units.

The following figures show examples for the different connection.

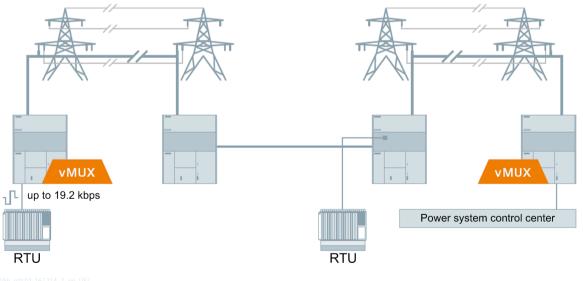
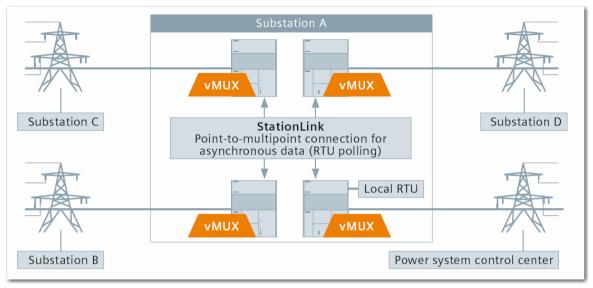
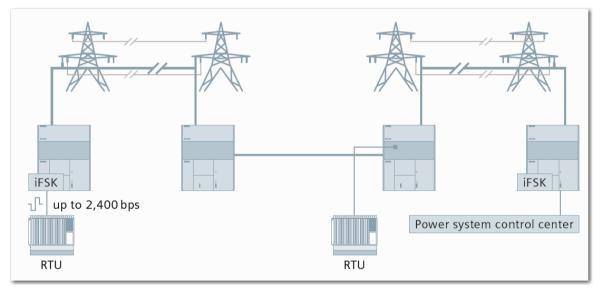



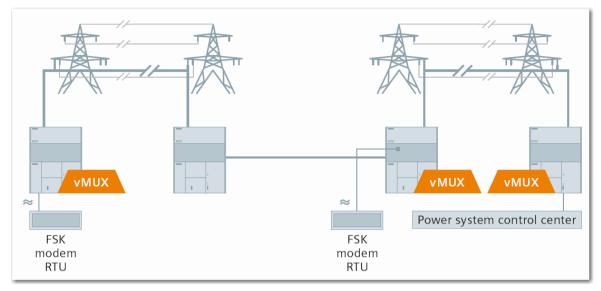

Figure 2-50 Telecontrol via the integrated multiplexer


Digital modulation (dPLC) Polling telecontrol data via the integrated multiplexer vMUX with data rates up to 19.2 kbps



[scpltc02-270813-01.tif, 1, en\_US

Figure 2-51 Telecontrol via point-to-multipoint connections


The functions of a power system control center include the regular interrogation of event data from the telecontrol units. Point-to-multipoint polling can be implemented in a substation between the PowerLink systems by means of the StationLink function.



[scpltc03-270813-01.tif, 1, en\_US]

Figure 2-52 Telecontrol via the integrated FSK channel

Analog modulation (aPLC) Connection of a telecontrol unit to an integrated modem



#### [scpltc04-270813-01.tif, 1, en\_U

Figure 2-53 Telecontrol with modem via the rFSK channel

Digital modulation (dPLC) Polling telecontrol data from RTUs with integrated FSK modem via the vMUX at up to 2,400 bps

# 2.3.3 PowerLink for Data Transmission

The versatile multiplexer integrated in PowerLink provides the following functions:

#### Asynchronous data transmission

Up to eight data terminal devices can be connected to PowerLink via the RS232 interface. These asynchronous data channels can be transmitted in the "guaranteed" or "best effort" modes, and thus guarantee optimal utilization of the available transmission capacity.

#### Synchronous data transmission

PowerLink provides 2 X.21 or 1 G703.1 interfaces for the data link between plesiochronous (PDH) or synchronous (SDH) transmission networks.

#### LAN connection

PowerLink permits the establishment of a LAN connection between substations in the high-voltage network. Electrical and optical Ethernet interfaces as well as an integrated L2 switch allow IP-enabled data terminal equipment to be connected directly at low cost.

#### Transparent analog data transfer

When PowerLink is used in analog mode, a maximum of four conventional asynchronous data channels (up to 2,400 bps) can be transmitted transparently by means of FSK modulation. The following figures shows a connection example.

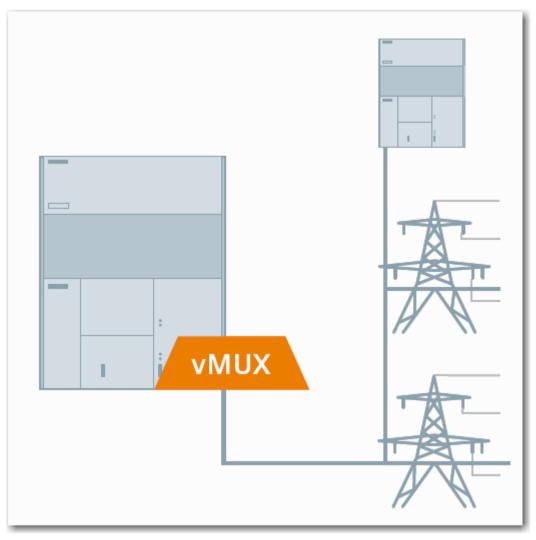



Figure 2-54 PowerLink for data transmission

Flexible combination of interfaces until full transmission capacity is attained.

- Max. 2 x X.21 or 1 x G703.1 For example, data terminal
- Max. 8 x RS232
   RTU connection Point-to-Point, Point-to-Multipoint
   Optional 4 x RS232 with FSK modulation in analog operation
- Ethernet TCP/IP For example, router

# 2.3.4 PowerLink for Telephone Networks

PowerLink is designed to connect different types of telephone systems and individual telephones – from analog to IP. In transit stations, the compressed voice band is routed transparently, with no additional decompression and compression, so that the end-to-end voice quality is not degraded. This StationLink functionality for voice channels is shown in the graphic below.

The following figures show examples for the different connection.

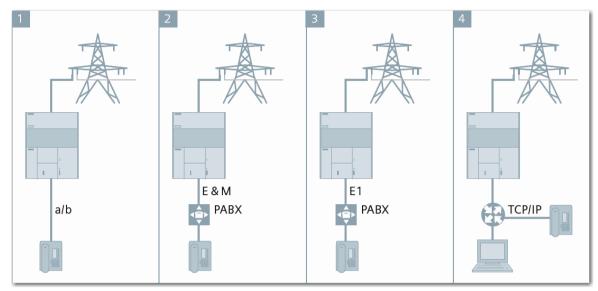
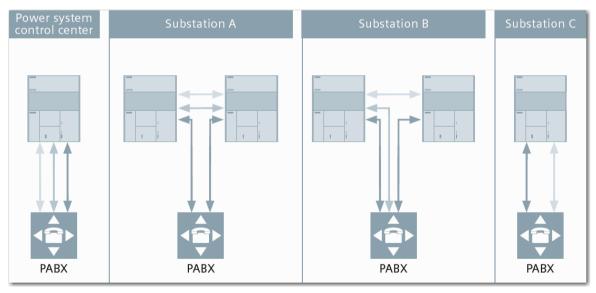






Figure 2-55 PowerLink for telephone networks

- (1) Analog interface Analog connection of individual telephones
- (2) Analog interface Analog connection of telephone systems
- (3) Digital interface Digital connection of telephone systems
- (4) TCP/IP interface Connection of telephone or telephone systems via TCP/IP



[scpltn02-270813-01.tif, 1, en\_

Figure 2-56 StationLink functionality for voice channels

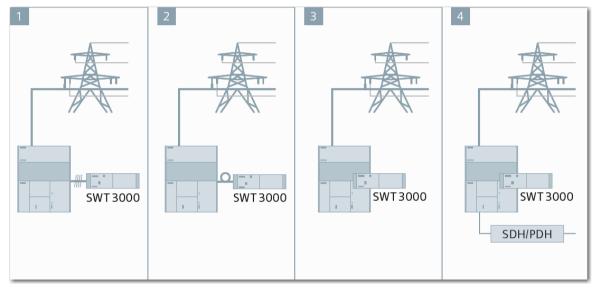
# 2.3.5 PowerLink for Protection Signal Transmission

The teleprotection system SWT 3000 can be operated as an integrated system (with a maximum of two systems) or adapted with PowerLink. Every SWT 3000 system can transmit up to four protection commands. The command interface type for distance protection devices can be either standard binary or compliant with IEC 61850. Even a combination of both command interface types is supported. For highest availability, an alternate transmission path via a digital communication link (for example, SDH) can be connected.

The SWT 3000 system offers you a unique and varied range of operating options:

• Single purpose mode

In this operating mode, the PowerLink transmission channel is used exclusively for transmitting protection signals. Maximum transmission range, with the highest reliability in the case of pulse noise and the minimum signal propagation delay, are achieved in this mode.


• Multi purpose mode

In this mode, voice and data are transmitted parallel to protection signals.

### • Alternate Multi purpose mode

In this mode, the entire transmission capacity is used for voice and data as long as it is not needed for protection purposes. The PowerLink pilot tone is used as the guard tone in this mode. If a protection command needs to be transmitted, voice transmission is interrupted for the duration of transmission of the protection command. Data transmission may also be interrupted if the relevant parameter is set.

The following figure shows an connection example.



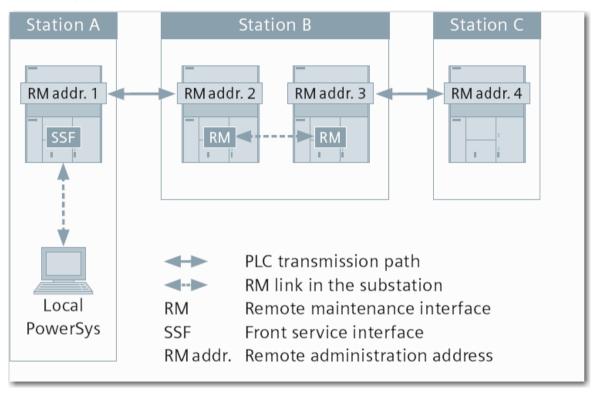
[scplst01-270813-01.tif, 1, en\_U

Figure 2-57 Protection signal transmission

- (1) External SWT 3000 4-wire link
- (2) External SWT 3000 Fiber-optic link
- (3) Internal SWT 3000, integrated in PowerLink
- (4) Internal SWT 3000, integrated SWT 3000 with path switching via digital networks (1+1)

# 2.3.6 Easy to Operate – the PowerLink Management System

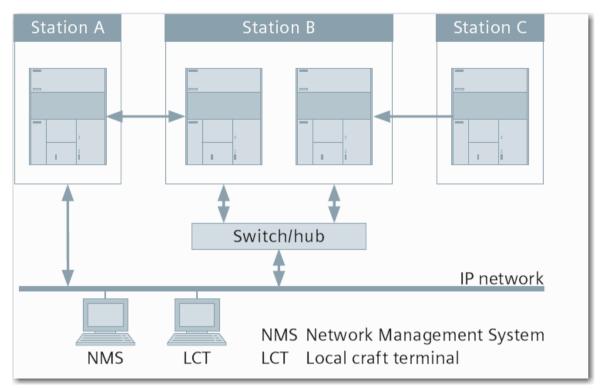
All applications in PowerLink, like the versatile multiplexer and the integrated and external SWT 3000 devices, use one common HMI.


### **PowerSys Administration Interface**

Intuitive and easy-to-operate, the Windows-based PowerSys software runs on all standard PCs. In addition to local operation, PowerLink also offers two options for remote administration. This makes it possible to meet a wide range of different customer infrastructure requirements. Regardless of the chosen solution, the user has complete system access – just as with a direct local connection. For easy maintenance, the integrated event recorder with real-time clock synchronization options provides the required information.

- Remote access via in-band channel RM
- Remote access via IP

The administration of remote PowerLink systems can be easily performed from the local operator console via a customized service channel or the IP network. Administration can also be performed via the corporate LAN network, using the common TCP/IP network protocol. The system can be connected with its own network protection equipment and a firewall to ensure the security level necessary for the company.


PowerLink systems can be integrated in higher-level management systems via the IP access, using the SNMP protocol (simple network management protocol). System and network status data can be transferred, for example, to an alarm, inventory, or performance management system. In case the PowerLink devices in stations B and C are enabled with Ethernet service, station C is also part of the NMS supervision. The following figures show examples for the different connection.



[scpleto1-270813-01.tif, 1, en\_US]

Figure 2-58 Remote access via in-band channel

2.3 Applications



(scpleto2-270813-01.tif. 1. en US

Figure 2-59 Remote access via IP

# 2.4 Integrated Protection Signal Transmission with iSWT 3000

# 2.4.1 Overview

# 2.4.1.1 General Information

This chapter provides the user a comprehensive description of the integrated teleprotection signaling equipment iSWT 3000.

It describes the possible operating modes with PowerLink like single purpose (SP), multi purpose (MP) or alternate multi purpose (AMP) operation.

You can find information about the applications for analog and /or digital transmission and the corresponding transmission concepts (e.g. F6 Modulation, Coded Tripping, digital transmission concept). The differencies between the Broadband- and Narrow-Band equipment version are explained and security aspects from the influence of burst interferences are discussed.

The description of **Protection Operating Modes** shows the number of trip commands which can be transmitted coded or uncoded with the corresponding input *I* output allocation.

The user finds the functional description of the processing unit **PU4** and the Digital Line Equipment **DLE**, the signification of the PU4 LEDs as well as a functional description of the **IFC-x** modules and the Ethernet **EN100** Module.

Fibre Optic Modules (FOM) can be used for connection of the PowerLink 100 with stand-alone SWT 3000 units. The section Fiber-Optic Modem within this chapter provides the required information for the connection to the PowerLink PLC system and further information about the **FOM** modules.

For jumper settings of the PU4, DLE and interface modules IFC-x refer to Chapter *Installation*. Here you find all information about the system configuration and adjustments of PowerLink and iSWT 3000 with corresponding examples as well.

The pin assignment of the IFC-x modules and pinout tables of the SWT-x/DLE resp. SWT-x/SC connector are included in Chapter *Installation*.

# NOTE

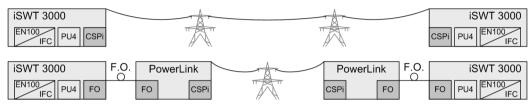
The following modules and interfaces are not available in PowerLink 50:

- Digital line equipment DLE
- Fibre Optic Modules (FOM) for connection with stand-alone SWT 3000 units
- SWT-x/DLE resp. SWT-x/SC connector
- VFx-3 module
- RM2 connector
- G703.1 connector

### 2.4.1.2 Integrated (iSWT) or Stand Alone Units SWT 3000

In the event of faults occurring in high-voltage systems the object of the high voltage network protection is to disconnect the faulty part of the system selectively as quickly as possible. As a consequence of higher power plant outputs and the increasingly close interconnection of high-voltage power systems, high demands are placed on network protection systems in terms of reliability and availability. Therefore, network protection systems with absolute selectivity need a reliable and fast transmission system for the transfer of information between the stations.

The SWT 3000 for teleprotection signaling in analog and digital communication networks offers the required maximum security and reliability together with the shortest command transmission time.


The SWT 3000 device can be used as a **stand-alone** unit or it can be **integrated** in the PowerLink Power Line Carrier (PLC) system. In this case only the processing unit PU4 and at least one IFC-D/P or EN100 are necessary. An integrated SWT 3000 system in PowerLink (iSWT 3000) can be equipped with up to two interface modules IFC.

2.4 Integrated Protection Signal Transmission with iSWT 3000

| SWT 3000                            | SDH/PDH                              | SWT 3000<br>DLE PU4 EN100<br>IFC |
|-------------------------------------|--------------------------------------|----------------------------------|
| SWT 3000 FO<br>EN100<br>IFC PU4 DLE | OFO                                  | FOSWT 3000DLEPU4EN100IFC         |
| SWT 3000                            |                                      | SWT 3000<br>CLE PU4 EN100<br>IFC |
| SWT 3000                            | PowerLink<br>VFx CSPi TT TT VFx CSPi | SWT 3000                         |

[scswtalo-010813-01.tif, 1, en\_L

Figure 2-60 SWT 3000 "Stand-alone" versions



[scswtint-010813-01.tif, 1,

Figure 2-61 SWT 3000 integrated in the PowerLink (iSWT versions)

The PowerLink Equipment Manual covers only the **SWT 3000 integrated in the PowerLink** (following described as **iSWT**). A connection from an **external SWT 3000 via FO** is also considered as **integrated**. For the **"Stand-Alone" version** refer to the **SWT 3000 Equipment Manual**.

For PowerLink 100, combinations of analog and digital interfaces are possible in both cases. The analog interface of an iSWT 3000 system in PowerLink 100 is operated via the high voltage connection of the PowerLink PLC. The digital interface LID-1 can be configured as alternative path for X.21, G703.1 (64 Kbps) or G703.6 (2 Mbps). The Digital Line Equipment DLE with LID-1 is only used for PowerLink 100.

### 2.4.1.3 Quick Overview of the Features

Table 2-16 Quick Overview of the Features

| Feature                                                                                                                                            | Digital     | Analog      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Number of commands                                                                                                                                 | Up to 8     | Up to 4     |
| <b>Digital line interface</b> <sup>1)</sup><br>64 Kbps (X.21 or G703.1)<br>2 Mbps (G703.6 sym. 120 Ω, G703.6 asym. 75 Ω)                           |             | -           |
| Analog line interface<br>4-wire<br>2-wire                                                                                                          | -           | x<br>x      |
| Fiber-optic interface <sup>1)</sup><br>Long-range (single-mode, 1550 nm)<br>Short-range (single-mode, 1310 nm)<br>Short-range (multi-mode, 850 nm) | x<br>x<br>x | -<br>x<br>x |

| Feature                                                                                                                               | Digital | Analog |
|---------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| Transmission paths                                                                                                                    | x       | _      |
| Digital network                                                                                                                       | x       | _      |
| Direct connection to SDH multiplexer                                                                                                  | x       | _      |
| Direct connection to PDH multiplexer                                                                                                  | Â       |        |
|                                                                                                                                       | x       | x      |
| Fiber-optic cable <sup>1)</sup>                                                                                                       | -       | x      |
| Power line carrier                                                                                                                    | -       | x      |
| Pilot cable                                                                                                                           |         |        |
| Integrated path protection (1 + 1)                                                                                                    | x       | х      |
| Integration into PowerLink PLC system                                                                                                 | х       | х      |
| Redundant power supply (hot standby)                                                                                                  | х       | х      |
| Addressing for increased security                                                                                                     | х       | -      |
| Impulse Noise Compression (INC)                                                                                                       | -       | х      |
| Configuration of SWT 3000 with a service PC (intuitive Windows-based user interface)                                                  | х       | х      |
| Software-upgrade via service PC (download)                                                                                            | x       | х      |
| Free programmable output allocation                                                                                                   | x       | х      |
| Remote access to SWT 3000 devices via TCP/IP link                                                                                     | x       | х      |
| Remote access to SWT 3000 devices via inband RM-Channel                                                                               | x       | х      |
| Real-time clock integrated and synchronizable from external sources (for example, GPS, IRIG-B, and NTP) and via the transmission link | x       | x      |
| Event recorder (date stamped and time stamped) with guaranteed data storage when the power supply is switched off                     | x       | x      |
| Remote readout of the event recorder                                                                                                  | x       | х      |
| Easy upgrade from analog to digital and digital to analog                                                                             | х       | х      |
| Simple Network Management Protocol (SNMP) agent for Network Management System (NMS) integration                                       | x       | x      |
| Coded tripping (CT) for up to 4 independent commands                                                                                  | -       | х      |
| IEC 61850                                                                                                                             | х       | х      |
| Service channel                                                                                                                       | х       | -      |
| <sup>1)</sup> for PowerLink 100                                                                                                       |         |        |

# 2.4.2 Applications for Transmission

# 2.4.2.1 Applications for Analog and/or Digital Transmission

The iSWT is used for fast, reliable transmission of several commands for protection and/or special switching functions in supply networks.

| (Mode 1, Mode 2) | Commands can be transmitted for the protection of two 3-phase<br>systems (double system protection) or one 3-phase system (single<br>phase protection). High-voltage circuit breakers can be operated with<br>selective protection relays. This operation is designated as a <b>permis-</b><br><b>sive protection system</b> . Direct switch operation is also possible. This<br>operation is known as <b>intertripping</b> , <b>transfer tripping</b> , or <b>direct trip-</b><br><b>ping</b> . |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Mode 3)         | It is possible to transmit 4 individual commands. Several commands<br>can be activated simultaneously. They are arranged according to<br>priority (input 1, 2, 3, and 4) and output one after the other.                                                                                                                                                                                                                                                                                         |

2.4 Integrated Protection Signal Transmission with iSWT 3000

| Only one command active<br>(Mode 4) | Only one of the signal inputs 1 to 3 can be active in this operating mode. Input 4 has priority and is treated independently of the states of input 1 to 3. Therefore, if input 4 is active, the state of the other inputs is insignificant. If more than one of the signal inputs 1 to 3 is active and input 4 is inactive, an input error occurs. The guard tone continues to be transmitted. |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 independent commands, 3iC         | 3 signal inputs are available in this operating mode.                                                                                                                                                                                                                                                                                                                                           |
| (Mode 5A)                           | On the transmit side, every possible combination of signal input is<br>assigned to one specific protection frequency. On the receive side,<br>each protection frequency can be assigned to one or more signal<br>outputs (1 to 4).                                                                                                                                                              |
| 4 independent commands, 4iC         | 4 signal inputs are available in this operating mode.                                                                                                                                                                                                                                                                                                                                           |
| (Mode 3a)                           | On the transmit side, every possible combination of signal input is<br>assigned to a pair of protection frequencies. On the receive side,<br>each pair of protection frequencies is assigned to one or more<br>signal outputs. This function is only available with the coded tripping<br>feature.                                                                                              |
| 2 plus 2                            | This mode offers the transmission of 2 double systems. One is trans-                                                                                                                                                                                                                                                                                                                            |
| (Mode 3b)                           | mitted in the fast permissive underreach transfer trip (PUTT), the other<br>in the external trip initiation using the CT feature.                                                                                                                                                                                                                                                               |

### 2.4.2.2 Applications for Digital Transmission for PowerLink 100

1 digital line interfaces (LID-1) is available through expansion of the PU4 module with the interface module to digital transmission paths DLE (digital line equipment).

A separate digital cable connection to the SWT-x/DLE interface connector is required.

The hardware interfaces X.21 (64 Kbps), G703.1 (64 Kbps) and G703.6 (2 Mbps HDB3-coded balanced or coaxial) can be selected on the LID, although only 1 can be used per LID.

# 2.4.2.3 Combination of Analog and Digital Interfaces for PowerLink 100

Multipath transmission can be implemented in the iSWT by using the analog interface (LIA) and the digital interface (LID-1). This combination, like only analog or only digital transmission is possible for units integrated iSWT in the PowerLink system.

### 2.4.2.4 Transmission Paths

The following transmission paths can be used depending on the nature of the supply networks:

- High-voltage overhead lines
- High-voltage cables
- Aerial and (buried) underground cables
- Radio relay routes
- Digital networks (SDH/PDH)
- Fiber-Optic Module (FOM) for PowerLink 100

It results in the following possible applications:

Table 2-17 Possible Applications of the SWT 3000

| Configuration                                           | Option                           |
|---------------------------------------------------------|----------------------------------|
| SWT 3000 stand-alone for analog path                    | Digital alternate path           |
| SWT 3000 stand-alone for digital path for PowerLink 100 | Analog or digital alternate path |
| SWT 3000 integrated in PowerLink PLC unit analog        | Digital alternate path           |

| Configuration                                                                                                             | Option                           |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| SWT 3000 integrated in PowerLink PLC unit digital for PowerLink 100                                                       | Analog alternate path            |
| SWT 3000 stand-alone with connection via FOM for PowerLink 100                                                            | Analog or digital alternate path |
| SWT 3000 stand-alone with connection via FOM to the PowerLink 100                                                         | Digital alternate path           |
| SWT 3000 stand-alone with connection of the digital<br>interface via FOM to a PDH or SDH multiplexer for<br>PowerLink 100 | Analog or digital alternate path |

# 2.4.2.5 Modes of Operation

### Analog Mode of Operation

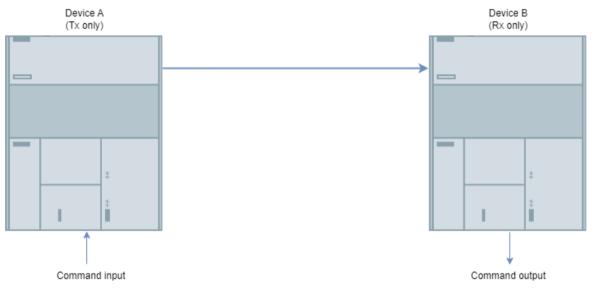
| -                   |                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F6 Modulation       | The principle of F6 modulation (frequency-shift keying FSK) is applied with the iSWT.<br>Therefore only 1 of the possible frequencies is ever transmitted. This enables the<br>available transmit power to be used to the full.                                                                                                                                                                                               |
| Security            | The influence of burst interferences with amplitudes that can be significantly greater<br>than the wanted signal is suppressed. This is achieved by limiting the amplitude of<br>the input signal with the largest possible band-width and then analyzing the frequency<br>with a small bandwidth. Burst interferences are generated, for example, by lightning<br>strike or by switching operations in high-voltage systems. |
|                     | An optimum setting of the evaluation thresholds and the integration times guarantees maximum security against unwanted tripping and a high degree of reliability at the same time. Protection commands are still transmitted in time despite serious interference.                                                                                                                                                            |
| Coded tripping (CT) | The CT function is available for the analog line interface (LIA). The command codes consist of 2 simultaneously transmitted trip frequencies (parallel coding).                                                                                                                                                                                                                                                               |

### Digital Mode of Operation

| General                   | The digital line interfaces LID-1 is needed for transmitting the protection commands<br>over a digital network. The data for the interfaces RM (Remote Monitoring) and SC<br>(Service Channel) and system-internal control information are transmitted additionally.<br>Also an address given to the device is transmitted. |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Transmission<br>concept   | Information is transmitted via the digital interface with the periodic transmission of 4 message types with constant length.<br>The messages have the following priority among each other:                                                                                                                                  |  |
|                           | <ul> <li>Tripping command information = priority 1</li> <li>Service channel = priority 2</li> </ul>                                                                                                                                                                                                                         |  |
|                           | <ul> <li>Remote maintenance = priority 3</li> <li>System-internal control information = priority 4</li> </ul>                                                                                                                                                                                                               |  |
| Command transmis-<br>sion | Each command message is transmitted 4 times with a hamming distance of 4. The receiving end checks whether 3 identical command messages have been received. The command is not valid until this check has been successfully carried out.                                                                                    |  |

# 2.4.2.6 Features

The transmission features are as follows:


- Frequency generation and evaluation by digital signal processor (DSP)
- Full utilization of the available transmit power since only one of the possible frequencies is ever transmitted
- Burst interferences with greater amplitudes than the desired signal are largely suppressed

2.4 Integrated Protection Signal Transmission with iSWT 3000

- Noise analysis in the unused desired signaling circuits
- Analog and digital line interfaces
- Alternative paths possible by combination of analog and digital interfaces
- Non-volantile event memory for 8192 entries (Data retention over several days, at least 5 hours). Also possible to read out the event memory remotely via RM or service channel (only with digital transmission path).
- Possible remote readout of the event memory via RM or SC
- Configuration of the device with PC

### 2.4.2.7 Simplex TPS Transmission

Simplex teleprotection command transmission is one side Tx, another Rx only. The required HF frequency is reduced to half because of one transmission direction only. Simplex command transmission can be used in F6 single purpose or alternative multipe purpose (F2 + AMP) mode. For F2 AMP service, the telephone services are not possible.



[sc\_simplex\_tps\_transmission, 1, --\_--

Figure 2-62 Simplex command transmission

The simplex transmission can be commissioned on site via software configuration PowerSys > Configuration > HF.

|                                | Device A (Tx only) | Device B (Rx only) |
|--------------------------------|--------------------|--------------------|
| Transmit start / end frequency | 24 up to 1000 kHz  | 0 kHz              |
| Receive start / end frequency  | 0 kHz              | 24 up to 1000 kHz  |

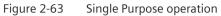
Device A (Tx only) disables the receiver for F2 / F6 service. Rx alarm and LED are switched off on CSPi / PU4 boards. Correspondingly all command outputs are deactivated.

Device B (Rx only) disables the transmitter by setting PLPA output power to zero. No command signals are transmitted ot the HV line.

# 2.4.3 Operating Modes with PowerLink Systems

# 2.4.3.1 Overview

Power system protection signals can be transmitted over the high-voltage overhead line to be protected in conjunction with PLC equipment. In case of using an PowerLink system it is also possible to integrate SWT


3000 in the system. When using PLC equipment several variants of teleprotection signaling are possible as described in the following:

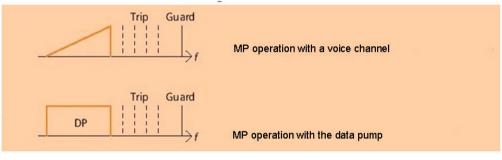
# 2.4.3.2 Single Purpose Operation (SP)

In this operating mode the transmission band of the PowerLink is used exclusively for protection signaling.



[dwsgpuop-231110-01.tif, 1, en\_US]




The greatest transmission distances are reachable in this mode with maximum security against impulse noise and minimum signal transmission time.

The following equipment combinations are possible:

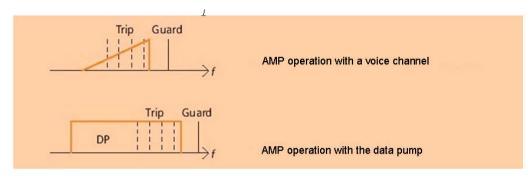
- SWT 3000 remote with VF or optical connection to PowerLink
- SWT 3000 integrated in PowerLink

### 2.4.3.3 Multi Purpose Operation (MP)

In this operating mode the protection signals are transmitted simultaneously with voice and/or data signals.



[dwmlpuop-231110-01.tif, 1, en\_US]


Figure 2-64 Multi Purpose operation

The distribution of the available transmission power between the services to be transmitted results in shorter transmission ranges. The command transmission times are the same as in single purpose operation. The following equipment combinations are possible:

- SWT 3000 remote with VF or optical connection to PowerLink
- SWT 3000 integrated in PowerLink

2.4 Integrated Protection Signal Transmission with iSWT 3000

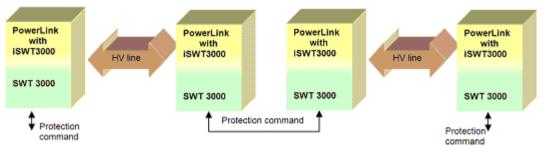
#### 2.4.3.4 Alternate Multi Purpose Operation (AMP)



dwaltmpo-231110-01.tif, 1, en\_U

Figure 2-65 Alternate Multi Purpose operation

| Normal operation: | In this operating mode the transmission band is used for the transmission of voice<br>and/or data as long as there is no protection case. In the idle state, i.e. the high-<br>voltage system is operating properly the signals of all services including the guard<br>tone are transmitted simultaneously. The pilot of the PLC system is used as the guard<br>tone in this operating mode.                                                                                                               |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protection mode:  | If a protection command has to be transmitted voice transmission or Data Pump<br>is interrupted briefly while the protection command is being transmitted. The protec-<br>tion command can thus be transmitted with the full transmission power available<br>(this only applies to devices with no other services). This operating mode saves<br>frequency space but results in shorter transmission ranges and higher signal trans-<br>mission times than with single purpose or multi-purpose operation. |


The following equipment combinations are possible:

- SWT 3000 remote at short distance with VF coupling to PowerLink. Keep the connecting cable between SWT 3000 and PowerLink as short as possible.
- SWT 3000 remote with fiber-optic connection to the PowerLink
- SWT 3000 integrated in PowerLink

# 2.4.4 Teleprotection Repeater Service

The protection-signaling system SWT 3000 via the PLC system PowerLink is realized as a point-to-point connection with the available binary input and output ports. A PLC repeater is required if the distance between PLC terminals is too far. On such a PLC repeater, all signals are forwarded unchanged.

If SWT 3000 is used as protection signal repeater (*Figure 2-66*), the transmission time is multiplied by the number of PLC hops.



[losol2is-120813-01.tif, 1, --\_

Figure 2-66 Solution with 2 x iSWT 3000 in repeater stations

The TP-Repeater provides the protection-signal forwarding on voice-frequency level (*Figure 3-75*) with the advantages of:

- No SWT 3000 hardware needed on repeater station.
- Reduction of transmission time because of no coding/decoding time carried out by the SWT 3000 in the repeater station. The additional transmission delay caused by the TP-Repeater is less than 14 ms.

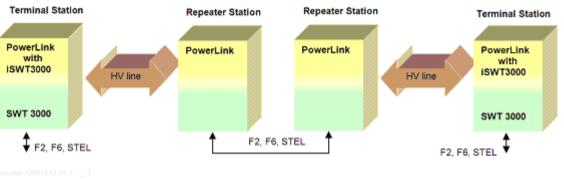



Figure 2-67 Solution with TP-Repeater

For both terminal stations, the PowerLink must be configured with service type F2 AMP, and all signals within the bandwidth of this service are forwarded between terminals by TP-Repeater stations. These signals include:

- Telephone (F2)
- Service telephone (STEL)
- Protection command (F6)



- - -

# NOTE

...

The noise is increased for each PLC hop because the signal is not regenerated by the TP-Repeater. Therefore, the maximum number of PLC hops is limited to 3 (2 repeater stations).

# 2.4.5 iSWT Equipment Versions

...

| 2.4.5.1 | Broadband Version        |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|---------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Application:             | In this equipment version, the desired frequencies are distributed over the complete available frequency space. It offers a high level of security against impulse interference and disturbance voltages and is the preferably application for protection signaling over PLC links. With PLC, transmission frequency space in the 2.5-kHz or 4-kHz channel arrangement is required for each operating direction. |  |
|         | PLC connections          | Variants VF1, VF1_M5A, VF3_M5A, VF1_CT, and VF3_CT are used with Power-<br>Link PLC systems depending on the assignment of the transmission band.                                                                                                                                                                                                                                                                |  |
| 2.4.5.2 | Narrow Band Version      |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|         | Application:             | Use in conjunction with PowerLink transmission is possible in<br>multi purpose operation (NB1 only). However, a smaller range<br>(transmit level distribution for all services) and less security<br>against interference must be expected compared with the broad-<br>band version.                                                                                                                             |  |
|         | Alternate Multi-Purpose: | Use in conjunction with PLC transmission is not possible in alter-<br>nate multi purpose operation.                                                                                                                                                                                                                                                                                                              |  |
|         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

# 2.4.6 Monitoring

The monitoring functions of the device are as follows:

• Operating voltage

All outgoing information (TX and command outputs) are blocked as long as the operating voltages of the equipment are not within the specified ranges.

- Switching command duration
   If a switching command with a duration of > 500 ms is received, the command outputs are disabled and an alarm is triggered. The switching command duration can be configured.
- Guard tone failure alarm If there is no valid command frequency present, a guard tone failure alarm is triggered after about 10 ms.
- Signal to Noise (S/N) ratio
   If the configured threshold of the S/N ratio is exceeded, a signal to noise alarm can be triggered. During alternate multi-purpose operation the S/N supervision is not performed.
- Transmit level monitoring The level of the transmit amplifier is monitored.
- Operating state The operating state of the device is displayed on the front panel with differently colored LED.
- Control contacts for external equipment
   A floating make contact or break contact (alarm contact) is available at the device terminals for signaling the following alarms:
  - Non-urgent alarm (NU-alarm, NUALR, or NDALR)
  - Receiver alarm (RXALR or EALR)
  - General alarm (GALR or GENALR)
- A Signaling module IFC-S can be provided additionally as an option. With the aid of this module, any operation of the local circuit can be signaled externally via an auxiliary contact.



# NOTE

In an iSWT 3000 maximum 1 IFC-S module is possible.

- Input pulse suppression
   In order to be accepted as an input signal, commands must be applied at the input for at least 1 ms.
   You can increase this minimum time to 100 ms in steps of 1 ms. The input pulse suppression can be configured.
- Minimum transmission duration Each command is transmitted for at least 15 ms. The minimum transmission time can be configured.

# 2.4.7 Protection Modes

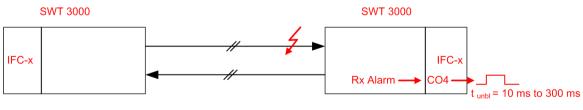
# 2.4.7.1 Overview

The PowerLink system has the following different protection operating modes:

Protection operating mode 1 (double system protection) for the analog and digital interface.
 The commands can be transmitted coded or uncoded with the application permissive or direct tripping (selectable per device).

- Protection operating mode 2 (single phase protection) for the analog and digital interface. The commands can be transmitted coded or uncoded with the application permissive or direct tripping (selectable per device).
- Protection operating mode 3 (4 commands with priority) for the analog and digital interface. The commands are transmitted uncoded with the application permissive or direct tripping (selectable per device).
- Protection operating mode 3a (4 independent commands, 4iC) for the transmission of 4 independent commands.

The commands are always transmitted coded with the application permissive or direct tripping (selectable per device).


- Protection operating mode 3b (2 plus 2).
   This mode offers the transmission of mode 1 twice. 2 commands are transmitted in the fast permissive underreach transfer trip, the other 2 are transmitted in the direct trip application and using the CT feature.
- Protection operating mode 4 (only one command active) for analog and digital interfaces.
   The commands can be transmitted coded or uncoded with the application permissive or direct tripping (selectable per device).
- Protection operating mode 5A (3 independent commands) for analog and digital interfaces.
   The commands are transmitted uncoded with the application permissive or direct tripping (selectable per device).
- Protection operating mode 6 (24 analog commands with priority) for analog multi command modules.<sup>1</sup>
- Protection operating mode 7a (8 Independent Commands, 8iC) This operating mode is only available for integrated SWT.

Available for the transmission of eight independent commands. Commands are always transmitted coded with the application permissive or direct tripping (selectable per iSWT device).

# 2.4.7.2 Unblocking Mode

The unblocking mode is a release procedure. Short circuits on overhead lines can cause a disturbance of PLC links. In this case, in order to warrant the release of the permissive protection device, the unblocking impulse  $(t_{unbl})$  is used.

If the signal to be transmitted does not reach the other line end, the receiver recognizes a fault and emits the unblocking impulse. The reason for the unreached signal is because a short circuit on the line causes excessive attenuation or reflection of the signal. For other modes, it is carried out via the interface module IFC-P/D command output 4 and connected to the unblocking logic of the protection relay. If there is a fault, the unblocking logic of the protection device ensures the release (for  $t_{unbl.} = 10$  ms to 300 ms).



[dwprunbm-010711-01.tif, 1, en\_US]

Figure 2-68 Principle of the Unblocking Mode

The unblocking function is activated when the time for the unblocking impulse is more than 0 ms ( $t_{unbl.} > 0$  ms).

<sup>&</sup>lt;sup>1</sup> not released in P3.5.x

# 2.4.7.3 iSWT Trip Frequencies

All trip frequencies of an iSWT can be measured only in the HF range. They are displayed with the corresponding service in the PowerSys information menu.

# 2.4.7.4 Mode 1 (Double System Protection)

Table 2-18Logic Scheme for the Mode 1

| Activated Input     | Transmis-<br>sion<br>Uncoded | Transmission<br>Coded | Command Output in the<br>Remote Station without<br>Unblocking | Command Output in the<br>Remote Station with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|---------------------|------------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| All off             | f <sub>g</sub>               | f <sub>g</sub>        | -                                                             | CO3                                                                                                |
| BI1                 | f <sub>1</sub>               | $f_s + f_4$           | CO1 + CO3                                                     | CO1                                                                                                |
| BI2                 | f <sub>2</sub>               | $f_s + f_5$           | CO2 + CO4                                                     | CO2                                                                                                |
| BI1 + BI2           | f <sub>4</sub>               | $f_s + f_6$           | CO1 + CO2 + CO3 + CO4                                         | CO1 + CO2                                                                                          |
| BI3                 | x <sup>2)</sup>              | x <sup>2)</sup>       | -                                                             | -                                                                                                  |
| -                   | -                            | -                     | Alarm signaling <sup>3)</sup>                                 | Alarm signaling +<br>unblocking impulse at CO4                                                     |
| BI4 <sup>4)</sup>   | f <sub>g</sub>               | f <sub>g</sub>        | -                                                             | CO3                                                                                                |
| USYNC <sup>5)</sup> | f <sub>s</sub>               | $f_s + f_7$           | -                                                             | -                                                                                                  |

<sup>1)</sup>If an invalid frequency or code is received, or in case of guard tone alarm: If  $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} =$  Duration of the unblocking impulse)

 $^{2)}x = No$  reaction (does not trigger alarm)

<sup>3)</sup>If an invalid frequency or code is received or in case of guard tone alarm

<sup>4)</sup>With AMP operation (PLC connection), signal S6 is also activated through **BI4** = **on** and voice transmission is interrupted.

<sup>5)</sup>Clock synchronization (USYNC)

# 2.4.7.5 Mode 2 (Single Phase Protection)

Table 2-19Logic Scheme for the Mode 2

| Activated Input                                                 | Transmission<br>Uncoded | Transmission<br>Coded | Command Output in<br>the Remote Station<br>without unblocking | Command Output in<br>the Remote Station<br>with Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|-----------------------------------------------------------------|-------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| All off                                                         | f <sub>g</sub>          | f <sub>g</sub>        | CO4                                                           | -                                                                                                  |
| BI1                                                             | f <sub>1</sub>          | $f_s + f_4$           | CO1                                                           | CO1                                                                                                |
| BI2                                                             | f <sub>2</sub>          | $f_s + f_5$           | CO2                                                           | CO2                                                                                                |
| BI3                                                             | f <sub>3</sub>          | $f_s + f_6$           | CO3                                                           | CO3                                                                                                |
| BI1 + BI2 or<br>BI1 + BI3 or<br>BI2 + BI3 or<br>BI1 + BI2 + BI3 | f <sub>4</sub>          | $f_s + f_7$           | CO1 + CO2 + CO3                                               | CO1 + CO2 + CO3                                                                                    |
| -                                                               | -                       | -                     | Alarm signaling <sup>2)</sup>                                 | Alarm signaling <sup>1)</sup> +<br>unblocking impulse at<br>CO4                                    |
| BI4 <sup>3)</sup>                                               | f <sub>g</sub>          | f <sub>g</sub>        | CO4                                                           | -                                                                                                  |

| Activated Input                                                                                                                                                                                        | Transmission<br>Uncoded | Transmission<br>Coded | Command Output in<br>the Remote Station<br>without unblocking | Command Output in<br>the Remote Station<br>with Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| USYNC                                                                                                                                                                                                  | f <sub>s</sub>          | $f_1 + f_4$           | -                                                             | -                                                                                                  |  |  |
| <sup>1)</sup> If an invalid frequency or code is received, or in case of guard tone alarm: If $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} = Duration of the unblocking impulse$ ). |                         |                       |                                                               |                                                                                                    |  |  |
| <sup>2)</sup> If an invalid frequency or code is received or in case of guard tone alarm.                                                                                                              |                         |                       |                                                               |                                                                                                    |  |  |
| <sup>3)</sup> In AMP operation (PL transmission is interru                                                                                                                                             |                         | S6 is also activate   | ed ( <b>energized</b> ) through I                             | BI4 = on and voice                                                                                 |  |  |

# 2.4.7.6 Mode 3 (4 Commands with Priority)



# NOTE

For this mode, coded tripping is not available.

In Mode 3, if more than one of the command inputs BI1 to BI4 is active, the command information is transmitted alternately. The signal inputs also have different priorities (BI1 = Prio1, BI2 = Prio2, BI3 = Prio3, and BI4 = Prio4). That is, if several signal inputs are active at the same time, the priority control determines the sequence in which the commands are transmitted.

| Activated Input | Transmission<br>Uncoded    | Transmission<br>Coded | Command Output<br>in the Remote<br>Station without<br>unblocking | Command Output<br>in the Remote<br>Station with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|-----------------|----------------------------|-----------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| All off         | f <sub>g</sub>             | -                     | -                                                                | -                                                                                                     |
| BI1             | f <sub>1</sub>             | -                     | CO1                                                              | CO1                                                                                                   |
| BI2             | f <sub>2</sub>             | -                     | CO2                                                              | CO2                                                                                                   |
| BI3             | f <sub>3</sub>             | -                     | CO3                                                              | CO3                                                                                                   |
| BI4             | f <sub>4</sub>             | -                     | CO4                                                              | CO4                                                                                                   |
| BI1 and/or      | f <sub>1</sub> and/or      | -                     | CO1 and/or                                                       | CO1 and/or                                                                                            |
| BI2 and/or      | f <sub>2</sub> and/or      |                       | CO2 and/or                                                       | CO2 and/or                                                                                            |
| BI3 and/or      | f <sub>3</sub> and/or      |                       | CO3 and/or                                                       | CO3 and/or                                                                                            |
| BI4             | f <sub>4</sub> alternating |                       | CO4 alternating <sup>2)</sup>                                    | CO4 alternating <sup>2)</sup>                                                                         |
| -               | -                          | -                     | Alarm signaling <sup>3)</sup>                                    | Alarm signaling <sup>1)</sup> +<br>unblocking impulse<br>at RXALR                                     |
| USYNC           | fs                         | -                     | -                                                                | -                                                                                                     |

| Table 2-20 | Logic Scheme | for the | Mode 3 |
|------------|--------------|---------|--------|
|            | Logic Scheme | ior the | moue J |

<sup>1)</sup>If an invalid frequency or code is received, or in case of guard tone alarm: If  $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} =$  Duration of the unblocking impulse). The unblocking impulse is distributed via the RXALR output of the ALR board.

<sup>2)</sup>If more than one input is active, command transmission is alternating. The priority control dictates the sequence in which the command frequencies are transmitted. Setting the output extension to  $\geq$  100 ms on the receive side prevents the output relays releasing during alternating command transmission. <sup>3)</sup>If an invalid frequency or code is received or in case of guard tone alarm.

### 2.4.7.7 Mode 3a (4 Independent Commands, 4iC)



# NOTE

This mode is always transmitted in the coded tripping function.

| Table 2-21 | Logic Scheme for the Mode 3a |
|------------|------------------------------|
|            | Logic Scheme for the Mode Su |

| Activated Input       | Transmis-<br>sion<br>Uncoded | Transmission Coded | Command Output in<br>the Remote Station <sup>1)</sup><br>without Unblocking | Command Output in<br>the Remote Station <sup>1)</sup><br>with Unblocking <sup>2)</sup><br>T <sub>unbl.</sub> > 0 |
|-----------------------|------------------------------|--------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| All off               | -                            | fg                 | -                                                                           | -                                                                                                                |
| BI1                   | -                            | $f_s + f_4$        | CO1                                                                         | CO1                                                                                                              |
| BI2                   | -                            | $f_1 + f_4$        | CO2                                                                         | CO2                                                                                                              |
| BI3                   | -                            | $f_2 + f_4$        | CO3                                                                         | CO3                                                                                                              |
| BI4                   | -                            | $f_3 + f_4$        | CO4                                                                         | CO4                                                                                                              |
| BI1 + BI2             | -                            | $f_s + f_5$        | CO1 + CO2                                                                   | CO1 + CO2                                                                                                        |
| BI1 + BI3             | -                            | $f_2 + f_5$        | CO1 + CO3                                                                   | CO1 + CO3                                                                                                        |
| BI1 + BI4             | -                            | $f_s + f_6$        | CO1 + CO4                                                                   | CO1 + CO4                                                                                                        |
| BI2 + BI3             | -                            | $f_1 + f_5$        | CO2 + CO3                                                                   | CO2 + CO3                                                                                                        |
| BI2 + BI4             | -                            | $f_3 + f_5$        | CO2 + CO4                                                                   | CO2 + CO4                                                                                                        |
| BI3 + BI4             | -                            | $f_2 + f_6$        | CO3 + CO4                                                                   | CO3 + CO4                                                                                                        |
| BI1 + BI2 + BI3       | -                            | $f_1 + f_6$        | CO1 + CO2 + CO3                                                             | CO1 + CO2 + CO3                                                                                                  |
| BI1 + BI2 + BI4       | -                            | $f_3 + f_6$        | CO1 + CO2 + CO4                                                             | CO1 + CO2 + CO4                                                                                                  |
| BI1 + BI3 + BI4       | -                            | $f_s + f_7$        | CO1 + CO3 + CO4                                                             | CO1 + CO3 + CO4                                                                                                  |
| BI2 + BI3 + BI4       | -                            | $f_1 + f_7$        | CO2 + CO3 + CO4                                                             | CO2 + CO3 + CO4                                                                                                  |
| BI1 + BI2 + BI3 + BI4 | -                            | $f_2 + f_7$        | CO1 + CO2 + CO3 +<br>CO4                                                    | CO1 + CO2 + CO3 + CO<br>4                                                                                        |
| USYNC                 | -                            | $f_3 + f_7$        | -                                                                           | -                                                                                                                |
| -                     | -                            | -                  | Alarm signaling <sup>3)</sup>                                               | Alarm signaling +<br>unblocking impulse at<br>RXALR <sup>2</sup>                                                 |

<sup>1)</sup>If output allocation 1:1 is adjusted.

<sup>2)</sup>If an invalid frequency or code is received, or in case of guard tone alarm: If  $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} =$  Duration of the unblocking impulse). The unblocking impulse is distributed via the RXALR output of the ALR board.

<sup>3)</sup>If an invalid frequency or code is received or in case of guard tone alarm.



# NOTE

In device configurations with EN100 and IFC (Mixed mode) the first input ports are always allocated to the pre-configured EN100 channels.

The remaining input ports (depending on the number of assigned EN100 channels) are allocated to the input ports of IFC module in ascending order, IFC-1/IN1, IFC-1/IN2, etc.

# 2.4.7.8 Mode 3b (2 plus 2)

The commands 1, 2 and 1+2 are permissive tripping commands, which are always transmitted uncoded. The commands 3, 4 and any combination with commands 3, 4 (e.g. 1+2+3+4) are direct tripping commands, which are always transmitted coded.

The transmission time of direct tripping command is approx. 5 ms longer than permissive tripping command in order to increase transmission security.

The mode 3b has been enhanced with the setting for fast transmission of permissive commands.

| Activated Input       | Transmission<br>Uncoded | Transmission<br>Coded | Command Output<br>in the Remote<br>Station without<br>Unblocking | Command Output<br>in the Remote<br>Station with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|-----------------------|-------------------------|-----------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| All off               | f <sub>g</sub>          | -                     | -                                                                | -                                                                                                     |
| BI1                   | f <sub>1</sub>          | -                     | CO1                                                              | CO1                                                                                                   |
| BI2                   | f <sub>2</sub>          | -                     | CO2                                                              | CO2                                                                                                   |
| BI1 + BI2             | f <sub>3</sub>          | -                     | CO1 + CO2                                                        | CO1 + CO2                                                                                             |
| BI3                   | -                       | $f_s + f_4$           | CO3                                                              | CO3                                                                                                   |
| BI4                   | -                       | $f_s + f_5$           | CO4                                                              | CO4                                                                                                   |
| BI3 + BI4             | -                       | $f_s + f_6$           | CO3 + CO4                                                        | CO3 + CO4                                                                                             |
| BI1 + BI3             | -                       | $f_1 + f_4$           | CO1 + CO3                                                        | CO1 + CO3                                                                                             |
| BI1 + BI4             | -                       | $f_1 + f_5$           | CO1 + CO4                                                        | CO1 + CO4                                                                                             |
| BI1 + BI3 + BI4       | -                       | $f_1 + f_6$           | CO1 + CO3 + CO4                                                  | CO1 + CO3 + CO4                                                                                       |
| BI1 + BI2 + BI3       | -                       | $f_1 + f_7$           | CO1 + CO2 + CO3                                                  | CO1 + CO2 + CO3                                                                                       |
| BI2 + BI3             | -                       | $f_2 + f_4$           | CO2 + CO3                                                        | CO2 + CO3                                                                                             |
| BI2 + BI4             | -                       | $f_2 + f_5$           | CO2 + CO4                                                        | CO2 + CO4                                                                                             |
| BI2 + BI3 + BI4       | -                       | $f_2 + f_6$           | CO2 + CO3 + CO4                                                  | CO2 + CO3 + CO4                                                                                       |
| BI1 + BI2 + BI4       | -                       | $f_3 + f_4$           | CO1 + CO2 + CO4                                                  | CO1 + CO2 + CO4                                                                                       |
| BI1 + BI2 + BI3 + BI4 | -                       | $f_3 + f_5$           | CO1 + CO2 + CO3 +<br>CO4                                         | CO1 + CO2 + CO3 +<br>CO4                                                                              |
| USYNC                 | -                       | $f_s + f_7$           | -                                                                | -                                                                                                     |
| -                     | -                       | -                     | Alarm signaling <sup>2)</sup>                                    | Alarm signaling +<br>unblocking impulse<br>at RXALR <sup>1</sup>                                      |

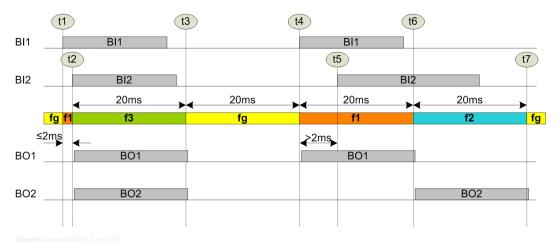
Table 2-22Logic Scheme for the Mode 3b

<sup>1)</sup>If an invalid frequency or code is received, or in case of guard tone alarm: If  $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} =$  Duration of the unblocking impulse). The unblocking impulse is distributed via the RXALR output of the ALR board.

<sup>2)</sup>If an invalid frequency or code is received or in case of guard tone alarm.

# Command Duration of Mode 3b

The single command applied at the device input is transmitted for at least 15 ms or 20 ms. The next command is then transmitted, or the same command is continuously transmitted if no other command input active. If next command input is active at same time or within the time interval of 2 ms, the transmit signal is shifted to the frequency corresponding to this input combination. Otherwise, the next command will be transmitted after minimal transmission duration.



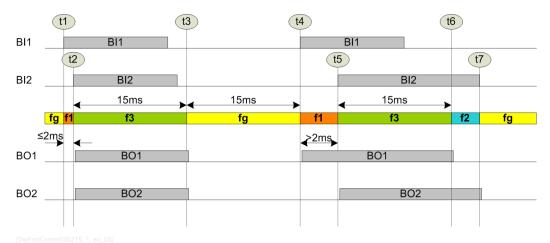


Figure 2-69 Permissive Command 1+2 Transmission

 Table 2-23
 Command Transmission Timeline Description

| Timeline | Description                                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------------------------------|
| t1       | BI1 active, start transmission of command 1.                                                                                       |
| t2       | BI2 active within time interval 2 ms, switch to transmit command combination of 1+2, BO1+2 active after command transmission time. |
| t3       | Transmission duration time-out, BO1+2 inactive after command transmission time.                                                    |
| t4       | BI1 active, start transmission of command 1.                                                                                       |
| t5       | BI2 active after time interval 2 ms, continue transmission of command 1.                                                           |
| t6       | Transmission duration time-out, switch to transmit command 2, BO1 inactive after command transmission time.                        |
| t7       | Transmission duration time-out, BO2 inactive after command transmission time, switch to transmit guard command.                    |

It is possible to enable fast transmission of permissive command with additional setting in PowerSys as below:

- "BI1+2 interrupt single command BI1 or BI2 without delay" is enabled. Permissive command 1 or 2 transmission can switch to input combination 1+2 without waiting for minimal transmission duration time-out.
- Transmission duration for permissive command is set to 20 ms. Permissive command is transmitted for at least 20 ms.
- Pulse suppression for permissive command is set to 0 ms. Permissive command input is accepted without additional delay by suppression timer.





### Table 2-24 Fast Command Transmission Timeline Description

| Timeline | Description                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|
| t1       | BI1 active, start transmission of command 1.                                                                                          |
| t2       | BI2 active within time interval 2 ms, switch to transmit command combination of 1+2,<br>BO1+2 active after command transmission time. |
| t3       | Transmission duration time-out, BO1+2 inactive after command transmission time.                                                       |
| t4       | BI1 active, start transmission of command 1, BO1 active after command transmission time.                                              |
| t5       | BI2 active after time interval 2 ms, switch to transmit command combination of 1+2,<br>BO2 active after command transmission time.    |
| t6       | Transmission duration time-out, switch to transmit command 2, BO1 inactive after command transmission time.                           |
| t7       | BI2 inactive, switch to transmit guard command, BO2 inactive after command transmis-<br>sion time.                                    |

### 2.4.7.9 Mode 4 (Only One Command Active)

Table 2-25Logic Scheme for the Mode 4

| Activated Input | Transmission<br>Uncoded      | Transmission<br>Coded       | Command Output<br>in the Remote<br>Station without<br>Unblocking | Command Output<br>in the Remote<br>Station with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|-----------------|------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| All off         | f <sub>g</sub>               | f <sub>g</sub>              | -                                                                | -                                                                                                     |
| BI1             | f <sub>1</sub>               | $f_s + f_4$                 | CO1                                                              | CO1                                                                                                   |
| BI2             | f <sub>2</sub>               | $f_1 + f_4$                 | CO2                                                              | CO2                                                                                                   |
| BI3             | f <sub>3</sub>               | $f_2 + f_4$                 | CO3                                                              | CO3                                                                                                   |
| BI4             | f <sub>4</sub>               | $f_3 + f_4$                 | CO4                                                              | CO4                                                                                                   |
| BI1 + BI2 or    | f <sub>g</sub> <sup>2)</sup> | f <sub>g</sub> <sup>2</sup> | -                                                                | -                                                                                                     |
| BI1 + BI3 or    | 5                            | 5                           |                                                                  |                                                                                                       |
| BI2 + BI3 or    |                              |                             |                                                                  |                                                                                                       |
| BI1 + BI2 + BI3 |                              |                             |                                                                  |                                                                                                       |
| BI4 + BIx       | f <sub>4</sub>               | $f_3 + f_4$                 | CO4                                                              | CO4                                                                                                   |

| Activated Input                                                                 | Transmission<br>Uncoded                                                              | Transmission<br>Coded | Command Output<br>in the Remote<br>Station without<br>Unblocking | Command Output<br>in the Remote<br>Station with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>1)</sup> |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| -                                                                               | -                                                                                    | -                     | Alarm signaling <sup>3)</sup>                                    | Alarm signaling <sup>1)</sup> +<br>unblocking impulse<br>at RXALR                                     |
| USYNC                                                                           | f <sub>s</sub>                                                                       | $f_s + f_7$           | -                                                                | -                                                                                                     |
| unblocking impulse<br>RXALR output (ALR1-<br><sup>2)</sup> Input error. If more | (t <sub>unbl.</sub> = Duration of t<br>-3 resp. ALR2-3 conta<br>than one input is ac |                       | ed.                                                              |                                                                                                       |

# Explanation

The PU4 checks the state of input signals BI1 to BI4 from the protection device for **plausibility**. Only 1 of the signal inputs BI1 to BI3 can be active. If more than 1 of the signal inputs BI1 to BI3 is active and BI4 is inactive, an **input error** occurs (prohibited input combination).

**BI4 has priority** and is treated independently of the states of BI1 to BI3. That is, if BI4 is active, the state of BI1 to BI3 is not significant. If BI4 is active, the frequency f4 is transmitted regardless of the state of BI1 to BI3. The guard tone  $(f_g)$  is transmitted in the case of an **input error** and an entry is generated in the event memory with specification of the **prohibited input combination**. The unblocking function can be activated for Mode 4 in the same way as with the other operating modes.

# 2.4.7.10 Mode 5A (3 Independent Commands)



# NOTE

For this mode, coded tripping is not available.

3 signal inputs are available for the operating mode **3 independent commands**. 9 frequencies are needed for transmitting **3 independent commands** via the analog line interface.

At the transmit end, every possible combination of signal inputs BI1 to BI3 is permanently assigned to a protection frequency.

At the receive end, every protection frequency can be assigned to one or more signal outputs (CO1 to CO4).

| Activated Input | Transmission<br>Uncoded | Transmission<br>Coded | Command Output<br>in the Remote<br>Station <sup>1)</sup> without<br>Unblocking | Command Output<br>in the Remote<br>Station <sup>1)</sup> with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>2)</sup> |
|-----------------|-------------------------|-----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| All off         | f <sub>g</sub>          | -                     | -                                                                              | -                                                                                                                   |
| BI1             | f <sub>1</sub>          | -                     | CO1                                                                            | CO1                                                                                                                 |
| BI2             | f <sub>2</sub>          | -                     | CO2                                                                            | CO2                                                                                                                 |
| BI3             | f <sub>3</sub>          | -                     | CO3                                                                            | CO3                                                                                                                 |
| BI1 + BI2       | f <sub>4</sub>          | -                     | CO1 + CO2                                                                      | CO1 + CO2                                                                                                           |
| BI1 + BI3       | f <sub>5</sub>          | -                     | CO1 + CO3                                                                      | CO1 + CO3                                                                                                           |
| BI2 + BI3       | f <sub>6</sub>          | -                     | CO2 + CO3                                                                      | CO2 + CO3                                                                                                           |

| Table 2-26 | Logic Scheme for | the Mode 5A |
|------------|------------------|-------------|
|            | Logic Scheme for | the mode JA |

| Activated Input | Transmission<br>Uncoded | Transmission<br>Coded | Command Output<br>in the Remote<br>Station <sup>1)</sup> without<br>Unblocking | Command Output<br>in the Remote<br>Station <sup>1)</sup> with<br>Unblocking<br>T <sub>unbl.</sub> > 0 <sup>2)</sup> |
|-----------------|-------------------------|-----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BI1 + BI2 + BI3 | f <sub>7</sub>          | -                     | CO1 + CO2 + CO3                                                                | CO1 + CO2 + CO3                                                                                                     |
| USYNC           | f <sub>s</sub>          | -                     | -                                                                              | -                                                                                                                   |
| -               | -                       | -                     | Alarm signaling <sup>3)</sup>                                                  | Alarm signaling <sup>2)</sup> +<br>unblocking impulse<br>at RXALR                                                   |

<sup>1)</sup>If output allocation 1:1 is adjusted.

<sup>2)</sup>If an invalid frequency or code is received, or in case of guard tone alarm: If  $t_{unbl.} > 0$ , output of the unblocking impulse ( $t_{unbl.} =$  Duration of the unblocking impulse). The unblocking impulse is distributed via the RXALR output of the ALR board.

<sup>3)</sup>If an invalid frequency or code is received, or in case of guard tone alarm.

# 2.4.7.11 Mode 6 (Multi Command Modules)

The MCM (multi command modules) <sup>2</sup>extend the command transmission of the (i)SWT 3000 via the analog interface up to 24.

MCM modules use the proctection command mode 6. The commands are transmitted serial and according to the programmed priority.



# NOTE

The MCM functionaltiy is only available for PowerLink 100.

For further details see chapter 6 MCM Function.

#### 2.4.7.12 Mode 7a (8 Independent Commands, 8iC)

This operation mode is only available for integrated SWT.

It allows the transmission of eight independent commands. Commands are always transmitted coded with the application permissive or direct tripping (selectable per device). There are 255 command combinations. Every possible combination of signal input is assigned to a protection frequency and are defined as code number (Cxxx) in below table:

| code no. | BI8   | BI7 | BI6 | BI5 | BI4 | BI3 | BI2 | BI1 |
|----------|-------|-----|-----|-----|-----|-----|-----|-----|
| C1       | -     | -   | -   | -   | -   | -   | -   | Х   |
| C2       | -     | -   | -   | -   | -   | -   | Х   | -   |
| С3       | -     | -   | -   | -   | -   | -   | Х   | Х   |
| C4       | -     | -   | -   | -   | -   | Х   | -   | -   |
|          |       |     |     |     |     |     |     |     |
| C254     | Х     | Х   | Х   | Х   | Х   | Х   | Х   | -   |
| C255     | Х     | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| C256     | USYNC |     |     |     |     | 1   |     |     |

Table 2-27Code number definition for all signal inputs

<sup>2</sup> not released in P3.5.x

# 2.4.7.13 Command Duration for Single Purpose Operation

# Mode 1, Mode 2, Mode 3a, Mode 3b, Mode 4, Mode 5A

In these modes, a signal applied to the device input is transmitted as long as the input circuit is activated. If another input signal is received while one is still applying, the transmit signal is shifted to the frequency corresponding to this input combination. The signal output at the receive side can optionally be interrupted at the receiver output after 500 ms.

If the output relay must be activated for a minimum time on reception of a command, an increase in the command output time can be set. The increase in the command output time can be set in steps of 5 ms up to maximum 2000 ms.

# Mode 3 - Four Commands with Priority

In this mode, any command applied at the device input is transmitted for 20 ms or for the time set in time slot. The next command is then transmitted or the same command is transmitted again (only if there is no other command active at the inputs) depending on the priority. The command output can optionally be extended at the receiver output in steps of 5 ms to maximum 2000 ms. To avoid that the output relays drops a prolongation time  $\geq$  100 ms must be set. This extension makes it possible to transmit commands from all input combinations depending on priority.

### 2.4.7.14 Command Duration for Alternate Multi-Purpose Operation

The command duration for SWT 3000 is automatically adjusted to a default value of 1000 ms. Inputs can be activated for a longer time but the transmission of the signal is limited to 1000 ms. The transmission of the commands is switched off due to the limited command duration even though the command is active at the input of the device.

# 2.4.8 The PU4 Module

# 2.4.8.1 Overview

The Processing Unit PU4 is the central control module of the SWT 3000 unit.

The protection commands are received via an interface module IFC-D or IFC-P and/or an EN100 module. At the transmit side, PU4 converts protection commands or commands at digital transmission lines into one of the following cases:

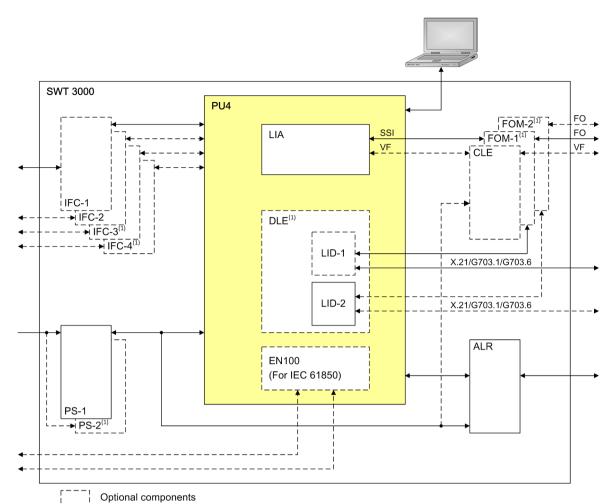
- Tones of a defined frequency
- A digital code in case of digital transmission

If the PU4 is housed in a stand-alone SWT 3000 unit, the commands are transmitted to the remote station by:

- analog transmission via CLE and/or
- digital transmission via the Digital Line Interfaces (LID) and/or
- digital transmission via fiber-optic module (FOM)

It is also possible to transmit commands of a stand-alone SWT 3000 unit via a PowerLink PLC system by:

- connecting the CLE with a VFx- Interface of the PowerLink or
- a fiber-optic connection with FOM modules in SWT 3000 and PowerLink


The PU4 of an integrated (i)SWT 3000 unit in a PowerLink PLC system is processing the commands via the CSPi for transmission via the high voltage line of the PLC link. Optionally a digital transmission via the LID- Interface is possible with additional digital transmission lines, e.g. for a secondary transmission path.



#### NOTE

The Digital Line Equipment DLE and the fiber-optic connection with FOM modules are applicable in Power-Link 100 only.

**Functional Description** 



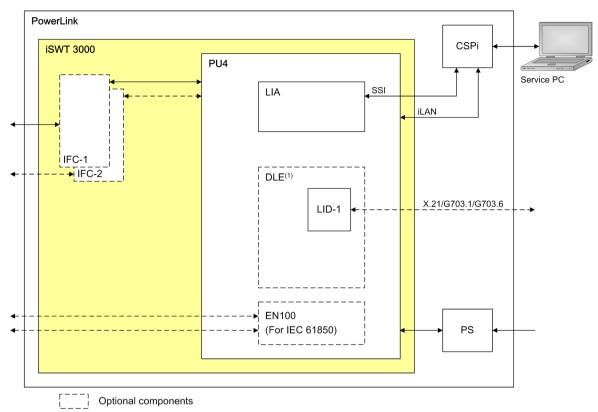
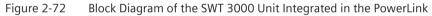

\_\_\_\_

Figure 2-71 Block Diagram of the SWT 3000 Unit


- 1) for PowerLink 100
- IFC Interface command module
- PS Power supply
- PU4 Processing unit module
- LIA Analog line interface
- DLE Digital line equipment
- LID Digital line interface
- EN100 Ethernet EN100 module for IEC 61850
- FOM Fiber-optic module
- CLE Copper line equipment
- ALR Alarm module
- SSI Serial synchronous interface
- VF Voice frequency
- FO Fiber-optic connection

A DLE submodule can optionally expand the PU4 module for digital transmission paths accommodating the 2 digital line interfaces LID-1 and LID-2. These interfaces are used for transmitting the protection commands via a digital network (SDH/PDH). They can also be directly connected without network. You can also connect the LID to a multiplexer system via a FOM module.

If the PU4 and the IFC modules are integrated in the PowerLink unit, the frequencies are forwarded directly to the CSPi module via the SSI interface without D/A - A/D conversion.

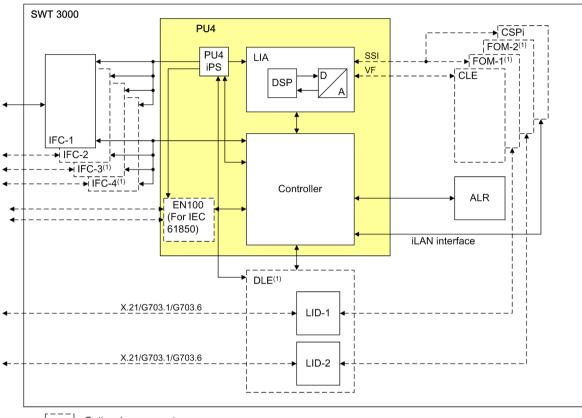


[dwbliswt-051011-01.tif, 2, en\_US



| 1)    | for PowerLink 100                   |
|-------|-------------------------------------|
| IFC   | Interface command module            |
| PU4   | Processing unit module              |
| LIA   | Analog line interface               |
| DLE   | Digital line equipment              |
| LID   | Digital line interface              |
| EN100 | Ethernet EN100 module for IEC 61850 |
| SSI   | Serial synchronous interface        |
| ilan  | Internal LAN                        |
| CSPi  | Central signal processing unit      |
| PS    | Power supply                        |
|       |                                     |

At the receive side, the incoming commands are received in the VF range or digital depending on the operating mode.


These commands are converted into one of the following cases:

- Binary protection commands, and forwarded to the IFC-D/P module for command output.
- GOOSE command and forwarded to EN100 module for command output

Apart from coding and decoding of protection commands, the PU4 also performs various **monitoring functions**.

For example, the receive and transmit levels are fed via measuring points to the PU4 where they are compared with the permissible values. If these levels are not reached, the PU4 activates an alarm. In the normal situation, that is, if there is no protection command transmitted, the guard signal is sent to the remote station.

Loss of a wanted signal (command or guard tone) triggers a receive alarm at the receive side and causes the relay outputs of the device to block. This alarm state can only be canceled by receiving the guard signal again. When the unit is started, a self-test is carried out. A watchdog also monitors the functionality of the internal Digital Signal Processor (DSP). If there are failures, the transmitter output and the relay outputs of the unit are blocked. An overview of the functional units of the PU4 is shown in the following diagram:



Continuation Optional components

dwfunpu4-051011-01.tif, 2, en\_US]

| Figure 2-73 | Functional Units of the PU4 Module |
|-------------|------------------------------------|
|-------------|------------------------------------|

| 1)      | for PowerLink 100                                   |
|---------|-----------------------------------------------------|
| IFC     | Interface command module                            |
| PU4 iPS | Internal power supply of the processing unit module |
| PU4     | Processing unit module                              |
| LIA     | Analog line interface                               |
| DSP     | Digital signal processor                            |
| DLE     | Digital line equipment                              |
| LID     | Digital line interface                              |
| EN100   | Ethernet EN100 module for IEC 61850                 |
| FOM     | Fiber-optic module                                  |
| CLE     | Copper line equipment                               |
| ALR     | Alarm module                                        |
| CSPi    | Central signal processing unit                      |
| SSI     | Serial synchronous interface                        |
| VF      | Voice frequency                                     |

# 2.4.8.2 Functional Units

The PU4 module consists of the following functional units:

- Internal power supply
- Controller
- Analog line interfaces with digital signal processor
- Digital line equipment, which intercommunicates via an interface (for PowerLink 100)
- Ethernet EN100 module (optional)

# 2.4.8.3 Internal Power Supply

The internal power supply generates the voltages needed on the module that are not fed externally:

- Supply voltages for the analog line interface
- Switched 12 V supply voltage for the relays on the IFC modules

The 12 V operating voltage for the IFC modules can be switched from the controller and allows selective disabling of the output relays. The operating voltages on the module are monitored. Loss of a voltage generates a reset and an alarm on the module.

# 2.4.8.4 Controller

The controller is the central element of the PU4. It controls communication with the analog line interface, the digital line unit, the local (service) interface for the service PC, the LAN, and the alarm interface. You can load equipment variants and user data via the local interface or via the iLAN interface. The service program PowerSys is responsible for the administration of the possible equipment variants for the DSP. The controller carries out the entire administration of memory space. Available RAM/PROM:

- NV-RAM for event recorder
- SRAM for working memory
- FPROM for program memory

The controller also implements the data exchange in the transmit and receive direction with the interface module IFC-D/P and IFC-S. The controller reads the data from the IFC module, which is fed via an input buffer into a register. The controller writes the data relating to the IFC module also into this register per interrupt. The data reaches the IFC module via an output buffer.

If an error is detected in the SWT 3000 unit, a message to this effect is output via an interface to the alarm module ALR. If the PU4 is used in PowerLink, the alarms are forwarded to the CSPi and the alarm is output on the ALR module of PowerLink.

# 2.4.8.5 Analog Line Interface

The LIA sets up the connection of the module to the analog protection command transmission and consists of a DSP, operational amplifiers, and analog switches.

DSP generates the necessary command frequencies and communicates with the transmission interfaces. Depending on the equipment variant, these transmission interfaces are the interfaces to the Intermediate Frequency (IF) modules or to the CLE.

All necessary information is loaded with the equipment variant via the service program. The controller writes the information into the DSP via an interface. During operation, this interface is used to transmit protection commands and parameters. The controller can read and write DSP memory cells, and can also transfer commands and trigger various interrupts.

The controller triggers an interrupt in the DSP for the transmission of outgoing protection commands. For the receiving of incoming protection commands, the DSP triggers an interrupt in the controller. The controller continuously monitors the functionality of the DSP with a watchdog function.

# 2.4.8.6 Control and Display Elements of the PU4 Module

Control and display elements are mounted on the module. The front panel covers some of them.

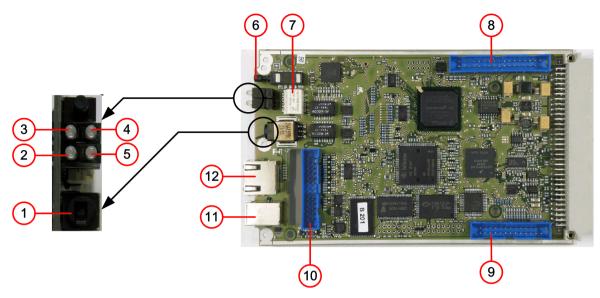





Figure 2-74 Position of Jumpers, Input and Signaling Elements on the PU4 Module

- 1 S2: Power ON/OFF
- 2 LED OK/GBAL
- LED Status Interface LID-2 (for PowerLink 100) 3
- 4 LED Status Interface LID-1 (for PowerLink 100)
- 5 LED Status Interface LIA
- 6 S1: Reset button
- 7 S3 (3.1 to 3.4)
- 8 Connection on DLE (for PowerLink 100)
- 9 Connection on DLE (for PowerLink 100)
- 10 Connection of the IFC Modules
- 11 LCT: Service Interface (USB)
- 12 NMS: Ethernet Interface
- The 2-color LIA LED is needed for displaying the status of the LIA. The following states can be displayed:

| Table 2-28 | Significance of the LIA LED Displays |
|------------|--------------------------------------|
|------------|--------------------------------------|

| State          | Significance                                                                             |
|----------------|------------------------------------------------------------------------------------------|
| Off            | LIA is not configured                                                                    |
| Red static     | LIA is not ready for operation (for example, primary path receiver alarm)                |
| Red flashing   | LIA is only operational to a limited extent (for example, secondary path receiver alarm) |
| Green static   | LIA is working correctly and used as main path.                                          |
| Green flashing | Secondary path                                                                           |



# NOTE

Red flashing always means that the secondary path is not working correctly.

The 2-color LID-1 LED is used for displaying the status of the LID-1. The following states can be displayed: •

| State          | Significance                                                                |
|----------------|-----------------------------------------------------------------------------|
| Off            | LID-1 is not configured                                                     |
| Red static     | LID-1 is not ready for operation                                            |
| Red flashing   | LID-1 is only operational to a limited extent (for example, receiver alarm) |
| Green static   | LID-1 is functioning correctly                                              |
| Green flashing | Secondary path                                                              |

#### Table 2-29Significance of the LED LID-1 Displays

 The 2-color OK/BGAL LED is needed for displaying the PU4 module status. The following states can be displayed:

| Table 2-30 | Significance of the OK/BGAL LED Displays |
|------------|------------------------------------------|
|------------|------------------------------------------|

| State               | Significance                                                 |
|---------------------|--------------------------------------------------------------|
| Off                 | Power supply is disconnected or faulty                       |
| Red static          | Module is not ready for operation                            |
| Red flashing        | General alarm module is only operational to a limited extent |
| Green static        | Normal operation                                             |
| Green slow flashing | Test operation                                               |
| Green fast flashing | Ethernet port of PU4 is not ready for operation              |

#### 2.4.8.7 Access to the Integrated SWT 3000 (iSWT)

In this operating mode, the local (service) interface is connected to the controller of the CSPi module of the PowerLink unit via iLAN. The user-service interface is located on the CSPi from which the parameters of the PU4 module are also set. The USB plug on the front panel of the PU4 is not used.

#### 2.4.8.8 Event Memory and Real-Time Clock

Protection commands and alarms are provided with time and date and a registration number before they are entered in the event memory. Up to 8192 entries with a time resolution of 1ms are possible. They are read out by the service PC and this is also possible from the distant station by means of Remote Monitoring. The following events are entered:

- Incoming protection commands from IFC-D/P and EN100
- Outgoing protection commands to the IFC-D/P and EN100
- Detected alarms
- Program restart
- Changing date and/or time
- Changing the configuration

In case of an overflow the oldest entry in the event memory is overwritten.

The **real-time clock** supplies the time marker for the particular entries. It is possible to synchronize the local time with an external signal (SYNC). The synchronizing pulse is fed into the SWT 3000 unit via a surge-proof, floating signal input on the alarm module ALR/ALRS. Synchronization can be configured in minute or hourly intervals with the positive or negative edge of the pulse.

The external SYNC pulse is recognized by the PU4 controller of the SWT and processed. The evaluation of the rising or falling pulse edge can be parameterized.

The local sync pulse must be received in a **1 minute** interval via signal input USYNC. Clock synchronization can be done when:

- second > 35 (time is set to xx:xx:59.99) or
- second < 25 (time is set to xx:xx:00.00)

With the ALR module the clock synchronization is also possible with IRIG-B message. For more information refer to Chapter *Commissioning*.

Event memory and clock module are buffered so that no data is lost in the event of a power failure (data retained for about 2 hours without supply voltage).

### 2.4.8.9 Master - Slave Clock Synchronization

It is also possible to carry out a clock synchronization (USYNC) between the 2 iSWT of a transmission route with a control command. For this purpose the PU4 modules of a transmission route must be configured as USYNC master and USYNC slave.

The USYNC master transmits a synchronizing tone (fs) to the USYNC slave instead of the guard tone. If the time in the slave when receiving the fs is

- more than XXh59m01s the time is adjusted to XXh59m59s99
- less than XXh:01m it is synchronized, to XXh00m00s00.

The line synch. hour is adjustable and has to be the same for Master and Slave device.

# 2.4.8.10 The Digital Line Equipment (DLE) for PowerLink 100



Figure 2-75 The digital line equipment DLE

The digital line interface LID-1 of the iSWT is implemented on module DLE. This interface enables the transmission of the protection commands via a digital network (SDH/PDH). The data for the remote maintenance and the service channel interfaces and the system-internal control information are transmitted additionally. The DLE module is designed as a self-contained PC board connected electrically to the PU4 via a ribbon cable and mechanically via spacer sleeves. All external interfaces are routed via the PU4 module. The following hardware interfaces are available:

The following hardware interfaces are available:

- X.21 (64 Kbps)
- G703.1 (64 Kbps)
- G703.6 (2 Mbps)



# NOTE

Multipath transmission can be implemented by using the analog interface LIA on the PU4, and LID-1.

# 2.4.9 The Interface Modules IFC

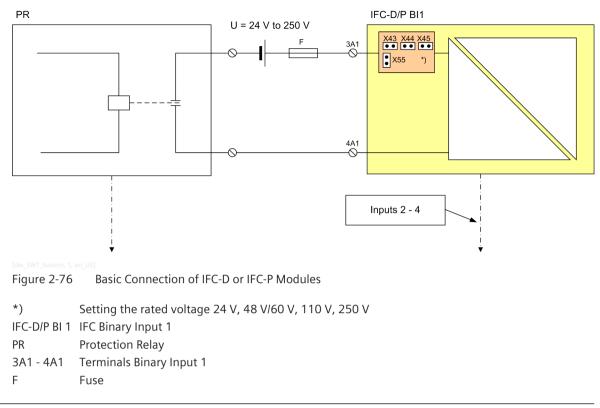
### 2.4.9.1 General Information

### Overview

The interface module IFC is used for communication between protection equipment and the iSWT. The following versions are available:

- Interface Command module IFC-D (high contact load, e.g. for direct tripping)
- Interface Command module IFC-P (normal contact load, e.g. for permissive tripping)
- Interface Command module IFC-S (for signaling)

### IFC Module Equipment in integrated SWT 3000 systems


For an integrated SWT 3000 unit in PowerLink you can insert up to 2 IFC-D or IFC-P modules into the module slots IFC-1 and IFC-2 of the PowerLink subrack. Slot IFC-2 alternatively can be equipped with an IFC-S module. If 2 IFC-D/P modules are equipped they can be used for contact doubling. The inputs are not used because the maximum number of commands is 4. In this case, activate the function Contact doubling in the Special allocation list box.

### 2.4.9.2 Description of Operation

#### Overview

| IFC-D | The IFC-D module has 4 binary inputs for receiving contact information from the protection devices. Up to 4 circuit breaker coils can also be operated with this module. It is thus possible to implement the trigger commands <b>directly</b> from a distant station, for example, without a protection device. This module is preferably used for direct tripping mode but the use in protection systems with permissive tripping is also possible.                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFC-P | The IFC-P module is preferably used in protection systems with permissive tripping. When observing the maximum switching current of the relays, direct tripping of circuit breaker coils is also possible (refer to <i>Technical Data</i> ). There are similarly 4 binary inputs and 4 command contact outputs available. The contact rating of the output relays is lower compared to the IFC-D module but operating times are shorter. IFC-D and IFC-P modules are pin-compatible. |
| IFC-S | The IFC-S is used for signaling. Each command input as well as each command output in the corresponding IFC-D/P is activating a relay on the IFC-S.<br>The IFC-S module is used for:                                                                                                                                                                                                                                                                                                 |
|       | <ul> <li>Signaling commands that are entered (binary inputs)</li> <li>Signaling commands that are output (binary output)</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |

**Connection Principle** 





# NOTE

Each interface needs its own shielded, twisted wire cable. The binary Input cabeling shall not run in parallel with other power supply or heavy load cables.

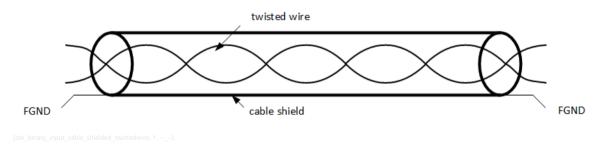
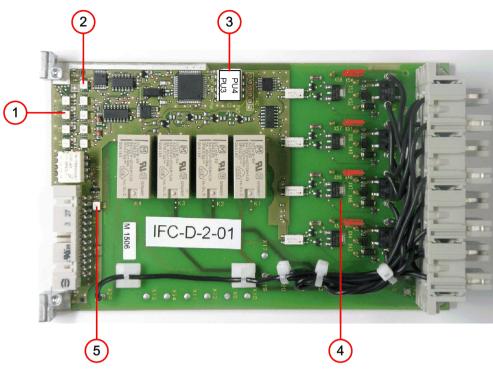



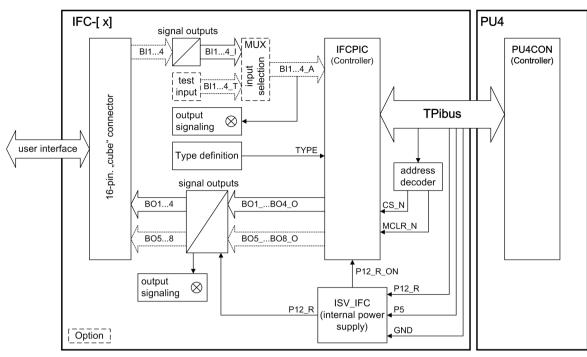


Figure 2-77 Shielded twisted wire cable



#### [scjumper-220513-01.tif, 2, en\_US

Figure 2-78 Signaling elements and DIL-switches of the IFC module, e.g. IFC-D


- (1) LED H1 to H4 (red): activated outputs LED H5 to H8 (green): activated inputs
- (2) Test Operation Display (H10)
- (3) S2: IFC Slot Address Selection (S2.1, S2.2) and PU3 / PU4 switch:
  - S2.3: closed/down PU3
  - S2.3: open/up PU4
- (4) Jumpers X43 to X58
- (5) Operating LED (H9)



[scitcpju-300112-01.tif, 1, en\_US] Figure 2-79 IFC-P Module

# Functional Description

2.4 Integrated Protection Signal Transmission with iSWT 3000



[dwifcblc-051011-01.tif, 1, en\_U

Figure 2-80 Block Diagram of IFC Modules

| TPi-Bus  | Internal bus                   |
|----------|--------------------------------|
| MUX      | Multiplexer                    |
| ISV_IFC  | Internal power supply IFC      |
| P12_R    | 12-V supply voltage for relays |
| P5       | 5-V supply voltage             |
| P12_R_ON | 12-V supply voltage available  |

#### 2.4.9.3 Controller

A controller is used on all IFC interface modules for the following functions:

- Control of the data traffic from/to the PU4
- Sampling the signal inputs 1 to 4 and triggering an interrupt at the PU4 in case of changes.
- Switching the command relays via the signal outputs.
- Supervision functions

The controller is connected to the PU4 controller via an internal bus.

# 2.4.9.4 Test Mode

#### Overview

In order to switch over from normal to test mode with the service program PowerSys, select the **IFC-Test** in the **Test mode** list box under **Command interface**. In this mode, you can enter commands on the IFC module for each input with the Dual Inline Package (DIP) switches S1.1 to S1.4.

| Interface          |                  |   |  |
|--------------------|------------------|---|--|
| IFC-1              | IFC-D/P          | • |  |
| IFC-2              | IFC-D/P          | • |  |
| IFC-3              |                  | • |  |
| IFC-4              |                  |   |  |
| Special allocation | Contact doubling | • |  |
| Test mode          | Off              | • |  |
|                    | Off<br>IFC-Test  |   |  |

#### [sc\_ifc\_test, 1, --\_--]

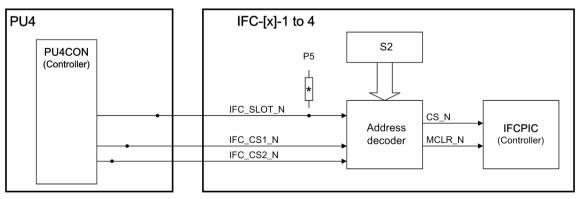
Figure 2-81 Selection of Testmode > IFC-Test



# NOTE

For security reasons, after switching over to test mode, the controller signals all inputs as **off** regardless of the actual switch position. You can reach the state **on** by switching from **off** to **on** position. All switches must be in the **off** position beforehand. As long as test mode is active the IFC inputs are disabled.

#### Displays


The activated output relays are displayed with LEDs H1 to H4 (red), and the activated binary inputs with LEDs H5 to H8 (green).

Refer to 2.4.9.2 Description of Operation for more details.

### 2.4.9.5 Slot and Module Identifier

The new IFC modules can also communicate with the old TPi-Bus (PU3). For this purpose, no additional signal from PU4CON (PU4 controller) can be used for IFC addressing.

A DIP switch S2 is added to each IFC module to indicate its slot address.



[dwifcadd-051011-01.tif, 1, en\_US]

Figure 2-82 IFC Addressing Used for SWT 3000

| Switch | Function                   |
|--------|----------------------------|
| S2.1   | IFC slot address selection |
| S2.2   | IFC slot address selection |
| S2.3   | PU3 or PU4 selection       |
| S2.4   | Not connected              |

Table 2-31Function of S2 Switch

IFC slot address is configured by changing the state of DIL switches, and it is independent of the position where it is located. The 4 slot addresses are mapped into different switching states. The assembled IFCs must have individual addressing, even when they are not configured.

### Table 2-32 IFC Slot Address

| Selection | S2.1 Position              | S2.2 Position              |
|-----------|----------------------------|----------------------------|
| IFC-1     | Open = up position = OFF   | Open = up position = OFF   |
| IFC-2     | Close = down position = ON | Open = up position = OFF   |
| IFC-3     | Open = up position = OFF   | Close = down position = ON |
| IFC-4     | Close = down position = ON | Close = down position = ON |



# NOTE

The Slot addresses IFC-3 and IFC-4 are only applicable in SWT 3000 stand-alone devices.

IFC modules can be used as spare in actual SWT 3000 with the PU3 module.

| Table 2-33 P | U3 or PU4 Select | ion |
|--------------|------------------|-----|
|--------------|------------------|-----|

| Selection | S2.3 Position              |
|-----------|----------------------------|
| PU3       | Close = down position = ON |
| PU4       | Open = up position = OFF   |

The function of address decoder in IFC module is adapted as follows:

- Input
  - Input signals from DIP switches, which indicate the slot address of IFC module
  - Input signals from PU4CON (PU4 controller), which specify the required slot address for accessing IFC module
- Process

Compare the required slot address with local address to see if it is matched.

Output

Output signals to IFCPIC (IFC controller) to indicate if the slot is selected.

| IFC_SLOT_N | IFC_CS1_N | IFC_CS2_N | Function                    |
|------------|-----------|-----------|-----------------------------|
| 1          | 0         | 0         | Reset PIC on IFC-1 to IFC-4 |
| 0          | 0         | 1         | Select IFC-1                |
| 0          | 1         | 0         | Select IFC-2                |
| 0          | 1         | 1         | Select IFC-3                |
| 0          | 0         | 0         | Select IFC-4                |

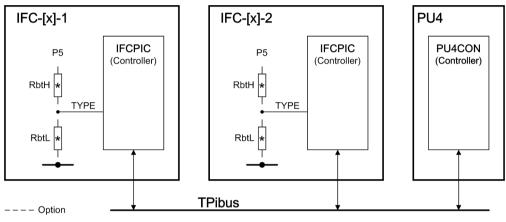


# NOTE

The Slot addresses IFC-3 and IFC-4 are only applicable in SWT 3000 stand-alone devices.

For connecting the redesigned IFCs to PU4, all IFCs are connected in parallel on a ribbon cable (26 pins) for TPi-Bus to the PU4 module.




# NOTE

If the new IFC board is used as spare part in SWT 3000 with the PU3 module, use a suitably configured ribbon cable for the slot identification function.

For more details, refer to table Table 2-33 For the selection of PU3 on the IFC module..

The IFC controller manages the input register (IFC\_EREG) which is readable by PU4 controller. The PU4 controller can identify the IFC type (IFC-D/P or IFC-S) by reading the content of IFC\_EREG.

IFC-P, IFC-D and IFC-S boards are based on the same Printed Circuit Board (PCB). The type depends on the various hardware assembling options. The assembling options can be identified via the status of the **TYPE** input of the IFC controller.



dwifctyp-051011-01.tif, 1, en\_U

Figure 2-83 Principle of IFC Type Identification

The assembling of the resistors RbtH and RbtL depends on the specific board type. The state of the board type input is readable by PU4 controller.

| tion |
|------|
|      |

| RbtH          | RbtL          | ТҮРЕ | Comment        |
|---------------|---------------|------|----------------|
| Not installed | 0Ω            | 0    | IFC-D or IFC-P |
| 22 ΚΩ         | Not installed | 1    | IFC-S          |

# 2.4.9.6 Signal Acquisition via Binary Inputs

If the binary inputs (BI1 to BI4) of the module detect a signal, an interrupt request is sent to the PU4. The IFC module is connected to the PU4 via a ribbon cable via connector X3 at the front. If an interrupt is detected, PU4 can read the status of the binary inputs.

In order to suppress interference pulses, a signal must be applied to the binary input for at least 1 ms before the interrupt request is sent. The following figure shows the block diagram of a binary input:

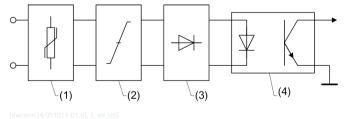
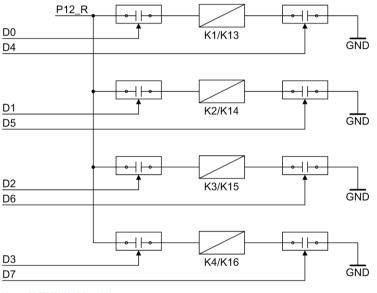



Figure 2-84 Binary Inputs of Modules IFC-D and IFC-P


(1) Protective circuit

The protective circuit provides the required security against destruction and interference.

- Setting of the input rated voltage
   You can set the input rated voltage to the values DC 24 V, DC 48/60 V, DC 110 V, and DC 250 V with the jumpers X43 to X58. The operating point is at 80 % of the selected voltage.
   Refer to Chapter Jumper Settings for the IFC Modules for more details
- (3) RectifierRectification ensures that the input signal is polarity-neutral.
- (4) Optocoupler The optocoupler isolates the input circuit electrically from the electronic system.

# 2.4.9.7 Signal Output from the IFC-D/P Module

If there is an IFC-D module, the commands from the remote station are distributed via the relays K1 to K4. If there is an IFC-P module, the commands from the remote station are distributed via the relays K13 to K16. Compared with the IFC-P module, the relays of the IFC-D module are slower but they can switch more power.



[dwcsem35-051011-01.tif, 1, en\_US]

Figure 2-85 Block Diagram of the Output Circuit of IFC-D/P

K1 - K4 Output Relays of Module IFC-D

K13 - K16 Output Relays of Module IFC-P

D0 - D7 Operation of the IFCx Controller

The following security systems are incorporated for sending commands without interference:

- PU4 must enable the supply voltage P12\_R
- Relays are operated on a 2-pole basis

# 2.4.9.8 Signal Output from IFC-S Module

The messages are transmitted via the relays K5 to K12. These relays are identical with those relays on the IFC-D module. For 7 relays, one change-over contact per relay is brought out. The contact of relay K5 can be used as a make contact or break contact with jumper X42. All 8 signal relay contacts have a **common root** (3A1).

The PU4 must enable the excitation voltage P12\_R of the relay coils.

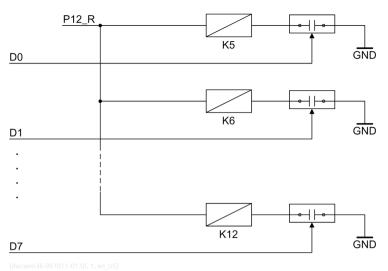



Figure 2-86 Block Diagram of the Output Circuit of IFC-S

### 2.4.9.9 Pinout of the IFC-x Module

The interface modules must be connected from the protective relay to the connector X1 (modular terminal block). The cable cross section must be up to 1.5 mm<sup>2</sup>. At least 2 cables must be tied immediately at the terminals.

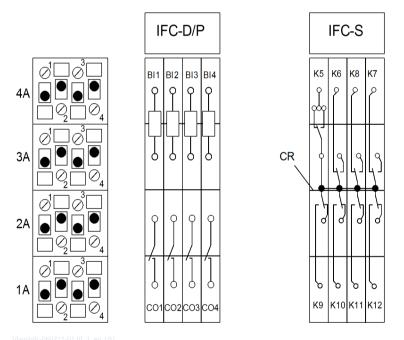



Figure 2-87 Pinout of the IFC-x Modules

| iguic 2 07 | r mout of the file x mouties |  |
|------------|------------------------------|--|
|            |                              |  |
|            |                              |  |

| IFC-D | Interface module direct tripping     |
|-------|--------------------------------------|
| IFC-P | Interface module permissive tripping |

- IFC-S Interface module signaling
- CR Common root of relays K5 to K12
- 1A to 4A Modular terminal block
- BI1 to BI4 Binary inputs 1 to 4
- CO1 to CO4 Command outputs 1 to 4

K5 to K8 Signaling of the binary inputs 1 to 4

K9 to K12 Signaling of the command outputs

# 2.4.9.10 Block Diagrams of IFC Modules

### IFC-D Module

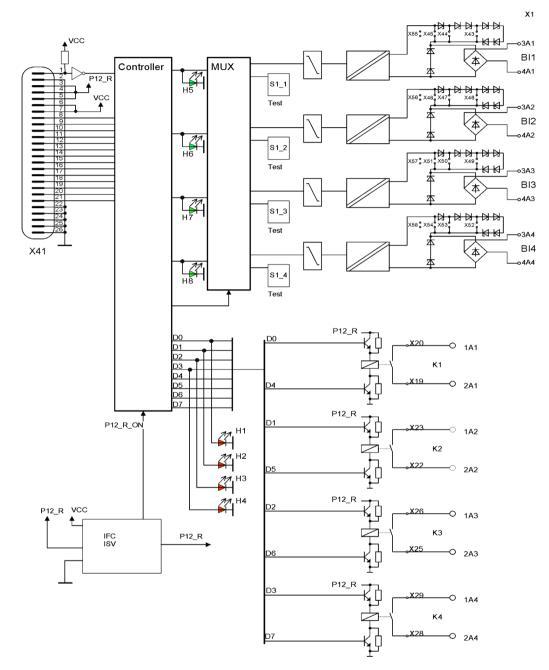





Figure 2-88 Block Diagram of the IFC-D Module

# IFC-P Module

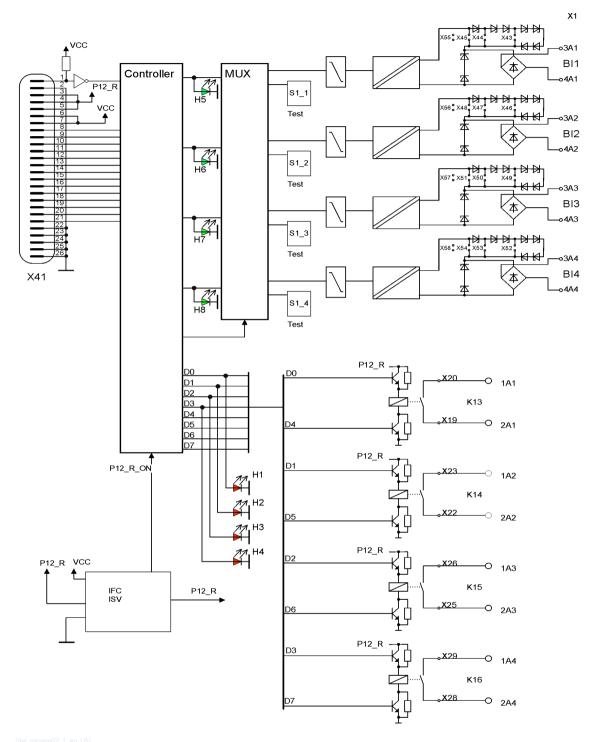
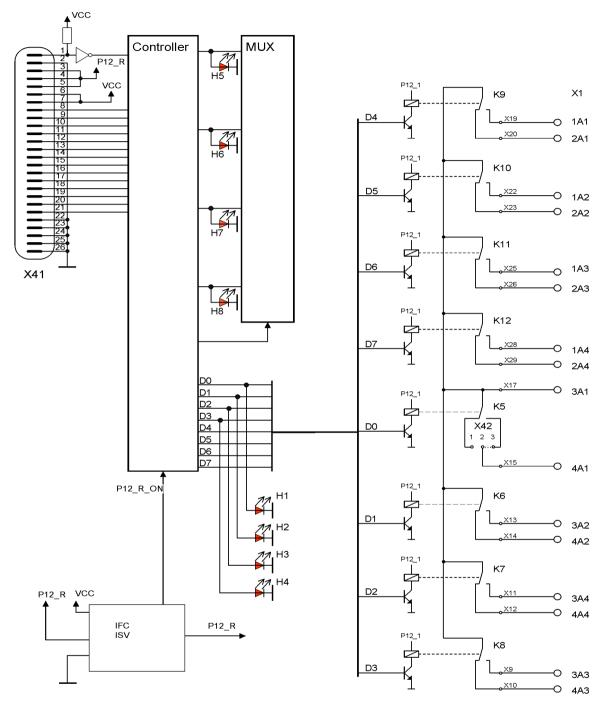


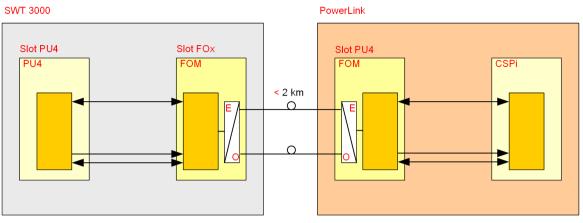

Figure 2-89

Block Diagram of the IFC-P Module

# IFC-S Module







Figure 2-90 Block Diagram of the IFC-S Module

# 2.4.10 Fiber-Optic Modem for PowerLink 100

# 2.4.10.1 Overview

With the integrated Fiber-Optic Modules (FOM), it is possible to connect an SWT 3000 to the PowerLink PLC system or a multiplexer via fiber-optic cables.

#### 2.4.10.2 Connection to the PowerLink PLC System



dw\_SWT\_conswp, 2, en\_US]

Figure 2-91 Connection of the SWT 3000 via Fiber-Optic Cable to the PowerLink

The SWT 3000 is connected via fiber-optic cables (for each transmission direction one fiber) to the PowerLink. The functional performance of the SWT 3000 is like an integrated SWT 3000 (iSWT). That is, all possible variants with iSWT can be carried out with the stand-alone SWT 3000 via fiber-optic cables. **The programming of the SWT 3000 in this case is only possible via PowerLink and the service program PowerSys**. In the PowerLink system, 2 SWT 3000 can be connected via fiber-optic cables (iSWT-1 and iSWT-2). The fiber-optic modules in Power Link are installed in the slots of the PU4.



### NOTE

In order to integrate an SWT 3000 with PU4 into the PowerLink system, a PowerLink with CSPi (release 3.5.xxx or higher) is necessary.

The main transmission path of the SWT 3000 via Fiber-Optic cable is the PLC connection of the PowerLink via high-voltage line.

You can connect a digital alternative path of the SWT 3000 as follows:

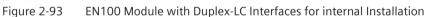
- Direct electrical connection to the remote SWT 3000 device
- Optical connection via a second FOM

The S6 pilot wire for the switchover in the Alternate Multi-Purpose (AMP) operation is transmitted from the FOM to PowerLink.

| Fiber-optic module | Small Form-factor Pluggable (SFP) module                                                           |
|--------------------|----------------------------------------------------------------------------------------------------|
| Fiber type         | Multi-mode with modules using 850-nm wavelength, single-mode with modules using 1300-nm wavelength |
| Wavelength         | 850 nm or 1300 nm                                                                                  |
| Optical connector  | LC-connector                                                                                       |
| Range              | Up to 2 km at 850 nm (depending on the attenuation of the fiber)                                   |
|                    | No minimum attenuation limit for 1300 nm                                                           |
| 2 x LED            | Tx-Alarm and Rx-Alarm (RX + F6UE-Alarm)                                                            |

# 2.4.11 Ethernet EN100 Module Functional Description

#### 2.4.11.1 Ethernet EN100 Module Functionality


The **Ethernet EN100 module** (EN100 module) enables the integration of SWT 3000 into 100-Mbit communication networks. These networks are used by process control, automation systems, and communications systems with the protocols according to International Electrotechnical Commission (IEC) 61850 standard. This standard permits uniform communication of the devices without gateways and protocol converters. With 2 RJ45 connectors or with 2 Duplex-LC interfaces for a 1300-nm fiber-optic connection, 2 module types are available.

The following figures show the mechanical design of the EN100 module with electrical interfaces and fiberoptic interfaces for internal installation:



Figure 2-92 EN100 Module with Ethernet Interfaces (RJ45) for internal Installation



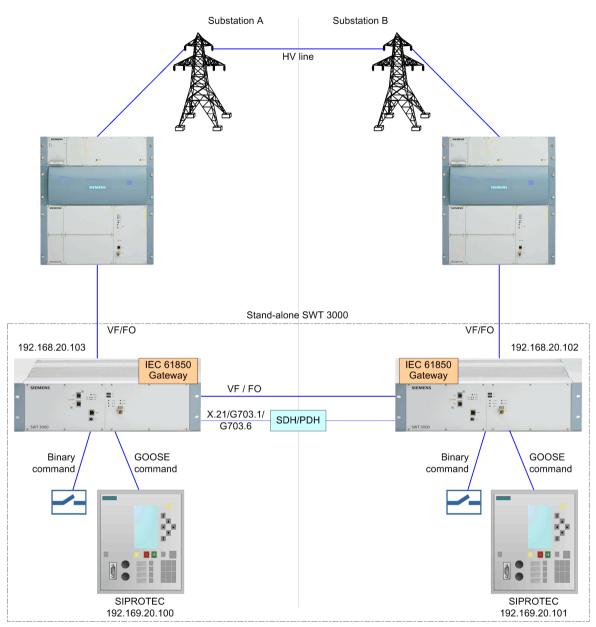


The preceding modules can be used in the SWT 3000 device and are mounted on the solder side of the PU4 module via connector. These modules are connected electrically to the PU4 module via a D-sub plug connection and screwed to the PU4 module and device front panel.

The physical interface is always duplicated to permit redundant structures. One of the 2 interfaces is always active while the other interface is monitored passively. If a fault occurs on the active interface, switchover to the other interface is performed in a matter of milliseconds.

Both Ethernet connectors of the module with RJ45 interfaces and also the fiber-optic module interfaces are accessible from the front of the device. The fiber-optic version of the module comprises the entire functionality of the module with the electrical interfaces.

# 2.4.11.2 IEC 61850 Application Mode for SWT 3000


# GGIO Mode

The binary command input and output of SWT 3000 are mapped one-to-one onto the standard-compliant object GGIO LN in IEC 61850. The parameterization of IEC 61850 is performed using the System Configurator (e.g. DIGSI). After importing SWT 3000 ICD file into System Configurator, it is possible to establish a GOOSE command mapping between protection relay and SWT 3000 device. SWT 3000 is realized as IEC 61850 GGIO gateway, it exchanges up to 8 I/O points between substations. On transmitting side, SWT 3000 receives GOOSE message from protection relay and re-codes to own special communication protocol. On the receiving side, SWT 3000 re-creates GOOSE message and sends to protection relay. The IEC 61850 protocol is implemented in Ethernet EN100 module.

In GGIO mode, the border of the IEC 61850 world is SWT 3000. That means no IEC 61850 related auxiliary data, like quality data, are transferred to the remote side. The GOOSE command is transmitted as long as the command input is active if the input command limit time is set to zero. For integrated SWT 3000 with alternative multi-purpose operation, the GOOSE command is only transferred for the input limit time.

#### Functional Description

2.4 Integrated Protection Signal Transmission with iSWT 3000



#### iecapp\_140115, 1, en\_US

Figure 2-94 IEC 61850 Application Mode for SWT 3000, Example

For the GGIO mode, the following SWT 3000 modes are possible:

- Mode 3a for analog and digital interfaces, max. 4 GOOSE commands supported
- Mode 5D for digital interfaces, up to 16 GOOSE commands supported

iSWT 3000 in PowerLink offers also EN100 and IFC interfaces in mode 3a for up to 4 commands.

### IEC 61850 Logical Nodes Parameters for SWT 3000 Teleprotection with EN100 GOOSE Communication

According to the IEC 61850 model logical nodes are the building blocks of an Intelligent Electronic device (IED). A Logical Node (LN) represents the function within a physical device; it performs some operations for that function and is object defined by its data and methods. The users view of the logical nodes is the ICD file of the SWT 3000. A fixed set of ICD files is provided for SWT 3000.

Since the SWT 3000 related settings (communication interfaces, CMD timers) are configured via the service program PowerSys and thus 'outside' the IEC61850 world only a minimal set of Logical Node (LN) according

to the IEC61850 model is used for the teleprotection signaling with EN100 GOOSE communication and for supervision. Refer to the following tables for the major data objects of Logical Nodes used in SWT 3000.

# LLN: TXC\_GGIO - Transmit command

| Table 2-35 | IIN: TXC  | GGIO - | Transmit  | command |
|------------|-----------|--------|-----------|---------|
|            | LEIN. IXC | 0010   | maniprine | communa |

| GGIO class          |                          |                                                                                                                                                                                                                                                  |   |         |
|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
| Data object<br>name | Commo<br>n data<br>class | Explanation                                                                                                                                                                                                                                      | Т | M/<br>O |
| LNName              |                          | Name composed of the class name, the LN-Prefix and LN-Instance- ID according to IEC 61850-7-2                                                                                                                                                    |   |         |
| Data objects        | 5                        |                                                                                                                                                                                                                                                  |   |         |
| Common Log          | gical Node               | Information                                                                                                                                                                                                                                      |   |         |
| Measured va         | lues                     |                                                                                                                                                                                                                                                  |   |         |
| Status Inform       | nation                   |                                                                                                                                                                                                                                                  |   |         |
| Controls            |                          |                                                                                                                                                                                                                                                  |   |         |
| SPCSO1              | SPC                      | Single point controllable status output.                                                                                                                                                                                                         |   | 0       |
|                     |                          | Command input 1, which acts as an input for the local SWT processing.                                                                                                                                                                            |   |         |
|                     |                          | Attribute ctlVal is assigned to the SWT command input. The input status is<br>not trans-ferred transparent to the remote side! It depends on the actual<br>SWT-Mode, how a change of ctlVal influences the command outputs on the<br>remote SWT. |   |         |
| SPCSO2              | SPC                      | Command input 2                                                                                                                                                                                                                                  |   | 0       |
| SPCSO3              | SPC                      | Command input 3                                                                                                                                                                                                                                  |   | 0       |
| SPCSO4              | SPC                      | Command input 4                                                                                                                                                                                                                                  |   | 0       |
| SPCSO5              | SPC                      | Command input 5                                                                                                                                                                                                                                  |   | 0       |
| SPCSO6              | SPC                      | Command input 6                                                                                                                                                                                                                                  |   | 0       |
| SPCSO7              | SPC                      | Command input 7                                                                                                                                                                                                                                  |   | 0       |
| SPCSO8              | SPC                      | Command input 8                                                                                                                                                                                                                                  |   | 0       |
| SPCSO9              | SPC                      | Command input 9                                                                                                                                                                                                                                  |   | 0       |
| SPCSO10             | SPC                      | Command input 10                                                                                                                                                                                                                                 |   | 0       |
| SPCSO11             | SPC                      | Command input 11                                                                                                                                                                                                                                 |   | 0       |
| SPCSO12             | SPC                      | Command input 12                                                                                                                                                                                                                                 |   | 0       |
| SPCSO13             | SPC                      | Command input 13                                                                                                                                                                                                                                 |   | 0       |
| SPCSO14             | SPC                      | Command input 14                                                                                                                                                                                                                                 |   | 0       |
| SPCSO15             | SPC                      | Command input 15                                                                                                                                                                                                                                 |   | 0       |
| SPCSO16             | SPC                      | Command input 16                                                                                                                                                                                                                                 |   | 0       |

# LN: RXC\_GGIO - Receive command

| GGIO class          |                          |                                                                                                                                                                                                                                                                                                                                                                       |   |         |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|
| Data object<br>name | Commo<br>n data<br>class | Explanation                                                                                                                                                                                                                                                                                                                                                           | Т | M/<br>O |
| LNName              |                          | Name composed of the class name, the LN-Prefix and LN-Instance- ID according to IEC 61850-7-2                                                                                                                                                                                                                                                                         |   |         |
| Data objects        | ;                        |                                                                                                                                                                                                                                                                                                                                                                       |   |         |
| Common Log          | gical Node               | Information                                                                                                                                                                                                                                                                                                                                                           |   |         |
| Measured va         | lues                     |                                                                                                                                                                                                                                                                                                                                                                       |   |         |
| Status Inform       | nation                   |                                                                                                                                                                                                                                                                                                                                                                       |   |         |
| Controls            |                          |                                                                                                                                                                                                                                                                                                                                                                       |   |         |
| SPCSO1              | SPC                      | Single point controllable status output.<br>Command input 1, which acts as an input for the local SWT processing.<br>Attribute ctlVal is assigned to the SWT command input. The input status is<br>not trans-ferred transparent to the remote side! It depends on the actual<br>SWT-Mode, how a change of ctlVal influences the command outputs on the<br>remote SWT. |   | 0       |
| SPCSO2              | SPC                      | Command output 2                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO3              | SPC                      | Command output 3                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO4              | SPC                      | Command output 4                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO5              | SPC                      | Command output 5                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO6              | SPC                      | Command output 6                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO7              | SPC                      | Command output 7                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO8              | SPC                      | Command output 8                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO9              | SPC                      | Command output 9                                                                                                                                                                                                                                                                                                                                                      |   | 0       |
| SPCSO10             | SPC                      | Command output 10                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO11             | SPC                      | Command output 11                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO12             | SPC                      | Command output 12                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO13             | SPC                      | Command output 13                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO14             | SPC                      | Command output 14                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO15             | SPC                      | Command output 15                                                                                                                                                                                                                                                                                                                                                     |   | 0       |
| SPCSO16             | SPC                      | Command output 16                                                                                                                                                                                                                                                                                                                                                     |   | 0       |

Table 2-36 LN: RXC\_GGIO - Receive command

Table 2-37LN: ITPC - Communication Interface

| Data object<br>Name | Common data<br>class | Explanation                                                                                                                                                                                                                                  | Т | M/O |
|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| LNName              |                      | Name composed of the class name, the LN-Prefix and LN-<br>Instance- ID according to IEC 61850-7-2                                                                                                                                            |   |     |
| Data objects        |                      |                                                                                                                                                                                                                                              |   |     |
| EEHealth            | ENS                  | External equipment health.<br>It reflects the alarm status of the SWT device. Possible values:<br>1: Ok (Green) no alarms active<br>2: Warning (Yellow) only none urgent alarms active<br>3: Alarm (Red) at least one urgent alarm is active |   | 0   |

| ITPC class    |       |                                                                                                                                                                                     |   |
|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Status inform | ation |                                                                                                                                                                                     |   |
| AlarmGen      | SPS   | SWT 3000 general alarm TRUE: (Alarm is active)                                                                                                                                      | 0 |
| AlarmNU       | SPS   | SWT 3000 nun-urgent alarm TRUE: (Alarm is active)                                                                                                                                   | 0 |
| AlarmRx       | SPS   | SWT 3000 receive alarm TRUE: (Alarm is active)                                                                                                                                      | 0 |
| LosSig        | SPS   | Alarm situation: No signal received, indicates a channel problem of analog communication.                                                                                           | 0 |
|               |       | Possible values:                                                                                                                                                                    |   |
|               |       | TRUE: RXALR of PU4 LIA is active.                                                                                                                                                   |   |
|               |       | FALSE: RXALR of PU4 LIA is inactive.                                                                                                                                                |   |
| LosSyn1       | SPS   | Alarm situation: Loss of synchronism of LID-1                                                                                                                                       | 0 |
|               |       | Indicates that there is no synchronization between the trans-<br>mitter and the re-ceiver, i.e., no communication is possible. Used<br>in case of a digital communica-tion channel. |   |
|               |       | Possible values:                                                                                                                                                                    |   |
|               |       | TRUE: LID-1 Sync-Loss alarm is active.                                                                                                                                              |   |
|               |       | FALSE: LID-1 Sync-Loss alarm is inactive.                                                                                                                                           |   |
| LosSyn2       | SPS   | Alarm situation: Loss of synchronism of LID-2                                                                                                                                       | 0 |
| TxCmdCnt1     | INS   | For diagnostics: Transmitted command 1 counters.                                                                                                                                    | 0 |
| TxCmdCnt2     | INS   | For diagnostics: Transmitted command 2 counters.                                                                                                                                    | 0 |
| TxCmdCnt3     | INS   | For diagnostics: Transmitted command 3 counters.                                                                                                                                    | 0 |
| TxCmdCnt4     | INS   | For diagnostics: Transmitted command 4 counters.                                                                                                                                    | 0 |
| TxCmdCnt5     | INS   | For diagnostics: Transmitted command 5 counters.                                                                                                                                    | 0 |
| TxCmdCnt6     | INS   | For diagnostics: Transmitted command 6 counters.                                                                                                                                    | 0 |
| TxCmdCnt7     | INS   | For diagnostics: Transmitted command 7 counters.                                                                                                                                    | 0 |
| TxCmdCnt8     | INS   | For diagnostics: Transmitted command 8 counters.                                                                                                                                    | 0 |
| TxCmdCnt9     | INS   | For diagnostics: Transmitted command 9 counters.                                                                                                                                    | 0 |
| TxCmdCnt10    | INS   | For diagnostics: Transmitted command 10 counters.                                                                                                                                   | 0 |
| TxCmdCnt11    | INS   | For diagnostics: Transmitted command 11 counters.                                                                                                                                   | 0 |
| TxCmdCnt12    | INS   | For diagnostics: Transmitted command 12 counters.                                                                                                                                   | 0 |
| TxCmdCnt13    | INS   | For diagnostics: Transmitted command 13 counters.                                                                                                                                   | 0 |
| TxCmdCnt14    | INS   | For diagnostics: Transmitted command 14 counters.                                                                                                                                   | 0 |
| TxCmdCnt15    | INS   | For diagnostics: Transmitted command 15 counters.                                                                                                                                   | 0 |
| TxCmdCnt16    | INS   | For diagnostics: Transmitted command 16 counters.                                                                                                                                   | 0 |
| RxCmdCnt1     | INS   | For diagnostics: Received command 1 counters.                                                                                                                                       | 0 |
| RxCmdCnt2     | INS   | For diagnostics: Received command 2 counters.                                                                                                                                       | 0 |
| RxCmdCnt3     | INS   | For diagnostics: Received command 3 counters.                                                                                                                                       | 0 |
| RxCmdCnt4     | INS   | For diagnostics: Received command 4 counters.                                                                                                                                       | 0 |
| RxCmdCnt5     | INS   | For diagnostics: Received command 5 counters.                                                                                                                                       | 0 |
| RxCmdCnt6     | INS   | For diagnostics: Received command 6 counters.                                                                                                                                       | 0 |
| RxCmdCnt7     | INS   | For diagnostics: Received command 7 counters.                                                                                                                                       | 0 |
| RxCmdCnt8     | INS   | For diagnostics: Received command 8 counters.                                                                                                                                       | 0 |
| RxCmdCnt9     | INS   | For diagnostics: Received command 9 counters.                                                                                                                                       | 0 |
| RxCmdCnt10    | INS   | For diagnostics: Received command 10 counters.                                                                                                                                      | 0 |
| RxCmdCnt11    | INS   | For diagnostics: Received command 11 counters.                                                                                                                                      | 0 |
| RxCmdCnt12    | INS   | For diagnostics: Received command 12 counters.                                                                                                                                      | 0 |
| RxCmdCnt13    | INS   | For diagnostics: Received command 13 counters.                                                                                                                                      | 0 |
| RxCmdCnt14    | INS   | For diagnostics: Received command 14 counters.                                                                                                                                      | 0 |
| RxCmdCnt15    | INS   | For diagnostics: Received command 15 counters.                                                                                                                                      | 0 |

| ITPC class                                                                                 |     |                                                                                          |   |  |  |
|--------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------|---|--|--|
| RxCmdCnt16                                                                                 | INS | For diagnostics: Received command 16 counters.                                           |   |  |  |
| NumTxCmd                                                                                   | INS | Numbers of used binary transmit commands.                                                | 0 |  |  |
|                                                                                            |     | Possible values: 016                                                                     |   |  |  |
| NumRxCmd                                                                                   | INS | Numbers of used binary receive commands. Possible values:<br>016                         |   |  |  |
| TpcTxMod                                                                                   | ENS | Teleprotection application mode in Transmit direction for each command.                  | 0 |  |  |
|                                                                                            |     | Possible values:                                                                         |   |  |  |
|                                                                                            |     | 0: Direct tripping                                                                       |   |  |  |
|                                                                                            |     | 1: Permissive tripping                                                                   |   |  |  |
| TpcRxMod                                                                                   | ENS | Teleprotection application mode in Receive direction for each command.                   | 0 |  |  |
|                                                                                            |     | Possible values:                                                                         |   |  |  |
|                                                                                            |     | 0: Direct tripping                                                                       |   |  |  |
|                                                                                            |     | 1: Permissive tripping                                                                   |   |  |  |
| Measured val                                                                               | ues |                                                                                          |   |  |  |
| FerCh1                                                                                     | MV  | Frame Error Rate of the communication channel LID-1.                                     | 0 |  |  |
|                                                                                            |     | Used in case of a digital communication channel. This attribute is mapped to BER of DLE. |   |  |  |
| FerCh2                                                                                     | MV  | Frame Error Rate of the communication channel LID-2.                                     |   |  |  |
| CarLev                                                                                     | MV  | Power of received signal (in dB), used in case of an analogue communication channel.     |   |  |  |
| SigNsRat MV Signal to noise ratio (in dB), used in case of analogue commun cation channel. |     | Signal to noise ratio (in dB), used in case of analogue communi-<br>cation channel.      | 0 |  |  |

## 2.4.12 Remote Monitoring, Service Channel, and IP Network

#### 2.4.12.1 General Information for iSWT 3000

For Remote Monitoring, SNMP and access via the IP network the corresponding interfaces of the PowerLink are used. For details, refer to *Chapter 5, SNMP and Remote Access*.

The Ethernet Interface connector on the PU4 module is disabled in case of an integrated SWT 3000 and must not be connected.

The access to the local PU4 service interface (USB B plug) is only required in case of an firmware upgrade via MemTool. In operating mode, the local (service) interface is connected to the controller of the CSPi module unit via iLAN and the user-service interface of the PowerLink is used for access to the iSWT.

#### 2.4.12.2 Service Channel

The Service Channel (SC) is a transparent data transmission channel with the format 9600 bps, 8 data bits, 1 start bit, 1 stop bit, and no parity. The data transmission channel is only available when using a digital line interface of the iSWT 3000 (LID-1). It is available to the user as an asynchronous serial RS232 interface.

## NOTE

The service channel in digital line interfaces is not supported in release P3.5.180 or higher. It is possible to recover SC function by downgrade DLEFPGA to former release via Memtool. The firmware image is located at PowerSys Px.y.zzz > Firmware > Package\_zzz.cab > Pu4DleFpga\_v00\_01\_32.jnk.

# 3 Installation and Commissioning

| 3.1  | Installation                                         | 148 |
|------|------------------------------------------------------|-----|
| 3.2  | General Commissioning Sequence                       | 194 |
| 3.3  | Strapping Options of the PLPA Section                | 202 |
| 3.4  | Dongle                                               | 218 |
| 3.5  | Configuration with the Service PC                    | 221 |
| 3.6  | System Configuration                                 | 230 |
| 3.7  | HF Configuration                                     | 232 |
| 3.8  | Configuration Options                                | 237 |
| 3.9  | Configuration of the Services                        | 241 |
| 3.10 | Voice Transmission (Service F2)                      | 242 |
| 3.11 | TP-Repeater Service                                  | 246 |
| 3.12 | Service Telephone (STEL)                             | 250 |
| 3.13 | Data Transmission (Service F3)                       | 252 |
| 3.14 | Service Configuration F6 Protection                  | 262 |
| 3.15 | Data transmission via Data Pump                      | 263 |
| 3.16 | The Versatile Multiplexer vMUX                       | 275 |
| 3.17 | Protection Signaling iSWT                            | 290 |
| 3.18 | Configuration of an iSWT                             | 305 |
| 3.19 | Tx Level Adjustment                                  | 320 |
| 3.20 | Receive Level Adjustment                             | 325 |
| 3.21 | Futher Configuration Settings and Adjustment Options | 334 |

## 3.1 Installation

## 3.1.1 Installation of the Module Frames

#### 3.1.1.1 Introduction

The module carriers are suitable for installation in 19" swing frames or mounting frames. The fastening elements which are required are included in the scope of delivery. No special tools are needed for the installation.

#### 3.1.1.2 Dimensions of the PowerLink System

#### PowerLink 100

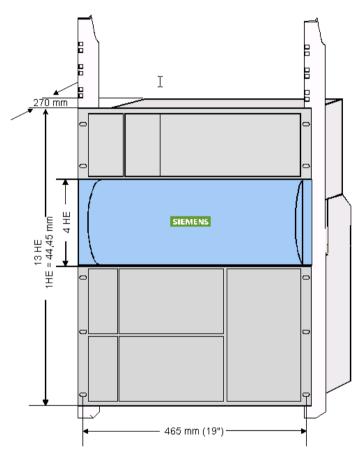



Figure 3-1 Dimensions of a PowerLink 100

#### PowerLink 50

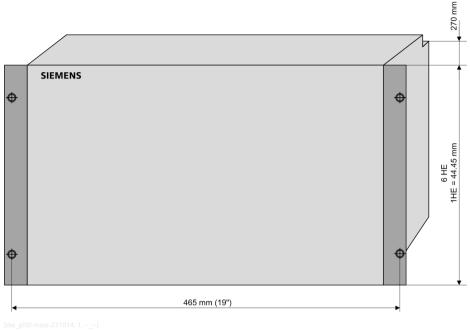



Figure 3-2 Dimensions of a PowerLink 50

#### General

#### NOTE

Min. distance between two PowerLink devices is one unit of height (= 1.75 inches or 44.45 mm).



## NOTE

A flyback diode should be used for any relays that is connected to an output of PowerLink or iSWT to avoid EMC influences.

#### 3.1.1.3 Fire Prevention Kit

NOTE

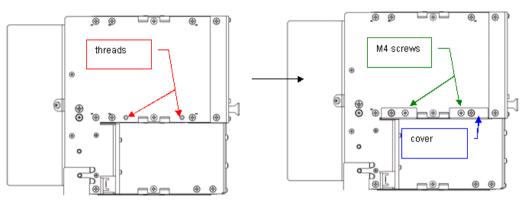
The mounting kit (7VR9656) is an optional kit to ensure the fire protection of the PowerLink 50/100 system in case it is mounted on a combustible surface.

The kit is obligatory for PowerLink Systems when the following facts apply simultaneously:

- The system is operated outside a closed cabinet that would provide fire protection (fire enclosure).
- The system is operated on a combustible surface.

The system is compliant with the requirements for fire enclosures as stipulated in EN/IEC 60950-1 when the mounting kit is used.

The kit consists of the following items:


- 1 left side cover for the PLPA device with 2 M4 screws
- 1 right side cover for the PLPA device with 2 M4 screws

- 2 side covers for the upper CFS-2 device (only if 2 PowerLink Systems are installed in the same cabinet)
- 1 bottom cover for the CFS-2 device/lower CFS-2 (if 2 PowerLink Systems are installed in the same cabinet)

#### Assembly Instructions for the PLPA for PowerLink 100

Assembly of left side cover for the PLPA device:

Position the cover PLPA Left Side on the left side wall of the PLPA device as shown. Fasten the cover to the threads with the 2 supplied M4 screws.

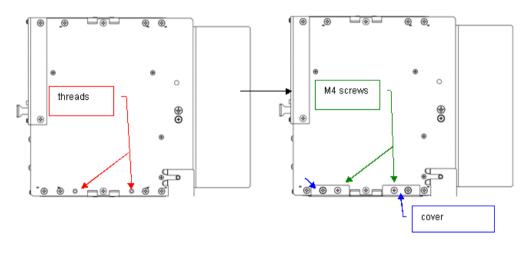


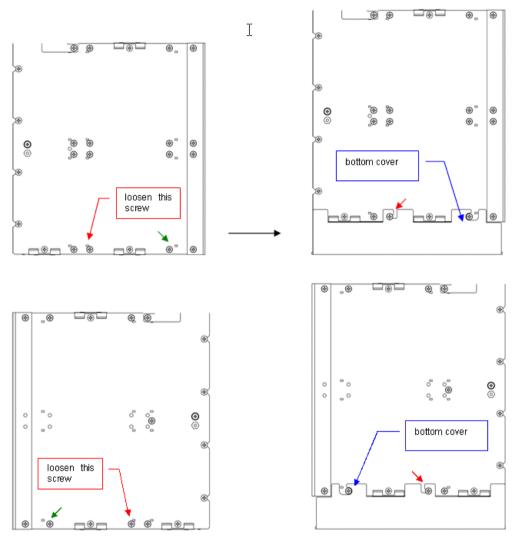
[dwaplpad-241110-01.tif, 1, en\_US]

Figure 3-3 Assembly of left side cover for the PLPA device

Assembly of right side cover for the PLPA device:

Position the cover PLPA Right Side on the right side wall of the PLPA device as shown. Fasten the cover to the threads with the 2 supplied M4 screws





Figure 3-4

Assembly of right side cover for the PLPA device

#### Assembly Instructions for the CFS-2 Section for PowerLink 100

The following step applies only, if 2 PowerLink systems are to be installed on top of each other. The side covers shall be assembled to the upper CFS-2 (since the bottom cover could reduce the air flow for cooling the lower PLPA device, if it was installed on the upper CFS-2 device).

Loosen the screw (A) shown on the left side of the CFS-2 by 3 mm to 5 mm. – Do not remove the screw! Move the cover CFS Sides beneath the head of the screw (A) and position it with the other hole onto the head of another screw (B). Fasten the cover with the screw (A). Repeat this procedure with the second cover on the other side of the CFS-2 device.



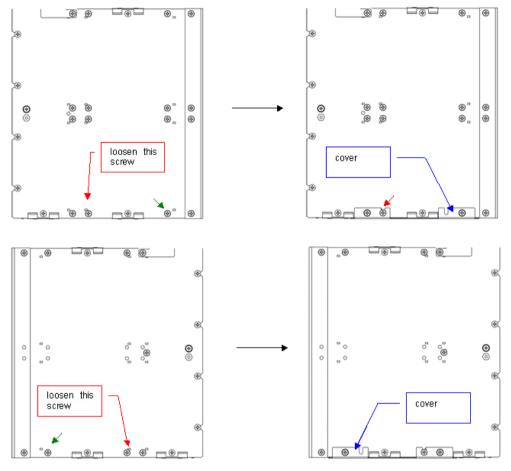

lwabcfsd-241110-01.tif, 1, en\_l

Figure 3-5 Assembly of side covers for the CFS-2 device

The following step applies to the CFS-2 device (if only 1 PowerLink system is to be installed) or to the lower CFS-2 device (if 2 PowerLink systems are to be installed on top of each other).

Preferably, place the CFS-2 device with it's front side on a clean and soft surface.

Loosen the screws (A) on each side of the CFS-2 device as shown by 3 mm to 5 mm. – Do not remove the screws! Move the bottom cover CFS Bottom beneath these screws (A) and slightly down, locking it on the 2 other screw heads (B) as shown. Fasten the cover with the 2 screws (A).



[dwascfsd-241110-01.tif, 1, en\_US]

Figure 3-6 Assembly of the bottom cover for the CFS-2 device

#### 3.1.1.4 Units of the PowerLink System

The PowerLink 100 is a double frame device with the following units.

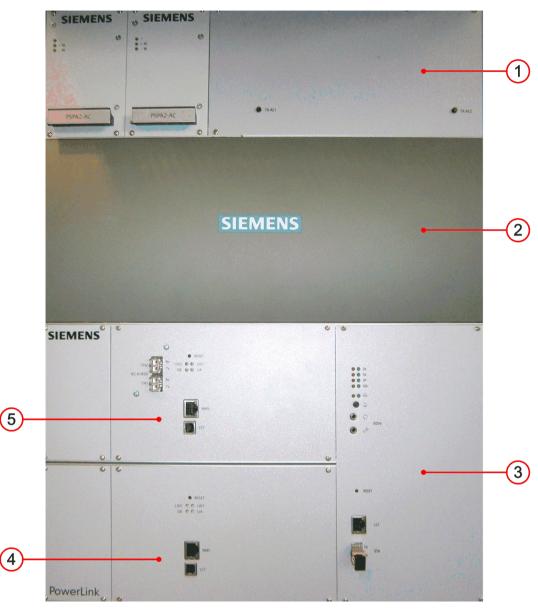
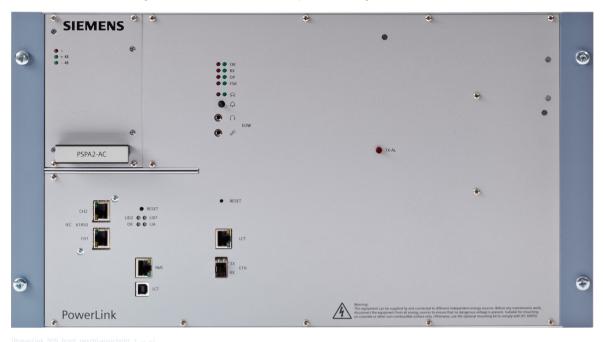
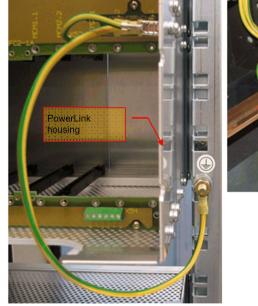




Figure 3-7 Units of the PowerLink 100 system

- 1 PLPA
- 2 PowerLink Connector panel
- 3 CFS-2
- 4 iSWT-A (iSWT 3000-1) \*)
- 5 iSWT-B (iSWT 3000-2) \*)
- \* Option, depending on the configuration




The PowerLink 50 is a single frame device with all components integrated.

[rowerEnk\_505\_none\_gesein aussennet,

PowerLink 50 device

#### 3.1.1.5 Protective Earth Connection





[dw\_conpec-271114, 1, en\_

Figure 3-8 Connection of the PE conductor

The protective earth conductor of the PowerLink must be connected with the housing. The connection of the PE conductor on PowerLink 50 is shown in *Figure 3-10*.

#### 3.1.1.6 Connection of the Supply Voltage

#### PowerLink 100




Figure 3-9

Connection of the supply voltage for PowerLink 100

#### PowerLink 50





#### General

The AC supply voltage is connected to the terminals PE-N-L1. In case of DC voltage the (-) is connected to the N and (+) to the L1 terminal. The terminals are covered.



# CAUTION

This equipment can be supplied by and connected to different independent energy sources.

In case the Powerlink System is mounted on a combustable surface, the use of the mounting kit (7VR9656, Fire prevention kit) is obligatory.

♦ Before any maintenance work, disconnect the equipment from all energy sources to ensure that no dangerous voltage is present.



## CAUTION

An easily accessible all pole disconnect device with a contact gap of at least 3.0 mm must be included/ installed in the building-installation-wiring.

 $\diamond$  The value of the external fuse has to be max. 16A!

#### 3.1.1.7 PLPA Interface PA – CFS-2

| Table 3-1 | Pin assignment for the PLPA interfac | e |
|-----------|--------------------------------------|---|
|-----------|--------------------------------------|---|

| PIN | Signal name |
|-----|-------------|
| 1   | P48V        |
| 2   | N48V        |
| 3   | GND         |
| 4   | P12V        |
| 5   | N12V        |
| 6   |             |
| 7   | INHIBIT     |
| 8   | I2C_SCL     |
| 9   | I2C_SDA     |
| 10  | PF_PLPA_1   |
| 11  | PF_PLPA_2   |
| 12  | PLE_SUEAN1  |
| 13  | PLE_SAL1    |
| 14  | P48V        |
| 15  | N48V        |
| 16  | GND         |
| 17  | P12V        |
| 18  | N12V        |
| 19  |             |
| 20  |             |
| 21  |             |
| 22  | SW_3dB      |
| 23  | PLE_DR_L    |
| 24  | PLE_SUEAN2  |
| 25  | PLE_SAL2    |

#### 3.1.1.8 Power Supply Connector for an Internal Device for PowerLink 100

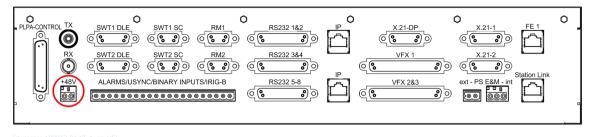



Figure 3-11 Location of Power Supply connector "+48V" (not assembled on actual release)

The connector is mounted on the connector panel on the left-hand side of the alarm outputs. It could be used for supplying a device located inside the cabinet with DC 48 V. (I < 100 mA)

| Table 3-2Power Supply connector "+48 | 3V″ |
|--------------------------------------|-----|
|--------------------------------------|-----|

| PIN | Signal name |
|-----|-------------|
| 1   | +48 V *     |
| 2   | GND         |

\* pin 1 is at the right side of the connector!

#### 3.1.1.9 Interconnection of the Power Supplies for PowerLink 100

The principle of the voltage distribution in the PowerLink system is shown in the figure below.

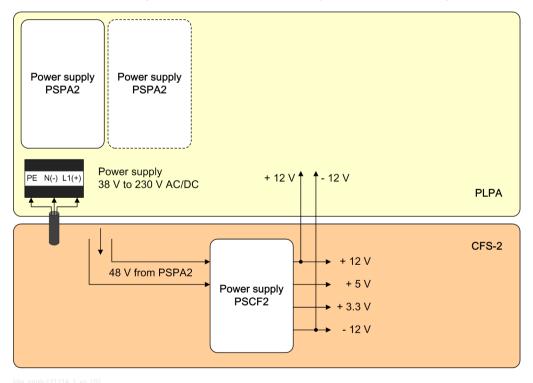



Figure 3-12 Interconnection of the power supplies in the PowerLink system

#### 3.1.1.10 Module Slot Positions in the PowerLink

#### PowerLink 100

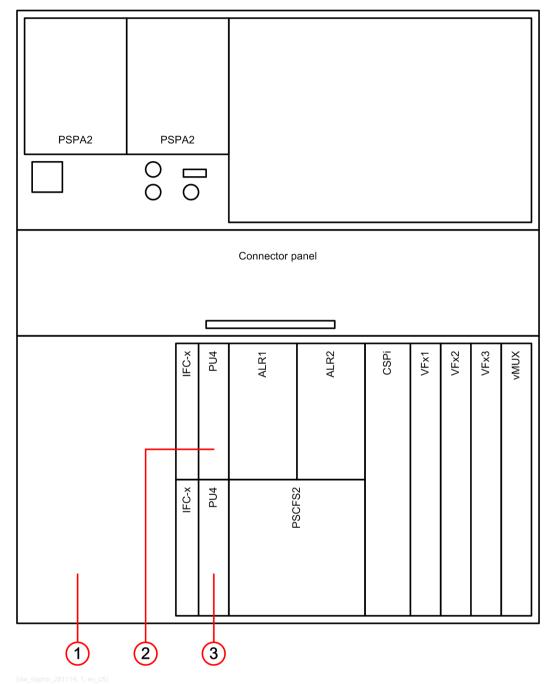



Figure 3-13 Slot positions of the PowerLink modules PowerLink 100

- (1) CFS-2 part
- (2) Integrated SWT3000-2
- (3) Integrated SWT3000-1

#### PowerLink 50

| PSPA2 | PSCF2      | CSPi | VFx1 | VFx2 | NMUX | AMP50 | LT100 |
|-------|------------|------|------|------|------|-------|-------|
|       | PU4<br>ALR |      |      |      |      | RXF   | TXF   |

[dw\_powerlink50s-231014, 1, --\_--]

Figure 3-14 Slot positions of the PowerLink modules PowerLink 50

(1) IFC-2 or EN100

#### 3.1.1.11 Mounting of Modules in the PowerLink System

This instruction applies for exchanging resp. mounting modules.

- For PowerLink 100, the module position in the CFS-2 part is shown in the Figure 3-13
- For PowerLink 50, the module position is shown in the *Figure 3-14*

It is not allowed to insert or remove modules in the PowerLink when the power supply is enabled!



# CAUTION

Electrostatic sensitive devices are protected against destruction by electrostatic charge with protective structures at the inputs and outputs. In unfavorable cases, however, plastic floor coverings, non-conductive work surfaces, or clothing containing artificial fibers can result in such high charges.

These charges can damage or even destroy the electrostatic sensitive devices despite the protective networks mentioned. If a device is damaged, its reliability decreases drastically although the effects of the damage are noticeable a long time before.

- In order to ensure that electrostatic charges are completely eliminated when working on the system, comply with the following instructions in order to avoid moderate or minor damage:
- ♦ Before carrying out any work on the system, ground yourself with a wrist strap.
- ♦ When working on modules, always place them on a grounded conductive surface.
- ♦ Transport modules only in suitable protective bags.

For mounting (exchanging) modules in the PowerLink system please observe the following instruction:

- For PowerLink 100, remove the cover of the CFS-2 module section (4 screws). For PowerLink 50, remove the front cover of the device.
- Disable the power supply (move the switch **S1** on the CSPi module above PC connector into **lower** position).

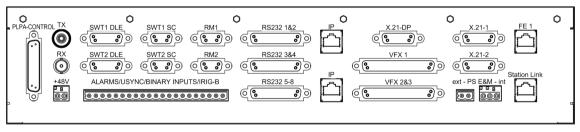
In case of exchanging a module:

• Remove the existing module and place it on a grounded, conductive surface.

Inserting the new module:

- Unpack the new module from the transport box and insert it into the corresponding slot position.
- Switch on the power supply (move the switch S1 on the CSPi module into upper position).
- Close the cover of the CFS-2 modules resp. the front cover of the device .




[dw\_covsic-281114, 1, en\_US]

In case of exchanging an existing module the system should work after the power supply is enabled. When inserting a **new module the first time**, the system needs a new commissioning (configuration, level setting etc.).

Please refer to the corresponding instruction in chapter Commissioning of this manual!

## 3.1.2 The Connector Panel for PowerLink 100 and PowerLink 50

#### 3.1.2.1 Overview



[dwconpls-220813-01.tif, 1, en

Figure 3-15 Connector panel of the PowerLink 100 system

The connector panel serves for an easy connection of the interconnection of CFS-2 and PLPA unit as well as the connection of the various interfaces for voice, data, and alarms. The connectors for the protection signaling interface modules are at the rear side of the CFS-2 backplane.



#### NOTE

For PowerLink 50, the connectors are on the rear side of the device. For details see Figure 2-16.

#### 3.1.2.2 Interconnection of PLPA 100 Unit and CFS-2

The figure below shows the interconnection of PLPA 100 and CFS-2 section. The SUB-D socket PLPA 100control on the CFS-2 has to be connected to the corresponding PLPA control SUB-D plug on the PLPA. The Tx and Rx BNC jacks on the CFS-2 have to be connected to the corresponding BNC jacks on the PLPA.



Figure 3-16 Interconnection of PLPA and CFS-2 section for PowerLink 100

#### 3.1.2.3 Interconnection of PLPA 50 Unit and CFS-2

The figure below shows the interconnection of PLPA 50 unit and CFS-2 section. The SUB-D socket PLPA 50 control on the CFS-2 has to be connected to the corresponding PLPA control SUB-D plug on the PLPA. The Tx and Rx BNC jacks on the CFS-2 have to be connected to the corresponding BNC jacks on the PLPA.

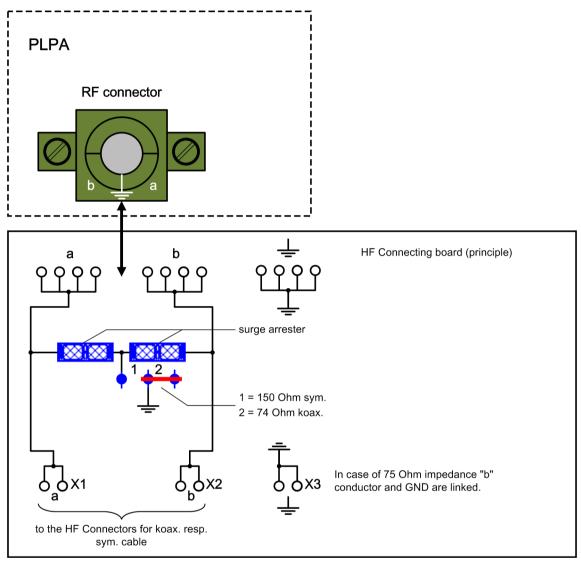



Figure 3-17 Interconnection of PLPA and CFS-2 section for PowerLink 50

#### 3.1.2.4 Interconnection of PLPA Unit and HF-Connecting board

#### **Overall Connection Diagram**

The figure below shows the connection diagram from the PLPA RF connector to the HF connecting board:

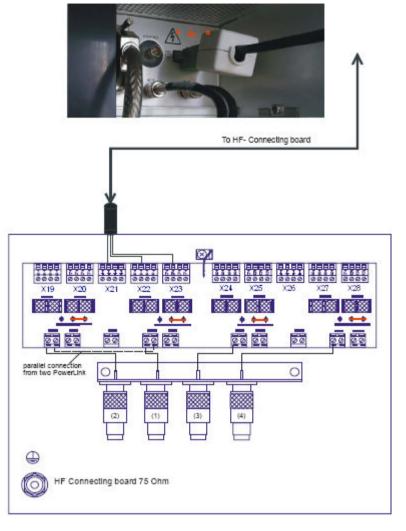


[dw\_plhfcb-271114, 1, er

Figure 3-18 Overall connection diagram from the PLPA unit to the HF connecting board

A detailed drawing of the HF connecting board for coax. resp. sym. cable is shown in the figures *Figure 3-19* and *Figure 3-20*.



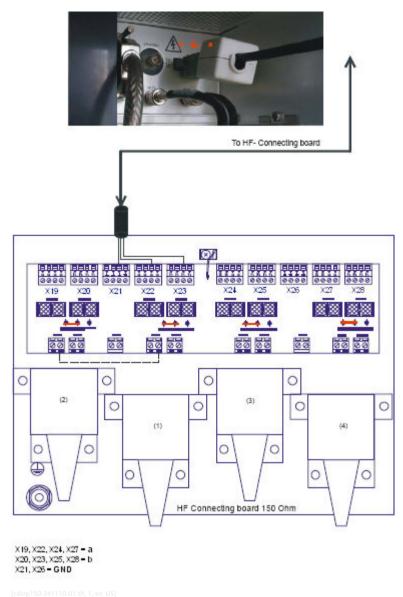

#### NOTE

Please make sure that the "a" and "b" conductors are not exchanged! In case of 75 Ohm impedance the "b" wire and GND are linked.



## NOTE

One of the delivered ferrite cores has to be mounted near the PowerLink RF connector, the second one has to be mounted at the other end of the RF cable.




#### PowerLink Connector Panel – HF Connecting Board 75 Ohm



Figure 3-19 Interconnection of the PowerLink and the HF connecting board 75 Ohm

#### PowerLink Connector Panel – HF Connecting Board 150 Ohm





#### **Technical Data**

| Gas-filled surge arrester    |                                           |  |  |  |
|------------------------------|-------------------------------------------|--|--|--|
| Nominal DC sparkover voltage | 75 Ω Config: 4x230 V = 920 V DC; P to PE  |  |  |  |
|                              | 150 $\Omega$ Config: 460 V DC; P,N, to PE |  |  |  |
| Impulse spark over voltage   | 75 Ω Config: 4x700 Vp= 2.8k Vp; P to PE   |  |  |  |
|                              | 150 Ω Config: 1.4 kVp; P,N to PE          |  |  |  |

## 3.1.3 RS232 Interfaces

#### 3.1.3.1 Overview

The RS232 interfaces are used for connecting data to the integrated multiplexer iMUX resp. vMUX. The interfaces 1 up to 4 can be connected as well to the integrated iFSK channels.

The RS232-1A up to 4A resp. RS232-1B up to 4B interfaces of the PowerLink system provide a **RS232 splitter**. The splitter is used in the polling mode of RTU (Remote Terminal Unit) via integrated FSK channels resp. iMUX or vMUX in order to connect a requested RTU **in the direction to the telecontrol center**.

#### 3.1.3.2 Assignment of the RS232-1A/B up to -2A/B Interfaces

| Table 3-3 | Pin assignment of the RS232- | 1A up to 2A interfaces |
|-----------|------------------------------|------------------------|
|           |                              |                        |

|                   | RS232-2A<br>13 /12 /11 /10 /9 /8 7 /6 5 4 /3 2 /<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                           |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------|---------------------------|--|--|--|
|                   | 2-Signals (iMUX, vMUX res                                                                 |                           |  |  |  |
| -                 |                                                                                           | nousing connected to FGND |  |  |  |
| PIN               | Signal Name                                                                               | Remarks                   |  |  |  |
| 1                 | RS232_1_RXD (out)                                                                         | RS232-1A                  |  |  |  |
| 2                 | RS232_1_TXD1 (in)                                                                         | RS232-1A                  |  |  |  |
| 3                 | GND                                                                                       |                           |  |  |  |
| 4                 | RS232_1_RXD (out)                                                                         | RS232-1B <sup>1)</sup>    |  |  |  |
| 5                 | RS232_1R_TXD2 (in)                                                                        | RS232-1B <sup>1)</sup>    |  |  |  |
| 6                 | GND                                                                                       |                           |  |  |  |
| 7                 | RS232_2_RXD (out)                                                                         | RS232-2A                  |  |  |  |
| 8                 | RS232_2_TXD1 (in)                                                                         | RS232-2A                  |  |  |  |
| 9                 | GND                                                                                       |                           |  |  |  |
| 10                | RS232_2_RXD (out)                                                                         | RS232-2B <sup>1)</sup>    |  |  |  |
| 11                | RS232_2R_TXD2 (in)                                                                        | RS232-2B <sup>1)</sup>    |  |  |  |
| 12                | GND                                                                                       |                           |  |  |  |
| 13                |                                                                                           |                           |  |  |  |
| 14                |                                                                                           |                           |  |  |  |
| 15                |                                                                                           |                           |  |  |  |
| 16                |                                                                                           |                           |  |  |  |
| 17                | RS232_1R_RTS (in)                                                                         | RS232-1B <sup>1)</sup>    |  |  |  |
| 18                | RS232_1R_CTS (out)                                                                        | RS232-1B <sup>1)</sup>    |  |  |  |
| 19                | RS232_1R_CONTACT                                                                          | RS232-1B <sup>1)</sup>    |  |  |  |
| 20                |                                                                                           |                           |  |  |  |
| 21                |                                                                                           |                           |  |  |  |
| 22                |                                                                                           |                           |  |  |  |
| 23                | RS232_2R_RTS (in)                                                                         | RS232-2B <sup>1)</sup>    |  |  |  |
| 24                | RS232_2R_CTS (out)                                                                        | RS232-2B <sup>1)</sup>    |  |  |  |
| 25                | RS232_2R_CONTACT                                                                          | RS232-2B <sup>1)</sup>    |  |  |  |
| <sup>1)</sup> For | <sup>1)</sup> For RTU in polling mode resp. vMUX "best effort" or Prio $\Box$             |                           |  |  |  |

#### 3.1.3.3 Assignment of the RS232-3A/B up to -4A/B Interfaces

| eldel             | 5 · · · · · · · · · · · · · · · · · · ·         | in the RS232-3A up to 4A interfaces |
|-------------------|-------------------------------------------------|-------------------------------------|
|                   | RS232-4A                                        | LRS232-3A                           |
| 1                 | - <i>(YY</i>                                    | $\rightarrow$                       |
| (                 | 13/12 11 10/9 8 7/8 5 4<br>D/0 0 0/0 0 0/0 0 0/ | /3 2 1/)<br>• • • //                |
| $\setminus$       | 25 24 23/22 21 20/19 18 17/18                   | 15 14                               |
| (                 |                                                 |                                     |
| RS                | 5232-4B RS232-3B                                |                                     |
| RS232             | 2-Signals (iMUX, vMUX res                       | p. iFSK)                            |
| 25 pii            | n Sub-D connector female                        | housing connected to FGND           |
| PIN               | Signal Name                                     | Remarks                             |
| 1                 | RS232_3_RXD (out)                               | RS232-3A                            |
| 2                 | RS232_3_TXD1 (in)                               | RS232-3A                            |
| 3                 | GND                                             |                                     |
| 4                 | RS232_3_RXD (out)                               | RS232-3B <sup>1)</sup>              |
| 5                 | RS232_3R_TXD2 (in)                              | RS232-3B <sup>1)</sup>              |
| 6                 | GND                                             |                                     |
| 7                 | RS232_4_RXD (out)                               | RS232-4A                            |
| 8                 | RS232_4_TXD1 (in)                               | RS232-4A                            |
| 9                 | GND                                             |                                     |
| 10                | RS232_4_RXD (out)                               | RS232-4B <sup>1)</sup>              |
| 11                | RS232_4R_TXD2 (in)                              | RS232-4B <sup>1)</sup>              |
| 12                | GND                                             |                                     |
| 13                |                                                 |                                     |
| 14                |                                                 |                                     |
| 15                |                                                 |                                     |
| 16                |                                                 |                                     |
| 17                | RS232_3R_RTS (in)                               | RS232-3B <sup>1)</sup>              |
| 18                | RS232_3R_CTS (out)                              | RS232-3B <sup>1)</sup>              |
| 19                | RS232_3R_CONTACT                                | RS232-3B <sup>1)</sup>              |
| 20                |                                                 |                                     |
| 21                |                                                 |                                     |
| 22                |                                                 |                                     |
| 23                | RS232_4R_RTS (in)                               | RS232-4B <sup>1)</sup>              |
| 24                | RS232_4R_CTS (out)                              | RS232-4B <sup>1)</sup>              |
| 25                | RS232_4R_CONTACT                                | RS232-4B <sup>1)</sup>              |
| <sup>1)</sup> For | RTU in polling mode resp.                       | vMUX "best effort" or Prio          |

Table 3-4Pin assignment of the RS232-3A up to 4A interfaces

#### 3.1.3.4 Assignment of the RS232-5 up to -8 Interfaces

| Table 3-5 | Pin assignment of the RS232-5 up to 8 interfaces |         |  |  |  |
|-----------|--------------------------------------------------|---------|--|--|--|
|           | DC000 T                                          | 50000 F |  |  |  |

|     |                   | 5 15 14                   |
|-----|-------------------|---------------------------|
|     | 0                 | housing connected to FGND |
| PIN | Signal Name       | Remarks                   |
| 1   | RS232_5_RXD (out) | RS232-5                   |
| 2   | RS232 5 TXD (in)  | RS232-5                   |
| 3   | GND               |                           |
| 4   | RS232 6 RXD (out) | RS232-6                   |
| 5   | RS232_6_TXD (in)  | RS232-6                   |
| 6   | GND               |                           |
| 7   | RS232 7 RXD (out) | RS232-7                   |
| 8   | RS232_7_TXD (in)  | RS232-7                   |
| 9   | GND               |                           |
| 10  | RS232_8_RXD (out) | RS232-8                   |
| 11  | RS232_8_TXD (in)  | RS232-8                   |
| 12  | GND               |                           |
| 13  |                   |                           |
| 14  | RS232_5_RTS (in)  | RS232-5                   |
| 15  | RS232_5_CTS (out) | RS232-5                   |
| 16  |                   |                           |
| 17  | RS232_6_RTS (in)  | RS232-6                   |
| 18  | RS232_6_CTS (out) | RS232-6                   |
| 19  |                   |                           |
| 20  | RS232_7_RTS (in)  | RS232-7                   |
| 21  | RS232_7_CTS (out) | RS232-7                   |
| 22  |                   |                           |
| 23  | RS232_8_RTS (in)  | RS232-8                   |
| 24  | RS232_8_CTS (out) | RS232-8                   |
| 25  |                   |                           |

## 3.1.4 Assignment of the Analog Interfaces VFx

#### 3.1.4.1 Overview

## PowerLink 100

The analog interface modules VFx are used for the connection of analog signals in the frequency range from 300 Hz to 3840 Hz to the PowerLink. From the module in mounting position 2 only the ports 1 to 3 and in mounting position 3 only port 1 can be used. It is possible to route up to 5 analog voice channels (ports 1 and 2 of the VFx modules) to the vMUX (if available).

#### PowerLink 50

The analog interface modules VFx are used for the connection of analog signals in the frequency range from 300 Hz to 3840 Hz to the PowerLink. From the module VFX1 P1-3 and VFx2 the ports 1 to 3 can be used. From the module VFX1 P4 only port 4 can be used. It is possible to route up to 5 analog voice channels (ports 1 and 2 of the VFx modules) to the vMUX (if available).

#### 3.1.4.2 VFX1 Module in Mounting Position 1 for PowerLink 100

Table 3-6Pin assignment of the VFx1 connector

| VE                  | VFx1_P4n.c                              |                        |                                           |  |  |
|---------------------|-----------------------------------------|------------------------|-------------------------------------------|--|--|
| $\sqrt{2}$          |                                         |                        |                                           |  |  |
| {(19, 18)<br>  • (• |                                         | 4 3 2 1<br>• • • • • ) |                                           |  |  |
| \ <b> </b> 27 \     | 86 8534 33/32/31 30 29/28/27 26 25 24 2 | 3 22 21 20             |                                           |  |  |
|                     | MAA                                     |                        |                                           |  |  |
|                     | n.c. VFx1_P3 VFx1_P2                    | n.c.                   |                                           |  |  |
|                     | SUB-D connector female 37 p             | 1                      |                                           |  |  |
| PIN                 | Signal Name                             | Remarks                |                                           |  |  |
| 1                   | VFX1_P1_W4IA                            | Port 1                 | 4-wire input A                            |  |  |
| 2                   | VFX1_P1_W24IOA                          | Port 1                 | 4-wire output A resp. 2-wire in-/output A |  |  |
| 3                   | VFX1_P1_S2IN                            | Port 1                 | S2 signaling IN (M-Lead)                  |  |  |
| 4                   | VFX1_P1_S2OUT                           | Port 1                 | S2 signaling OUT (E-Lead)                 |  |  |
| 5                   | n.c.                                    | Not connecte           |                                           |  |  |
| 6                   | VFX1_P2_W4IA                            | Port 2                 | 4-wire input A                            |  |  |
| 7                   | VFX1_P2_W24IOA                          | Port 2                 | 4-wire output A resp. 2-wire in-/output A |  |  |
| 8                   | VFX1_P2_COMP                            | Port 2                 | Compander control                         |  |  |
| 9                   | n.c.                                    | Not connecte           | d                                         |  |  |
| 10                  | VFX1_P3_W4IA                            | Port 3                 | 4-wire input A                            |  |  |
| 11                  | VFX1_P3_W4OA                            | Port 3                 | 4-wire output A                           |  |  |
| 12                  | VFX1_P3_S6INA                           | Port 3                 | S6 control wire IN A                      |  |  |
| 13                  | n.c.                                    | Not connected          |                                           |  |  |
| 14                  | VFX1_P4_W4IA                            | Port 4                 | 4-wire input A                            |  |  |
| 15                  | VFX1_P4_W4OA                            | Port 4                 | 4-wire output A                           |  |  |
| 16                  | reserved                                |                        |                                           |  |  |
| 17                  | reserved                                |                        |                                           |  |  |
| 18                  | n.c.                                    | Not connecte           | d                                         |  |  |
| 19                  | VFX1_P4_S6INA                           | Port 4                 | S6 control wire IN A                      |  |  |
| 20                  | VFX1_P1_W4IB                            | Port 1                 | 4-wire input B                            |  |  |
| 21                  | VFX1_P1_W24IOB                          | Port 1                 | 4-wire output B resp. 2-wire in-/output B |  |  |
| 22                  | VFX1_P1_COMP                            | Port 1                 | Compander control                         |  |  |
| 23                  | n.c.                                    | Not connecte           | ed                                        |  |  |
| 24                  | VFX1_P2_W4IB                            | Port 2                 | 4-wire input B                            |  |  |
| 25                  | VFX1_P2_W24IOB                          | Port 2                 | 4-wire output B resp. 2-wire in-/output B |  |  |
| 26                  | VFX1_P2_S2IN                            | Port 2                 | S2 signaling IN (M-Lead)                  |  |  |
| 27                  | VFX1_P2_S2OUT                           | Port 2                 | S2 signaling OUT (E-Lead)                 |  |  |
| 28                  | n.c                                     | Not connecte           | ed                                        |  |  |
| 29                  | VFX1_P3_W4IB                            | Port 3                 | 4-wire input B                            |  |  |
| 30                  | VFX1_P3_W4OB                            | Port 3                 | 4-wire output B                           |  |  |
| 31                  | VFX1_P3_S6INB                           | Port 3                 | S6 control wire IN B                      |  |  |

| 32 | n.c.          | Not connected |                      |
|----|---------------|---------------|----------------------|
| 33 | VFX1_P4_W4IB  | Port 4        | 4-wire input B       |
| 34 | VFX1_P4_W4OB  | Port 4        | 4-wire output B      |
| 35 | reserved      |               |                      |
| 36 | n.c.          | Not connected |                      |
| 37 | VFX1_P4_S6INB | Port 4        | S6 control wire IN B |

#### 3.1.4.3 VFX 2&3 Modules in Mounting Positions 2 and 3 for PowerLink 100

Table 3-7 Pin assignment of the VFX 2&3 connector

|       | FX3_P1 n.c. n.c.                                         | VFx2_P1       | )                                         |  |  |
|-------|----------------------------------------------------------|---------------|-------------------------------------------|--|--|
|       | 000 0534 33/32/31 30 29/28 27 26 2<br>n.c. VFx2_P3 VFx2_ | $\mathcal{N}$ |                                           |  |  |
| VFX 2 | 2&3 SUB-D connector fema                                 | ale 37 pin    |                                           |  |  |
| PIN   | Signal Name                                              | Remarks       |                                           |  |  |
| 1     | VFX2_P1_W4IA                                             | Port 1        | 4-wire input A                            |  |  |
| 2     | VFX2 P1 W24IOA                                           | Port 1        | 4-wire output A resp. 2-wire in-/output A |  |  |
| 3     | <br>VFX2_P1_S2IN                                         | Port 1        | S2 signaling IN (M-Lead)                  |  |  |
| 4     | VFX2_P1_S2OUT                                            | Port 1        | S2 signaling OUT (E-Lead)                 |  |  |
| 5     | n.c.                                                     | Not conne     | ected                                     |  |  |
| 6     | VFX2_P2_W4IA                                             | Port 2        | 4-wire input A                            |  |  |
| 7     | VFX2_P2_W24IOA                                           | Port 2        | 4-wire output A resp. 2-wire in-/output A |  |  |
| 8     | VFX2_P2_COMP                                             | Port 2        | Compander control                         |  |  |
| 9     | n.c.                                                     | Not connected |                                           |  |  |
| 10    | VFX2_P3_W4IA                                             | Port 3        | 4-wire input A                            |  |  |
| 11    | VFX2_P3_W4OA                                             | Port 3        | 4-wire output A                           |  |  |
| 12    | VFX2_P3_S6INA                                            | Port 3        | S6 control wire IN A                      |  |  |
| 13    | n.c.                                                     | Not conne     | Not connected                             |  |  |
| 14    | VFX3_P1_W4IA                                             | Port 1        | 4-wire input A                            |  |  |
| 15    | VFX3_P1_W4IOA                                            | Port 1        | 4-wire output A resp. 2-wire in-/output A |  |  |
| 16    | VFX3_P1_S2IN                                             | Port 1        | S2 signaling IN (M-Lead)                  |  |  |
| 17    | VFX3_P1_S2OUT                                            | Port 1        | S2 signaling OUT (E-Lead)                 |  |  |
| 18    | n.c.                                                     | Not conne     | ected                                     |  |  |
| 19    | reserved                                                 |               |                                           |  |  |
| 20    | VFX2_P1_W4IB                                             | Port 1        | 4-wire input B                            |  |  |
| 21    | VFX2_P1_W24IOB                                           | Port 1        | 4-wire output B resp. 2-wire in-/output B |  |  |
| 22    | VFX2_P1_COMP                                             | Port 1        | Compander control                         |  |  |
| 23    | n.c.                                                     | Not conne     | ected                                     |  |  |
| 24    | VFX2_P2_W4IB                                             | Port 2        | 4-wire input B                            |  |  |
| 25    | VFX2_P2_W24IOB                                           | Port 2        | 4-wire output B resp. 2-wire in-/output B |  |  |
| 26    | VFX2_P2_S2IN                                             | Port 2        | S2 signaling IN (M-Lead)                  |  |  |
| 27    | VFX2_P2_S2OUT                                            | Port 2        | S2 signaling OUT (E-Lead)                 |  |  |
| 28    | n.c.                                                     | Not conne     | ected                                     |  |  |
| 29    | VFX2_P3_W4IB                                             | Port 3        | 4-wire input B                            |  |  |

3.1 Installation

| 30 | VFX2_P3_W4OB  | Port 3       | 4-wire output B                           |
|----|---------------|--------------|-------------------------------------------|
| 31 | VFX2_P3_S6INB | Port 3       | S6 control wire IN B                      |
| 32 | n.c.          | Not connecte | d                                         |
| 33 | VFX3_P1_W4IB  | Port 1       | 4-wire input B                            |
| 34 | VFX3_P1_W4IOB | Port 1       | 4-wire output B resp. 2-wire in-/output B |
| 35 | VFX3_P1_COMP  | Port 1       | Compander control                         |
| 36 | n.c.          | Not connecte | d                                         |
| 37 | reserved      |              |                                           |

#### 3.1.4.4 VFX1 P1-3 Module for PowerLink 50

| Table 3-8 P | in assignment of the VFX1 P1-3 connector |
|-------------|------------------------------------------|
|-------------|------------------------------------------|

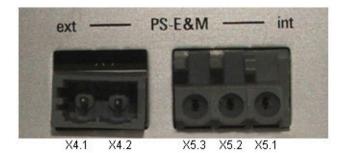
| VF   | VFX1_P3 VFX1_P1                                               |              |                                           |  |  |
|------|---------------------------------------------------------------|--------------|-------------------------------------------|--|--|
| (13  |                                                               |              |                                           |  |  |
| \ °  | 12 11 10 9 8 7 6 5 4 3 2 1<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | /            |                                           |  |  |
| 25   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         |              |                                           |  |  |
|      | n.c VFX1_P2 n.c                                               |              |                                           |  |  |
| VFX1 | P1-3 SUB-D connector female                                   | 25 pin       |                                           |  |  |
| PIN  | Signal Name                                                   | Remarks      |                                           |  |  |
| 1    | VFX1_P0_W4IA                                                  | Port 1       | 4-wire input A                            |  |  |
| 2    | VFX1_P0_W24IOA                                                | Port 1       | 4-wire output A resp. 2-wire in-/output A |  |  |
| 3    | VFX1_P0_S2IN                                                  | Port 1       | S2 signaling IN (M-Lead)                  |  |  |
| 4    | VFX1_P0_S2OUT                                                 | Port 1       | S2 signaling OUT (E-Lead)                 |  |  |
| 5    | n.c.                                                          | Not connecte | d                                         |  |  |
| 6    | VFX1_P1_W4IA                                                  | Port 2       | 4-wire input A                            |  |  |
| 7    | VFX1_P1_W24IOA                                                | Port 2       | 4-wire output A resp. 2-wire in-/output A |  |  |
| 8    | VFX1_P1_COMP                                                  | Port 2       | Compander control                         |  |  |
| 9    | n.c. Not connected                                            |              | d                                         |  |  |
| 10   | VFX1_P2_W4IA                                                  | Port 3       | 4-wire input A                            |  |  |
| 11   | VFX1_P2_W4OA                                                  | Port 3       | 4-wire output A                           |  |  |
| 12   | VFX1_P2_S6INA                                                 | Port 3       | S6 control wire IN A                      |  |  |
| 13   | reserved                                                      |              |                                           |  |  |
| 14   | VFX1_P0_W4IB                                                  | Port 1       | 4-wire input B                            |  |  |
| 15   | VFX1_P0_W24IOB                                                | Port 1       | 4-wire output B resp. 2-wire in-/output B |  |  |
| 16   | VFX1_P0_COMP                                                  | Port 1       | Compander control                         |  |  |
| 17   | n.c.                                                          | Not connecte | d                                         |  |  |
| 18   | VFX1_P1_W4IB                                                  | Port 2       | 4-wire input B                            |  |  |
| 19   | VFX1_P1_W24IOB                                                | Port 2       | 2-wire in-/output B resp. 4-wire output B |  |  |
| 20   | VFX1_P1_S2IN                                                  | Port 2       | S2 signaling IN (M-Lead)                  |  |  |
| 21   | VFX1_P1_S2OUT                                                 | Port 2       | S2 signaling OUT (E-Lead)                 |  |  |
| 22   | n.c.                                                          | Not connecte | d                                         |  |  |
| 23   | VFX1_P2_W4IB                                                  | Port 3       | 4-wire input B                            |  |  |
| 24   | VFX1_P2_W4OB                                                  | Port 3       | 4-wire output B                           |  |  |
| 25   | VFX1_P2_S6INB                                                 | Port 3       | S6 control wire IN B                      |  |  |
|      |                                                               |              |                                           |  |  |

#### 3.1.4.5 VFX1 P4 Module for PowerLink 50

| VF   | VFX1_P1 VFX1_P4                                       |            |                      |  |  |
|------|-------------------------------------------------------|------------|----------------------|--|--|
| (13  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |            |                      |  |  |
|      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 | 0 14       |                      |  |  |
|      |                                                       |            |                      |  |  |
|      | n.c VFX1_P4 n.c<br>(2 Pins)                           |            |                      |  |  |
| VFX1 | P4 SUB-D connector fema                               | ale 25 pin |                      |  |  |
| PIN  | Signal Name                                           | Remarks    |                      |  |  |
| 1    | VFX1_P3_W4IA                                          | Port 4     | 4-wire input A       |  |  |
| 2    | VFX1_P3_W4OA                                          | Port 4     | 4-wire output        |  |  |
| 3    | reserved                                              |            |                      |  |  |
| 4    | reserved                                              |            |                      |  |  |
| 5    | n.c.                                                  | Not conne  | ected                |  |  |
| 6    | VFX1_P3_S6INA                                         | Port 4     | S6 control wire IN A |  |  |
| 7    | reserved                                              |            |                      |  |  |
| 8    | reserved                                              |            |                      |  |  |
| 9    | n.c.                                                  | Not conne  | ected                |  |  |
| 10   | reserved                                              |            |                      |  |  |
| 11   | reserved                                              |            |                      |  |  |
| 12   | reserved                                              |            |                      |  |  |
| 13   | reserved                                              |            |                      |  |  |
| 14   | VFX1_P3_W4IB                                          | Port 4     | 4-wire input B       |  |  |
| 15   | VFX1_P3_W4OB                                          | Port 4     | 4-wire output B      |  |  |
| 16   | reserved                                              |            |                      |  |  |
| 17   | n.c.                                                  | Not conne  |                      |  |  |
| 18   | VFX1_P3_S6INB                                         | Port 4     | S6 control wire IN B |  |  |
| 19   | reserved                                              |            |                      |  |  |
| 20   | reserved                                              |            |                      |  |  |
| 21   | reserved                                              |            |                      |  |  |
| 22   | n.c.                                                  | Not conne  | ected                |  |  |
| 23   | reserved                                              |            |                      |  |  |
| 24   | reserved                                              |            |                      |  |  |
| 25   | reserved                                              |            |                      |  |  |



#### 3.1.4.6 VFX2 Module for PowerLink 50


| Table 3-10 | Pin assignment of the VFX2 connector |
|------------|--------------------------------------|
|------------|--------------------------------------|

|        | (2_P3       VFX2_P1         2 11 10 9 8 7 6 5 4 3 2 1         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |         |  |
|--------|-----------------------------------------------------------------------------------------------------|---------|--|
| VFX2 S | VFX2 SUB-D connector female 25 pin                                                                  |         |  |
| PIN    | Signal Name                                                                                         | Remarks |  |

3.1 Installation

| 1  | VFX2 P0 W4IA   | Port 1       | 4-wire input A                            |
|----|----------------|--------------|-------------------------------------------|
| 2  | VFX2_P0_W24IOA | Port 1       | 4-wire output A resp. 2-wire in-/output A |
| 3  | VFX2_P0_S2IN   | Port 1       | S2 signaling IN (M-Lead)                  |
| 4  | VFX2_P0_S2OUT  | Port 1       | S2 signaling OUT (E-Lead)                 |
| 5  | n.c.           | Not connecte | d                                         |
| 6  | VFX2_P1_W4IA   | Port 2       | 4-wire input A                            |
| 7  | VFX2_P1_W24IOA | Port 2       | 4-wire output A resp. 2-wire in-/output A |
| 8  | VFX2_P1_COMP   | Port 2       | Compander control                         |
| 9  | n.c.           | Not connecte | d                                         |
| 10 | VFX2_P2_W4IA   | Port 3       | 4-wire input A                            |
| 11 | VFX2_P2_W4OA   | Port 3       | 4-wire output A                           |
| 12 | VFX2_P2_S6INA  | Port 3       | S6 control wire IN A                      |
| 13 | reserved       |              |                                           |
| 14 | VFX2_P0_W4IB   | Port 1       | 4-wire input B                            |
| 15 | VFX2_P0_W24IOB | Port 1       | 4-wire output B resp. 2-wire in-/output B |
| 16 | VFX2_P0_COMP   | Port 1       | Compander control                         |
| 17 | n.c.           | Not connecte | d                                         |
| 18 | VFX2_P1_W4IB   | Port 2       | 4-wire input B                            |
| 19 | VFX2_P1_W24IOB | Port 2       | 2-wire in-/output B resp. 4-wire output B |
| 20 | VFX1_P1_S2IN   | Port 2       | S2 signaling IN (M-Lead)                  |
| 21 | VFX2_P1_S2OUT  | Port 2       | S2 signaling OUT (E-Lead)                 |
| 22 | n.c.           | Not connecte | d                                         |
| 23 | VFX2_P2_W4IB   | Port 3       | 4-wire input B                            |
| 24 | VFX2_P2_W4OB   | Port 3       | 4-wire output B                           |
| 25 | VFX2_P2_S6INB  | Port 3       | S6 control wire IN B                      |

#### 3.1.4.7 PS E&M Connectors



[tdvfx2pn-040111-02.tif, 1, ---

Figure 3-21 The PS E&M connectors for external resp. internal supply voltage

#### Table 3-11 PS E&M ext connector (X4) for input of the external voltage

| PIN | Signal Name |
|-----|-------------|
| 1   | Vext +      |
| 2   | Vext -      |

Table 3-12PS E&M int connector (X5) for output of the internal voltage

| PIN | Signal Name |
|-----|-------------|
| 1   | +48V        |
| 2   | -48V        |
| 3   | GND         |

Table 3-13 Jumper W120 at the CFS-2 backplane

| Jumper position W120 | Remarks         |
|----------------------|-----------------|
| 1-2                  | Not used        |
| 2-3                  | Default setting |



#### NOTE

The jumper W120 is located at the module side of the CFS-2 backplane between slot position 3 and 4.

Examples for connecting the power supply for the E&M signaling are shown in the next figures.

#### Wiring of the PS E and M Connectors

The connection of the external voltage supply for the S2 signaling wire from the exchange to the connector X4 is shown in the figure below:

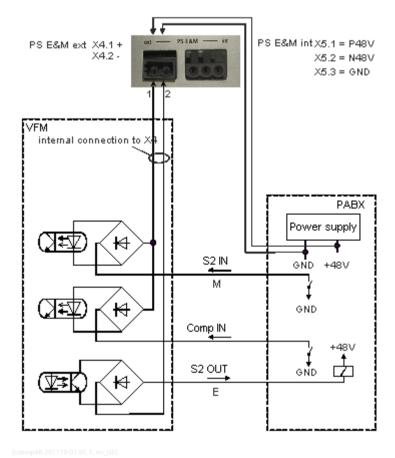
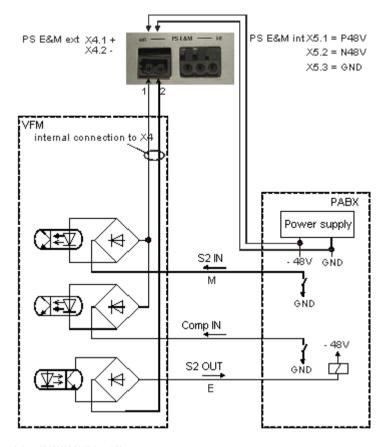




Figure 3-22 Using external supply voltage +48V for the signaling wire S2



cdevsm48-291110-01.tit, 1, en\_05j

Figure 3-23 Using external supply voltage -48V for the signaling wire S2

When using the internal voltage supply of the PowerLink for the S2 signaling wire from the exchange the connectors X4 and X5 have to be looped like shown in the figures below:

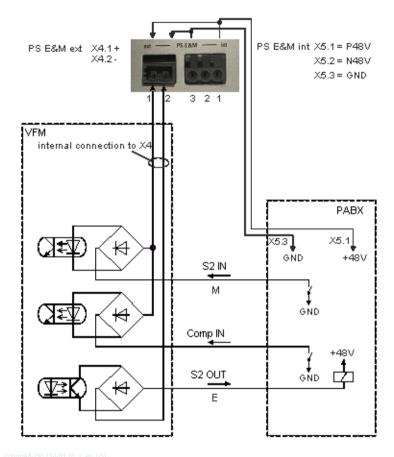



Figure 3-24 Using the internal voltage supply (GND and +48V) for the signaling wire S2



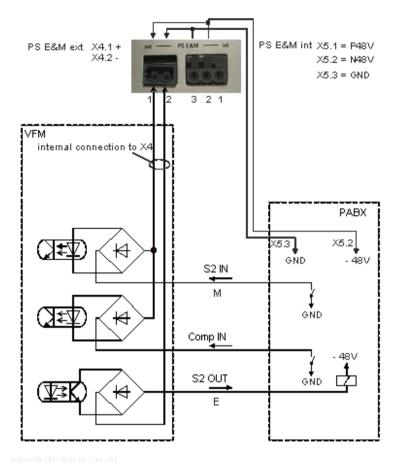



Figure 3-25 Using the internal voltage supply (GND and -48V) for the signaling wire S2

The connection between the PowerLink system and the exchange without galvanic isolation is shown in the next figure. This connection is only possible when the distance between the Power-Link and the exchange is very short, and both devices are using the same ground potential.

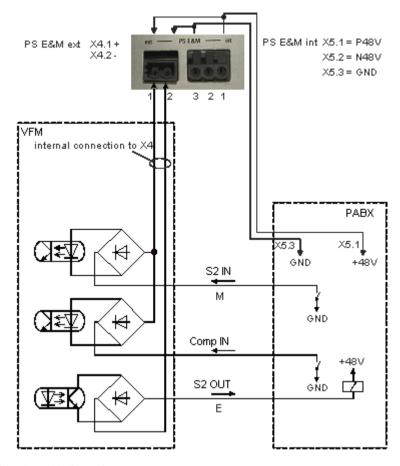
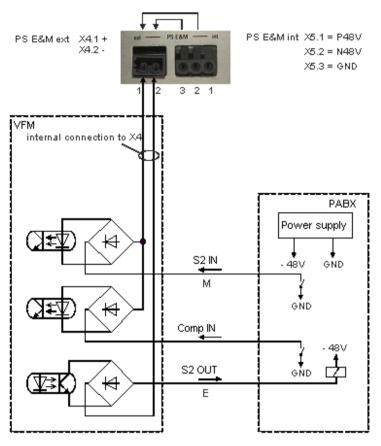
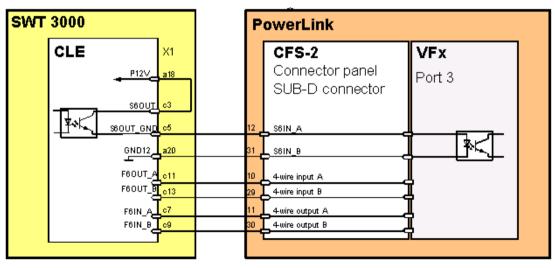




Figure 3-26 Connecting the S2 wire to the exchange without galvanic isolation using GND and +48V


3.1 Installation





#### 3.1.4.8 Connection of an External SWT 3000 to the VFx Modules

The connection of the CLE module from an external SWT 3000 to the SUB-D female connector of the VFx modules is shown in the figures below. In this case the VFx ports 3 resp. 4 must be used (ref. also to table *Pin assignment of the VFx\_1 connector* and *Pin assignment of the VFx2-3 connector*.



[cdeswtp3-120813-01.tif, 1, en\_US]

Figure 3-28 Connecting an external SWT 3000 to the port 3 of the VFx modules

| SWT 3000 |               | PowerLink                                              |
|----------|---------------|--------------------------------------------------------|
| -        | X1<br>P12Va18 | CFS-2 VFx<br>Connector panel<br>SUB-D connector Port 4 |
|          |               |                                                        |
| لے<br>Fe |               | 14 4 wire input A<br>33 4 wire input B                 |
|          |               | 15     4 wire output A       34     4 wire output B    |

deswtp4-120813-01.tif, 1,

Figure 3-29 Connecting an external SWT 3000 to the port 4 of the VFx modules

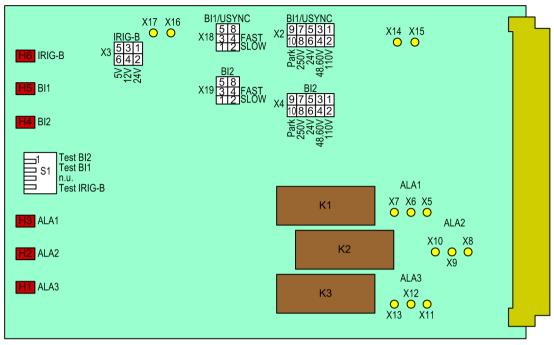
#### 3.1.4.9 Alarm Interface Connector

#### Alarm interface for PowerLink 100

With 2 alarm modules ALR up to 6 relay contacts are available at the alarm interface. The alarm indications are adjustable with the service program PowerSys.

| Table 3-14 | PowerLink 100 - Pin assignment of the CFS-2 alarm interface connector |
|------------|-----------------------------------------------------------------------|
|------------|-----------------------------------------------------------------------|

| PIN | Signal Name  | Remarks                                           |
|-----|--------------|---------------------------------------------------|
| 1   | ALRS1_ALA1A  | Alarm relay K1 from ALR 1 module                  |
| 2   | ALRS1_ALA1B  | Alarm relay K1 from ALR 1 module                  |
| 3   | ALRS1_ALA2A  | Alarm relay K2 from ALR 1 module                  |
| 4   | ALRS1_ALA2B  | Alarm relay K2 from ALR 1 module                  |
| 5   | ALRS1_ALA3A  | Alarm relay K3 from ALR 1 module                  |
| 6   | ALRS1_ALA3B  | Alarm relay K3 from ALR 1 module                  |
| 7   | ALRS2_ALA4A  | Alarm relay K1 from ALR 2 module                  |
| 8   | ALRS2_ALA4B  | Alarm relay K1 from ALR 2 module                  |
| 9   | ALRS2_ALA5A  | Alarm relay K2 from ALR 2 module                  |
| 10  | ALRS2_ALA5B  | Alarm relay K2 from ALR 2 module                  |
| 11  | ALRS2_ALA6A  | Alarm relay K3 from ALR 2 module                  |
| 12  | ALRS2_ALA6B  | Alarm relay K3 from ALR 2 module                  |
| 13  | ALRS1_USYNCA | Clock synch. or IRIG-B input of ALR1 module       |
| 14  | ALRS1_USYNCB | Clock synch. input or IRIG-B input of ALR1 module |
| 15  | BI2_A        | Binary Input 2 from ALR 1                         |
| 16  | BI2_B        | Binary Input 2 from ALR 1                         |
| 17  |              |                                                   |
| 18  |              |                                                   |
| 19  |              |                                                   |
| 20  |              |                                                   |
| 21  | FGND         |                                                   |


#### Alarm interface for PowerLink 50

With 1 alarm modules ALR up to 3 relay contacts are available at the alarm interface. The alarm indications are adjustable with the service program PowerSys.

| PIN | Signal Name  | Remarks                                           |
|-----|--------------|---------------------------------------------------|
| A1  | ALRS_USYNCA  | Clock synch. or IRIG-B input of ALR1 module       |
| A5  | ALRS_BI1A    | Binary input from ALR 1 module                    |
| A8  | ALRS_BI1B    | Binary input from ALR 1 module                    |
| A11 | n.c.         |                                                   |
| A12 | FGND         |                                                   |
| A13 | n.c.         |                                                   |
| A14 | ALRS_USYNC_L |                                                   |
| A15 | ALRS_SLP_L   |                                                   |
| A16 | P5V          | Power supply 5 V                                  |
| A17 | GND          |                                                   |
| A18 | P12V         | Power supply 12 V                                 |
| A21 | ALRS_ALA1A   | Alarm relay from ALR 1 module                     |
| A25 | ALRS_ALA2B   | Alarm relay from ALR 1 module                     |
| A28 | ALRS_ALA2A   | Alarm relay from ALR 1 module                     |
| A32 | ALRS_ALA3A   | Alarm relay from ALR 1 module                     |
| B11 | n.c.         |                                                   |
| B12 | FGND         |                                                   |
| B13 | n.c.         |                                                   |
| B14 | n.c.         |                                                   |
| B15 | n.c.         |                                                   |
| B16 | P5V          | Power supply 5 V                                  |
| B17 | ALRS_PD_L    |                                                   |
| B18 | P12V         | Power supply 12 V                                 |
| С3  | ALRS_USYNCB  | Clock synch. input or IRIG-B input of ALR1 module |
| C11 | n.c.         |                                                   |
| C12 | FGND         |                                                   |
| C13 | ALRS_OUT1_L  | Binary output from ALR1                           |
| C14 | ALRS_OUT2_L  | Binary output from ALR1                           |
| C15 | ALRS_OUT3_L  | Binary output from ALR1                           |
| C16 | P5V          | Power supply 5 V                                  |
| C17 | n.c          |                                                   |
| C18 | P12V         | Power supply 12 V                                 |
| C23 | ALRS_ALA1B   | Alarm relay from ALR 1 module                     |
| C30 | ALRS_ALA3B   | Alarm relay from ALR 1 module                     |

 Table 3-15
 PowerLink 50 - Pin assignment of the CFS-2 alarm interface connector

#### Jumpers for the relay contacts on the ALR module



<sup>[</sup>scpjrca2-230913-01.tif, 1, en\_US]

Figure 3-30 Position of the jumpers for the relay contacts on the ALR module

| Table 3-16Setting options for the ALR module |
|----------------------------------------------|
|----------------------------------------------|

|                                                           | X2                                 | X3                            | X4                                       | X5-X13   | X14 – X17              |
|-----------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------------|----------|------------------------|
| Binarv                                                    |                                    |                               | ation with Sync Puls                     |          |                        |
|                                                           | X2 – 7/8 *)                        | open                          |                                          |          | X14 – X15 *)           |
|                                                           | X2 – 1/2                           | open                          |                                          |          | X14 – X15              |
| 48 V /<br>60 V                                            | X2 – 3/4                           | open                          |                                          |          | X14 – X15              |
| 24 V                                                      | X2 – 5/6                           | open                          |                                          |          | X14 – X15              |
| Debou                                                     | nce time                           | ≈ 0.6 ms                      | X18 – 3/4 X18 –                          |          |                        |
|                                                           |                                    | ≈ 1.0 ms                      | 1/2                                      |          |                        |
|                                                           |                                    | 1                             | 1                                        | 1        |                        |
|                                                           |                                    |                               |                                          |          |                        |
| 12 V                                                      | open                               | X3 – 3/4                      |                                          |          | X16 – X17              |
| 12 V<br>5 V                                               | open<br>open                       | X3 – 3/4<br>X3 – 5/6          |                                          |          | X16 – X17<br>X16 – X17 |
| 5 V<br>Binary                                             | open<br>v Input 2 – for t          |                               | n                                        |          | -                      |
| 5 V<br><b>Binary</b><br>250 V                             | open<br>7 Input 2 – for 1          | X3 – 5/6<br>future applicatio | n<br>X4 - 7/8 *)                         |          | X16 – X17              |
| 5 V<br>Binary                                             | open<br>/ Input 2 – for 1<br>      | X3 – 5/6<br>future applicatio | n                                        |          | X16 – X17              |
| 5 V<br>Binary<br>250 V<br>110 V<br>48 V /                 | open<br>/ Input 2 – for 1<br>      | X3 – 5/6<br>future applicatio | n<br>X4 - 7/8 *)<br>X4 - 1/2             | <br>     | <br>                   |
| 5 V<br>Binary<br>250 V<br>110 V<br>48 V /<br>60 V<br>24 V | open<br><b>Input 2 – for</b> 1<br> | X3 – 5/6<br>future applicatio | n<br>X4 - 7/8 *)<br>X4 - 1/2<br>X4 - 3/4 | <br><br> | <br><br>               |

3.1 Installation

| Alarm                   | Alarm Output 1 Relay K1 |  |  |              |  |  |
|-------------------------|-------------------------|--|--|--------------|--|--|
| NC                      |                         |  |  | X5 – X6 *)   |  |  |
| NO                      |                         |  |  | X6 – X7      |  |  |
| Alarm                   | Alarm Output 2 Relay K2 |  |  |              |  |  |
| NC                      |                         |  |  | X8 – X9 *)   |  |  |
| NO                      |                         |  |  | X9 – X10     |  |  |
| Alarm Output 2 Relay K3 |                         |  |  |              |  |  |
| NC                      |                         |  |  | X11 – X12 *) |  |  |
| NO                      |                         |  |  | X12 – X13    |  |  |

| NC=  | Break contact                                                         |
|------|-----------------------------------------------------------------------|
| NO=  | Make contact                                                          |
| *) = | Default setting                                                       |
|      | The max. length of the connecting cable for the binary inputs is 30 m |

## 3.1.5 Assignment of the X.21-DP Interface

## 3.1.5.1 Overview

Table 3-17Pin assignment of the X.21-DP interface

| Pin | Signal Name  | Remarks                        |  |
|-----|--------------|--------------------------------|--|
| 1   | FGND         | Frame ground                   |  |
| 2   | X21_D_IN_A   | X.21 (DCE) transmit (a) input  |  |
| 3   |              |                                |  |
| 4   | X21_D_OUT_A  | X.21 (DCE) receive (a) output  |  |
| 5   |              |                                |  |
| 6   | X21_CL_OUT_A | Clock out + (DP in DCE mode)   |  |
| 7   | X21_EXT_CL_A | Ext. clock in (DP in DTE mode) |  |
| 8   | GND          | Signal ground                  |  |
| 9   | X21_D_IN_B   | X.21 (DCE) transmit (b) input  |  |
| 10  |              |                                |  |
| 11  | X21_D_OUT_B  | X.21 (DCE) receive (b) output  |  |
| 12  |              |                                |  |
| 13  | X21_CL_OUT_B | Clock out – (DP in DCE mode)   |  |
| 14  | X21_EXT_CL_B | Ext. clock in (DP in DTE mode) |  |
| 15  |              |                                |  |

The X.21-DP interface socket of the PowerLink connector panel



[dwsocdle-291110-01.tif, 1, en\_US]

Figure 3-31 Pin arrangement of the 15-pol SUB-D sockets

Use screened cables for the connections.

# CAUTION

If the vMUX board is equipped, the system internal board link disables the X.21-DP interface.

If vMUX is used, the X.21-DP interface is not available (but the interfaces X21-1 and X21-2 can be operated).

 $\diamond$  vMUX board may not be mounted if X.21-DP is used.

## 3.1.6 Synchronous vMUX Interfaces X.21

## 3.1.6.1 Overview

The synchronous interfaces X.21-1 and X.21-2 serve for the connection of **synchronous data channels** to the **vMUX** of the PowerLink.

Use screened cables for the connections.

## 3.1.6.2 Synchronous vMUX User Interface – X.21-1

| Table 3-18 Pi | assignment of the X.21-1 inte | rface |
|---------------|-------------------------------|-------|
|---------------|-------------------------------|-------|

| PIN | Signal Name     | Remarks                       |
|-----|-----------------|-------------------------------|
| 1   | FGND            | Frame ground                  |
| 2   | X.21-1_D_IN_A   | X.21 (DCE) transmit (a) input |
| 3   |                 |                               |
| 4   | X.21-1_D_OUT_A  | X.21 (DCE) receive (a) output |
| 5   |                 |                               |
| 6   | X.21-1_CL_OUT_A | X.21 (DCE): Signal Timing (a) |
| 7   | X.21-1_CL_IN_A  |                               |
| 8   | GND             | Signal ground                 |
| 9   | X.21-1_D_IN_B   | X.21-1_D_IN_B                 |
| 10  |                 |                               |
| 11  | X.21-1_D_OUT_B  | X.21 (DCE) receive (b) output |
| 12  |                 |                               |
| 13  | X.21-1_CL_OUT_B | X.21 (DCE): Signal Timing (b) |
| 14  | X.21-1_CL_IN_B  |                               |
| 15  |                 |                               |

## 3.1.6.3 Synchronous vMUX User Interface – X.21-2

| Table 3-19 Pin ass | ignment of the X.2 | 1-2 interface |
|--------------------|--------------------|---------------|
|--------------------|--------------------|---------------|

| PIN | Signal Name     | Remarks                       |
|-----|-----------------|-------------------------------|
| 1   | FGND            | Frame ground                  |
| 2   | X.21-2_D_IN_A   | X.21 (DCE) transmit (a) input |
| 3   |                 |                               |
| 4   | X.21-2_D_OUT_A  | X.21 (DCE) receive (a) output |
| 5   |                 |                               |
| 6   | X.21-2_CL_OUT_A | X.21 (DCE): Signal Timing (a) |
| 7   | X.21-2_CL_IN_A  |                               |
| 8   | GND             | Signal ground                 |

3.1 Installation

| PIN | Signal Name     | Remarks                       |
|-----|-----------------|-------------------------------|
| 9   | X.21-2_D_IN_B   | X.21 (DCE) transmit (b) input |
| 10  |                 |                               |
| 11  | X.21-2_D_OUT_B  | X.21 (DCE) receive (b) output |
| 12  |                 |                               |
| 13  | X.21-2_CL_OUT_B | X.21 (DCE): Signal Timing (b) |
| 14  | X.21-2_CL_IN_B  |                               |
| 15  |                 |                               |

## 3.1.7 Fractional E1 Interface

The fE1 interface serves for the connection of a 2 Mbps E1 frame from a digital exchange for the transparent transmission from 8 out of 30 voice channels via the vMUX.

 Table 3-20
 Pin assignment of the fractional E1 connector FE1

| Pin | Signal Name | Remarks         |
|-----|-------------|-----------------|
| 1   | FE1_Tx_A    | Transmit data A |
| 2   | FE1_Tx_B    | Transmit data B |
| 3   | FE1_RES1    | n.u.            |
| 4   | FE1_Rx_A    | Receive data A  |
| 5   | FE1_Rx_B    | Receive data B  |
| 6   | FE1_RES2    | n.u.            |
| 7   | FE1_RES3    | n.u.            |
| 8   | FE1_RES4    | n.u.            |

The interface can be configured in **NT** (Network terminal) and in **TE** (Terminal equipment) mode. The **default configuration is the NT mode**, and in such a case a **direct cable** can be used to connect the PBX to the FE1 interface. If the **interface is configured as TE**, a **NT** system will be connected to the PowerLink with a **crossed** cable.

For the connections (screened) Cat5e cables have to be used.

## 3.1.8 Ethernet Interface

## 3.1.8.1 Overview

PowerLink offers Ethernet interfaces, 2 user and 1 service interface. The electrical Ethernet user interface (IP-1) is located at the connector panel. The optical Ethernet user interface (ETH) as well as the electrical Ethernet service interface (LCT) are located at the front cover of the module CSPi.

## 3.1.8.2 Ethernet Electrically (IP-1, LCT)

For connection a (screened) Cat5e cable has to be used.

| Pin | Signal Name | Remarks         |   |
|-----|-------------|-----------------|---|
| 1   | ETHU_Tx_P   | Transmit data P | 1 |
| 2   | ETHU_Tx_N   | Transmit data N |   |
| 3   | ETHU_RX_P   | Receive data P  |   |
| 4   |             | n.u.            |   |
| 5   |             | n.u.            |   |
| 6   | ETHU_RX_N   | Receive data N  |   |
| 7   |             | n.u.            |   |
| 8   |             | n.u.            |   |

Table 3-21 Pin assignment of the RJ45 Ethernet connector IP-1 and LCT

The signal standard at this interface complies with IEC 802.3

## 3.1.8.3 Ethernet Optically (ETH)

| Fiber optic module: | SFP-Module                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------|
| Fiber type:         | Multi mode with modules using 850nm wave length single mode with modules using 1300nm wave length |
| Wave length:        | 850 nm or 1300 nm                                                                                 |
| Opt. connector:     | LC-connector                                                                                      |
| Range:              | approx. 3 km at 1300nm                                                                            |
|                     | approx. 550m at 850nm (depending on module type)                                                  |

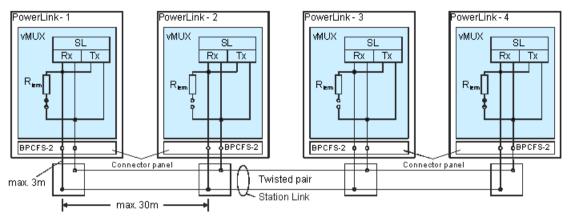
For the connection two fibers are necessary. One for Tx and one for RX.

## 3.1.9 G703.1 Interface Connector (IP-2) for PowerLink 100

The G703.1 interface is an alternative connection for the Data Pump to an external device. In case of working with this interface, the transmission rate is fixed to 64 Kbps. The working condition is "contra directional clock timing".

The G703.1 interface is located at the connector panel on the CFS-2 (IP-2). A (screened) Cat5e cable has to be used.

Table 3-22 Pin assignment of the RJ45 G703.1 connector IP-2


| Pin | Signal Name | Remarks         | 1 |
|-----|-------------|-----------------|---|
| 1   | G703_TX_P   | Transmit data P |   |
| 2   | G703_TX_N   | Transmit data N |   |
| 3   | G703_RX_P   | Receive data P  |   |
| 4   |             | n.u.            |   |
| 5   |             | n.u.            |   |
| 6   | G703_RX_N   | Receive data N  |   |
| 7   |             | n.u.            |   |
| 8   |             | n.u.            |   |

The signal standard at this interface complies with ITU G703.1

## 3.1.10 StationLink Connector

The station link RJ45 connector is located on the PowerLink connector panel.

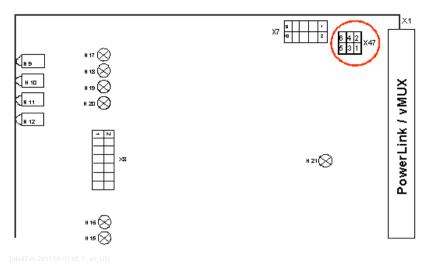
The station link (SL) offers the routing of channels between up to four different PowerLink equipments. The port mapping is carried out in the receiver. Local ports of the PowerLinks can't be routed.



<sup>[</sup>cdstlink-120813-01.tif, 1, en\_US]

Figure 3-32 The station link principle connection

The maximum SL device distance is 30m. The max. distance between PowerLink SL connector and Station Link bus is 3m.


For all SL connections only screened Cat5e cables have to be used!

| Table 3-23 | Pin assignment of the station link connector SL |
|------------|-------------------------------------------------|
|------------|-------------------------------------------------|

| Pin | Signal Name | Remarks          |
|-----|-------------|------------------|
| 1   | SL_RES1     | n.u.             |
| 2   | SL_RES2     | n.u.             |
| 3   | SL_RES3     | n.u.             |
| 4   | SL_A        | Station Link (a) |
| 5   | SL_B        | Station Link (b) |
| 6   | SL_RES4     | n.u.             |
| 7   | SL_RES5     | n.u.             |
| 8   | SL_RES6     | n.u.             |

## **StationLink Termination**

The station link bus must be terminated on both ends (in two PowerLink equipments). Refer also to Chapter 3.1.10 StationLink Connector (PowerLink-1 and 4) resp. Figure 3-110. For this purpose a termination resistance  $R_{term}$  is available which is located on the vMUX board. It has to be activated with jumper X47.





| Jumper position X47 | Function                        |
|---------------------|---------------------------------|
| 1 - 2               | Station Link terminated         |
| 3 - 4               | Station link not terminated     |
|                     | Park position (default setting) |
| 5 - 6               | Not used                        |

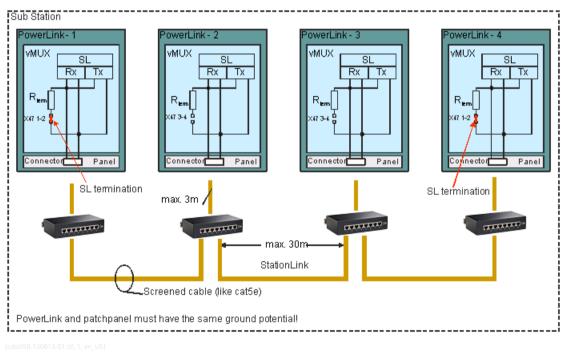



Figure 3-34 Station Link with four PowerLink 50/100

## 3.1.11 RM Interfaces

## 3.1.11.1 RM Interface RM-1

The remote access interface RM-1 could be used alternatively to the Ethernet service interface, located on the CSPi. In this case the connection between the service PC and PowerLink is done via an RS232 interface.

The RM-1 interface has to be used for software download with MemTool to the CSPi. Also the RM-1 interface can be used as IPCON terminal (see Chapter *Diagnostic*).

| Table 3-24 | Pin assignment of the interface RM-1 |
|------------|--------------------------------------|
|------------|--------------------------------------|

| RM-1        | Pin | Signal Name    |                            |
|-------------|-----|----------------|----------------------------|
| a formation | 1   |                | \`@ @ @ @ @ <sup>1</sup> / |
| 6           | 2   | RM-1_RXD (out) |                            |
|             | 3   | RM-1_TXD (in)  |                            |
|             | 4   |                |                            |
|             | 5   | GND            |                            |
|             | 6   |                |                            |
|             | 7   |                |                            |
|             | 8   |                |                            |
|             | 9   |                |                            |

## 3.1.11.2 RM Interface RM-2 for PowerLink 100

The RM-2 interface (Remote Access) of the PowerLink system has the same characteristics like the SSB interface of the SWT 3000 systems.

For example, it is possible to connect the PowerLink to a remote access server (RAS) via the interface RM-2 This allows users to gain access to the system from a remote location. Further information can be found in the Chapter SNMPand Remote Access.

| Table 3-25 | Pin assignment of the interface RM-2 |
|------------|--------------------------------------|
|------------|--------------------------------------|

| RM-2    | Pin | Signal Name    |                                         |
|---------|-----|----------------|-----------------------------------------|
| (Com)   | 1   |                | \ <sup>5</sup> ● ● ● ● ● <sup>1</sup> / |
| allow a | 2   | RM-2_RXD (out) | 9 🖲 🕲 🕲 🔘 6/                            |
|         | 3   | RM-2_TXD (in)  |                                         |
|         | 4   |                |                                         |
|         | 5   | GND            |                                         |
|         | 6   |                |                                         |
|         | 7   | RM-2_RTS (in)  |                                         |
|         | 8   | RM-2_CTS (out) |                                         |
|         | 9   |                |                                         |

## 3.1.12 Integrated SWT 3000

## 3.1.12.1 Assignment of the Interface DLE for PowerLink 100

For the iSWT the **digital line interface LID-1** is available through expansion of the PU4 module with the interface module to digital transmission paths DLE (digital line equipment). The hardware interfaces X.21 (up to 64kbit/s), G703.1 (64kbit/s) and G703.6 (2Mbit/s HDB3-coded balanced or coaxial) can be selected on the LID, although only one can be used.

| SWT-2/DLE | Pin | Signal Name        | X.21 Signal<br>(DTE) | G703.1<br>Signal | G703.6 Signal |
|-----------|-----|--------------------|----------------------|------------------|---------------|
| 0         | 1   | FGND               | GNDS / Shield        | GNDS             | GNDS          |
| SWT-1/DLE | 2   | DLE_TXD_A<br>(out) | X21_TxD_A1           | DO11             | DO11          |
|           | 3   |                    |                      |                  |               |
|           | 4   | DLE_RXD_A (in)     | X21_RxD_A1           | DI11             | DI11          |
|           | 5   |                    |                      |                  |               |
|           | 6   | DLE_RXC_A (in)     | X21_RxC_A1           |                  |               |
|           | 7   | DLE_TXC_A<br>(out) | X21_TxC_A1           |                  |               |
|           | 8   | GND                | GND / Signal         | GND              | GND           |
|           | 9   | DLE_TXD_B<br>(out) | X21_TxD_B1           | DO12             | DO12          |
|           | 10  |                    |                      |                  |               |
|           | 11  | DLE_RXD_B (in)     | X21_RxD_B1           | DI12             | DI12          |
|           | 12  |                    |                      |                  |               |
|           | 13  | DLE_RXC_B (in)     | X21_RxC_B1           |                  |               |
|           | 14  | DLE_TXC_B<br>(out) | X21_TxC_B1           |                  |               |
|           | 15  |                    |                      |                  |               |

| Table 3-26 | Pin assignment of the digital line equipment SWT-x/DLE |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

SWT-1 first integrated SWT

SWT-2 second integrated SWT

DLE digital line equipment



[dwsocdle-291110-01.tif, 1

Figure 3-35 Sockets for connecting the DLE from the iSWT 3000

## Table 3-27Signals for the X-21 interface from the SWT-1

| Signal Name | Function                             |
|-------------|--------------------------------------|
| X21_RxD_A1  | Input: X.21 Receive data signal a    |
| X21_RxD_B1  | Input: X.21 Receive data signal b    |
| X21_TxD_A1  | Output: X.21 Transmit data signal a  |
| X21_TxD_B1  | Output: X.21 Transmit data signal b  |
| X21_RxC_A1  | Input: X.21 Receive clock signal a   |
| X21_RxC_B1  | Input: X.21 Receive clock signal b   |
| X21_TxC_A1  | Output: X.21 Transmit clock signal a |
| X21_TxC_B1  | Output: X.21 Transmit clock signal b |
| GNDS        | Shielding                            |
| GND         | Signal reference potential           |

Table 3-28 Signals for the G703.1 and G703.6- interface from the SWT-1

| Signal Name | Function         |
|-------------|------------------|
| DI11        | Data in signal 1 |
| DI12        | Data in signal 2 |

3.1 Installation

| Signal Name | Function                   |
|-------------|----------------------------|
| DO11        | Data out signal 1          |
| DO12        | Data out signal 2          |
| GNDS        | Shielding                  |
| GND         | Signal reference potential |

The pin assignment and signal names of SWT-1/DLE and SWT-2/DLE are identical.

#### 3.1.12.2 Assignment of the Service Channel Interface SC for PowerLink 100

The service channel (SC) is a transparent data channel (format 9600 bps, 8 data bits, 1 start bit, 1 stop bit, no parity) that is only available when using a **digital line interface** (LID-1). Further information can be found in the chapter *System Description*.

| Table 3-29 | Socket for con | nacting the S | C for the  |            |
|------------|----------------|---------------|------------|------------|
| Table 3-29 | SOCKEL IOF CON | necting the S | sc for the | 12101 2000 |

| SWT-2/SC | PIN | Signal Name  |       |
|----------|-----|--------------|-------|
| 511-2150 | 1   |              | 99996 |
| 0        | 2   | SC_RXD (in)  |       |
| den a    | 3   | SC_TXD (out) |       |
| SWT-1/SC | 4   |              |       |
|          | 5   | GND          |       |
|          | 6   |              |       |
|          | 7   | SC_RTS       |       |
|          | 8   | SC_CTS       |       |
|          | 9   |              |       |

| SWT-2 | second iSWT     |
|-------|-----------------|
| SC    | service channel |

Pin 1-4-6 are looped!

## 3.1.12.3 Pin Assignment of the IFC-x Module

The IFC interface modules must be connected from the protective relay to connector X1 (modular terminal block) (cable cross section up to 1.5 mm<sup>2</sup>). **MINIMUM** 2 cables have to be tied immediately at the terminals.



## NOTE

Use flyback diodes for any relays that are connected to an output SWT to avoid EMC influences.

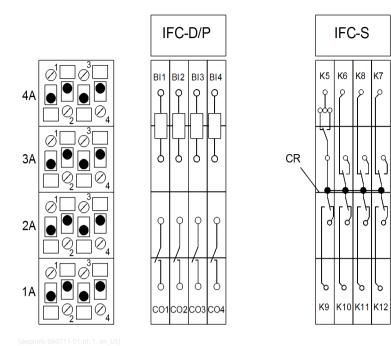



Figure 3-36 Pinout of the IFC-x Modules

| IFC-D | Interface module direct tripping     |
|-------|--------------------------------------|
| IFC-P | Interface module permissive tripping |

- IFC-P Interface module permissive IFC-S Interface module signaling
- CR Common root of relays K5 to K12
- 1A to 4A Modular terminal block
- BI1 to BI4 Binary inputs 1 to 4
- CO1 to CO4 Command outputs 1 to 4
- K5 to K8 Signaling of the binary inputs 1 to 4
- K9 to K12 Signaling of the command outputs

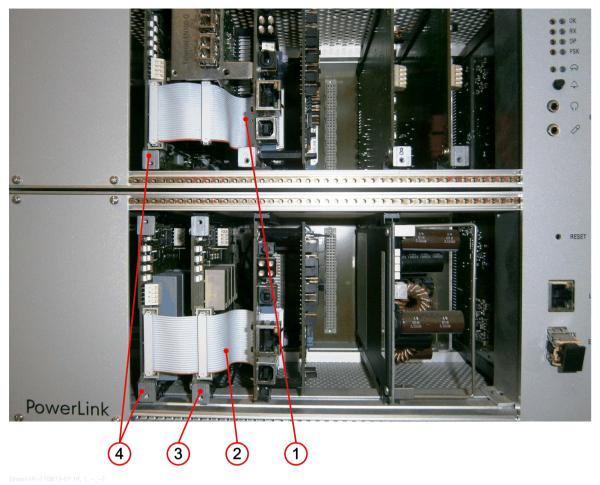
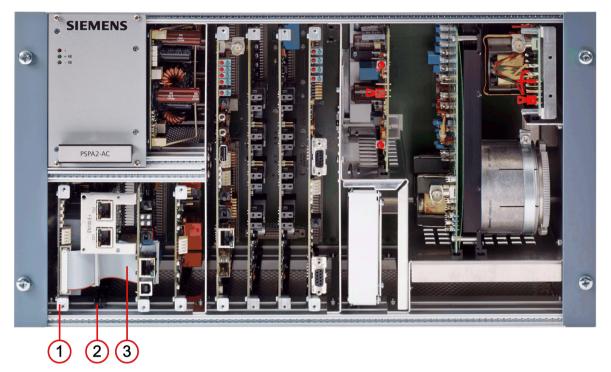



Figure 3-37 Slot positions of IFC-x modules in the iSWT 3000 system for PowerLink 100


- (1) iSWT-B (iSWT 3000-2)
- (2) iSWT-A (iSWT 3000-1)
- (3) Slot position IFC-2
- (4) Slot position IFC-1



## NOTE

The IFC connectors are located at the PowerLink backplane!

#### PowerLink 50



[dw\_pl50s\_Front-offen-3legendenpkt, 1, --\_--]

Figure 3-38 Slot positions of IFC-x modules in the iSWT 3000 system for PowerLink 50

- (1) Slot position IFC-1
- (2) Slot position IFC-2 or EN 100
- (3) iSWT

## 3.2 General Commissioning Sequence

## 3.2.1 Removing of Printed Circuit Boards

## NOTE

The power supply of PowerLink has to be switched off, before it is allowed to remove one of the printed circuit boards.

## 3.2.2 Software Release



## NOTE

In both PowerLink of one link, the software release has to be the same.

In case of using StationLink, all PowerLink connected to one StationLink also have to have the same software release.

It is prohibited that within one link different software releases are used.

## 3.2.3 PLPA Section

For commissioning the PLPA section the program "PLPAStraps" is available. This program has to be installed on your PC as well as the service program "PowerSys". The program PLPAStraps calculates the necessary jumper and straps settings depending on the transmit and receive frequency for all modules in the PLPA section of the PowerLink.

Start with the tuning of the transmit filter TXF-1 and TXF-2. Then tune the receive filter RXF. For details refer to *Strapping Options of the PLPA Section*.

## 3.2.4 Carrier Frequency Section

## Dongle

All services have to be enabled through the dongle. For more information or dongle upgrade refer to *8.6.2 Dongle Info*.

## Start with the system configuration

- For configuration without iSWT 3000 refer to 3.6 System Configuration.
- For configuration with iSWT 3000 refer to 3.17.5 System Configuration for iSWT 3000.

#### **HF** Configuration

Now the HF configuration has to be carried out. Here the HF bandwidth, the frequency grid the transmit resp. receive frequency, the frequency order and the function with or without AXC must be defined. For more details refer to 3.7.1 The HF Configuration Form.

## Service configuration for voice F2, data F3, teleprotection F6 or DP

Configuration sequence:

- Service voice (if existing). For more details refer to 3.10 Voice Transmission (Service F2).
- Service data (if existing). For more details refer to 3.13 Data Transmission (Service F3).
- Protection signaling in multi purpose operation (if existing). For more details refer to 3.17.7.3 Multi *Purpose Operation*.

- The function Data Pump DP (if existing). For more details refer to 3.15 Data transmission via Data Pump.
- Data transmission via iMUX. For more details refer to 3.15.1 iMUX.
- Voice and data transmission via vMUX. For more details refer to 3.16.2 System Configuration.

#### **Further configuration**

After service configuration continue with the further configuration options like:

- ADC adjustment 3.8.1 ADC Adjustments.
- iSWT 3000 settings 3.18 Configuration of an iSWT.
- RM configuration 3.21.3 Remote Monitoring / Remote Configuration RM.
- DP configuration 3.15.6 Supervision of the Transmission Line with the Data Pump.
- ALR alarm settings 3.21.4 PowerLink Alarm Configuration ALR Module.

#### **TX Level setting**

After the service configuration has been completed the Tx level have to be set. For more details refer to 3.19 Tx Level Adjustment.

3.2 General Commissioning Sequence

## **Commissioning Sequence**

| Commissioning Sequence  |                                   |                                        |  |  |  |
|-------------------------|-----------------------------------|----------------------------------------|--|--|--|
| Tuning the PLPA Section |                                   |                                        |  |  |  |
| 1 x A                   | MP50 Power /                      | Amplifer 2 x AMP50                     |  |  |  |
|                         | Tuning the First TXF-1            | Tuning the First and Second TXF-1      |  |  |  |
|                         | Tuning the R                      | eceiver RXF                            |  |  |  |
|                         | Carrier Free                      | quency Part                            |  |  |  |
| Yes                     | Dongle                            | Jpgrade No                             |  |  |  |
|                         | Dongle Upgrade                    |                                        |  |  |  |
|                         | System Co                         | nfiguration                            |  |  |  |
| Yes                     | Integrated SW                     | T 3000 (iSWT) No                       |  |  |  |
|                         | System Configuration with iSWT    | System Configuration without iSWT      |  |  |  |
|                         | HF Configuration                  |                                        |  |  |  |
| Service Configuration   |                                   |                                        |  |  |  |
| Yes                     | Yes SWT 3000 No                   |                                        |  |  |  |
| Se                      | rvice Configuration with SWT 3000 | Service Configuration without SWT 3000 |  |  |  |
| Yes                     | Data Trar                         | nsmission No                           |  |  |  |
|                         | Service Configuration Data        |                                        |  |  |  |
| g                       | Fr Data with VFx                  |                                        |  |  |  |
| Data                    | iFSK<br>DP                        |                                        |  |  |  |
|                         |                                   |                                        |  |  |  |

[dwpasid1-291110-01.tif, 1, en\_US]

| Commissioning Sequence              |                                 |                          |              |                                       |
|-------------------------------------|---------------------------------|--------------------------|--------------|---------------------------------------|
| Service Configuration with SWT 3000 |                                 |                          |              |                                       |
| Yes                                 | Integrated SW                   | T 3000 (iSV              | VT)          | No                                    |
|                                     | Service Configuration with iSWT | Service C                | onfiguratior | n with ext. SWT 3000                  |
| Yes                                 | Single Purpo                    | se Operatio              | n            | No                                    |
|                                     | Service Configuration SP        | Yes                      | Alternate M  | ulti Purpose No                       |
|                                     |                                 | Service Cor<br>AMP Opera | -            | Service Configuration<br>MP Operation |
|                                     |                                 |                          |              |                                       |

| Service Configuration AMP (Alternate Multi Purpose) Operation |      |                                              |  |
|---------------------------------------------------------------|------|----------------------------------------------|--|
| Yes Analog Transmission No                                    |      |                                              |  |
| System Configuration AMP with F2 (Voice)                      | S    | ystem Configuration AMP with DP              |  |
| System Configuration Voice                                    |      | iMUX (1 to 8 RS232)                          |  |
|                                                               |      | iMUX_IEC (1 to 4 RS232_IEC)                  |  |
|                                                               | ×    | X.21-DP                                      |  |
|                                                               | XMMX | G.703.1-DP                                   |  |
|                                                               |      | EMUX (Ethernet)                              |  |
|                                                               |      | vMUX<br>(Coded Voice, RS232, rFSK, X21, ETH) |  |

[dwpasid2-291110-01.tif, 1, en\_US]

3.2 General Commissioning Sequence

| Commissioning Sequence                                              |      |                                              |  |
|---------------------------------------------------------------------|------|----------------------------------------------|--|
| Service Configuration without iSWT or ext. SWT 3000                 |      |                                              |  |
| Yes Analog Transmission No                                          |      |                                              |  |
| System Configuration with VFx module                                |      | System Configuration with DP                 |  |
| Yes F2 Voice Transmission No<br>Service Configuration<br>F2 (Voice) |      | iMUX (1 to 8 RS232)                          |  |
|                                                                     |      | iMUX_IEC (1 to 4 RS232_IEC)                  |  |
|                                                                     |      | X.21-DP                                      |  |
|                                                                     |      | G.703.1-DP                                   |  |
|                                                                     | XUMX | EMUX (Ethernet)                              |  |
|                                                                     |      | vMUX<br>(Coded Voice, RS232, rFSK, X21, ETH) |  |

[dwpasid3-291110-01.tif, 1, en\_US]

♦ The mains terminals are permanently connected to the supply voltage also when the mains switch is in "OFF" position. Safety disconnection in the DC-, AC-Auxiliary power supply distribution is necessary!



## NOTE

Service personnel must read the instruction manual **before** working with the PowerLink equipment. It is highly recommended that the service personnel has attended a **training course on the equipment**.

All settings required for configuration, leveling and equalization can be performed only via the service PC.

## 3.2.5 Test Setup and Tools

## **Required Measurement Devices and Accessories**

| Level oscillator                 | Frequency range: 0.2 to 1000 kHz                                                            |
|----------------------------------|---------------------------------------------------------------------------------------------|
| Send level                       | -60 to > 0 dB                                                                               |
| Output impedance                 | = 75 $\Omega$ , 150 $\Omega$ , 600 $\Omega$ and Ri $\approx 0$ $\Omega$                     |
| Level meter                      | Frequency range: 0.2 to 1000 kHz                                                            |
| Receive level                    | -100 dB to +10 dB                                                                           |
| Input impedance                  | Ri≥10 kΩ, Iswitchable to 75 Ω, 150 Ω, 600 Ω                                                 |
| Multimeter for DC and AC voltage |                                                                                             |
| Set of measuring lines           | Connecting lines between PowerLink and measurement devices<br>Ordering designation: 7VR9005 |



## NOTE

It is recommended to have separate devices for level oscillator and level meter.

| Service PC                 | IBM compatible                                      |
|----------------------------|-----------------------------------------------------|
| Operating system           | MS Windows 10 or higher / x64 version               |
| Processor                  | i5 or better                                        |
|                            | (or processor with equivalent performance)          |
| Clock                      | min. 1 GHz                                          |
| System memory              | 1 GB                                                |
| Ethernet interface         | 10/100Base-T                                        |
| Serial interface           | RS 232                                              |
| Printer interface          | LPTx (optional)                                     |
| Additional needed Software | Microsoft .NET Framework (part of PowerSys package) |
|                            |                                                     |

#### **Rules for the Test Setup**

To ensure measuring results are not corrupted, a number of basic rules must be observed when installing the test setup:



## NOTE

The ground connections of the measurement devices must be connected to each other and from **one** point to the test item. For connections between level oscillator/level receiver and the PowerLink, use only the low-capacitance measuring lines quoted above.

## 3.2.6 Dummy Load for PowerLink

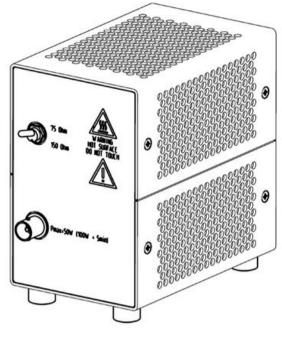


# CAUTION

Hot surface! Do not touch! Do not cover the ventilation openings!

#### Risk of injury and fire hazard!

- ♦ Do not cover the ventilation openings.
- $\diamond$  Do not operate longer than 5 min.
- ♦ Mount the device on flat surfaces.
- ♦ Allow the device to cool down after use.




## NOTE

The dummy load is not included in delivery of the PowerLink.

The dummy load serves for termination of the PowerLink HF output in case the system is not connected to the transmission line.

3.2 General Commissioning Sequence





The input impedance is selectable between 75 or 150 Ohm.

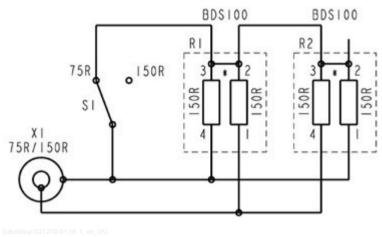



Figure 3-40 Circuit diagram of the dummy load

## Installation

The connection is carried out by means of the connection cable delivered with the dummy load. Please connect **first** the cable with the **safety BNC plug** to the dummy load and then the RF connector.

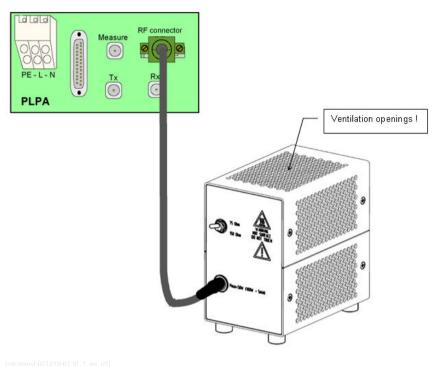



Figure 3-41 Connection of the dummy load

| $\wedge$ |  |
|----------|--|
|          |  |

# CAUTION

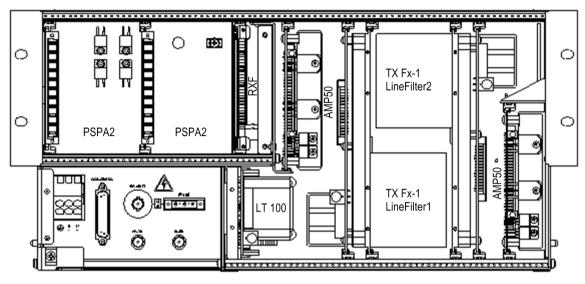
Hot surface! Do not touch! Do not cover the ventilation openings!

## Risk of injury and fire hazard!

- ♦ Do not cover the ventilation openings.
- $\diamond$  Do not operate longer than 5 min.
- ♦ Mount the device on flat surfaces.
- ♦ Allow the device to cool down after use.



## WARNING


♦ Hot surface! Do not touch!

## 3.3 Strapping Options of the PLPA Section

## 3.3.1 The PLPA Equipment

## 3.3.1.1 Structural Design

## PowerLink 100



[tdmlpaeq-180913-01.tif, 1, e

Figure 3-42 Module location in the PLPA 100 equipment in PowerLink 100

The PLPA 50 section consists of a single-tier (5 units of height) module frame and contains the power supply (PSPA2), the power amplifier AMP50, line filter TXF1 (or TXF2), line transformer unit LT100 and the RXF receiver module.

PLPA 50 with 2 power supply modules PSPA2 means, PowerLink is working with redundant power supply. The PLPA 100 section consists of a single-tier (5 units of height) module frame and contains 2 power supplies (PSPA2), 2 power amplifier AMP50, 2 line filter TXF1 (or TFX2), 1 line transformer unit LT100 and the RXF receiver module.

#### PowerLink 50

| PSPA2 | PSCF2      | CSPi | VFx1 | VFx2 | VMUX | AMP50 | Γ100 |
|-------|------------|------|------|------|------|-------|------|
|       | PU4<br>ALR |      |      |      |      | RXF   | TXF  |

dw\_powerlink50s-231014, 1, --\_--]

Figure 3-43 Module location of the PLPA in PowerLink 50

(1) IFC-2 or EN100

The module frame of PowerLink 50 contains 1 power supply (PSPAx), the power amplifier AMP50, line filter TXF1 (or TXF2), line transformer unit LT100 and the RXF receiver module.

## General



## NOTE

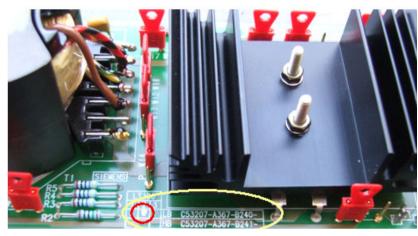
For HF-bandwidth 24 kHz or 32 kHz, the line filter TXF2 has to be used.

## NOTE

All strap settings in the PLC line equipment have to be established by means of the software program **PLPAStraps**.

## 3.3.1.2 LB and HB Versions of PLPA Modules

For carrier frequencies in the range from 24 kHz to 500 kHz (LB) and 500 kHz to 1 MHz (HB) **different modules** have to be used in the PLPA like shown in the table below:


| Table 3-30 | Module | versions | for the | PLPA section |
|------------|--------|----------|---------|--------------|
|            |        |          |         |              |

| Carrier Fre-<br>quency range<br>[kHz] | Amplifier type                          | TX Filter                                                       | Line transformer                        | Receiver                              |
|---------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------------|---------------------------------------|
| 24 to 500                             | AMP50– <b>LB</b> C53207-<br>A367-B210 4 | TXF1- <b>LB</b> C53207-A367-<br>B230 2<br>(BW: 4 kHz to 16 kHz) | LT100- <b>LB</b> C53207-<br>A367-B240 2 | RXF- <b>LB</b> C53207-<br>A367-B220 2 |
|                                       |                                         | TXF2- <b>LB</b> C53207-A367-<br>B232 2 (BW: 4 kHz to<br>32 kHz) |                                         |                                       |

3.3 Strapping Options of the PLPA Section

| Carrier Fre-<br>quency range<br>[kHz] | Amplifier type                          | TX Filter                                                       | Line transformer                        | Receiver                              |
|---------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------------|---------------------------------------|
| 500 to 1000                           | AMP50- <b>HB</b> C53207-<br>A367-B211 4 | TXF1- <b>HB</b> C53207-A367-<br>B231 2<br>(BW: 4 kHz to 16 kHz) | LT100- <b>HB</b> C53207-<br>A367-B241 2 | RXF- <b>HB</b> C53207-<br>A367-B221 2 |
|                                       |                                         | TXF2- <b>HB</b> C53207-A367-<br>B233 2                          |                                         |                                       |
|                                       |                                         | (BW: 4 kHz to 32 kHz)                                           |                                         |                                       |

The corresponding type is shown on the PCB



[sclt100l-291110-01.tif, 1, e

Figure 3-44 Example of the LT100-LB version

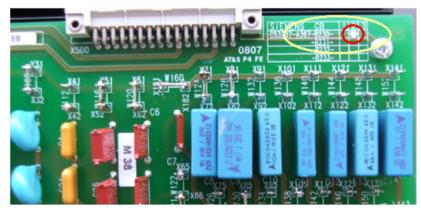



Figure 3-45 Example of the TXF1-LB version

## 3.3.2 The Program PLPA Straps

## 3.3.2.1 General

This program is part of the PowerSys package. The program has to be installed on the service PC. Run the **<PLPAStraps Setup>** file and follow the instructions on the screen. Refer to Chapter Service Program PowerSys and MemTool, The Program PLPAStraps

## 3.3.2.2 Application

The program PLPAStraps is calculating the necessary jumper settings for all modules in the PLPA section of the PowerLink.

#### 3.3.2.3 The Menu <File>

After the program PLPAStraps has been started an existing file can be opened **<Open**>. Further the saving of the entries **<Save**> or print out of an existing file **<Print**> is carried out. With **<Exit**> the program is aborted.

| File |                       |  |  |  |
|------|-----------------------|--|--|--|
|      | Open Inputs           |  |  |  |
|      | Save Inputs           |  |  |  |
|      | Save Inputs As        |  |  |  |
|      | Print Straps Settings |  |  |  |
|      | Print Preview         |  |  |  |
|      | Print To File         |  |  |  |
|      | Exit                  |  |  |  |

[scmnfile-291110-01.tif, 1, en\_US] Figure 3-46 The menu <File>

## 3.3.2.4 Selecting an Existing File (Open Inputs...)

| Open                                              |                                                                                                                                                           |                 |   |     |     | ? ×    |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|-----|-----|--------|
| Look in:                                          | C PLPA Straps                                                                                                                                             | 1               | • | 0 🕫 | • 📰 |        |
| Frecent<br>Desktop<br>My Documents<br>My Computer | bitmaps<br>bmppos<br>mdata<br>RXF_mcr<br>TXF_mcr<br>PLPA Straps<br>rxf.ctf<br>rxf.dll<br>SSTN_A<br>test_1<br>txf.ctf<br>txf.dll<br>unins000<br>jgunins000 |                 |   |     |     |        |
| My Network                                        | File name:                                                                                                                                                | SSTN_A          |   |     | •   | Open   |
| Places                                            | Files of type:                                                                                                                                            | All files (".") |   |     |     | Cancel |

Figure 3-47 Selection of an existing file

#### 3.3.2.5 Configuration Inputs

With click on **<Configuration>** the following input form is opened.

<sup>[</sup>scslexfl-291110-01.tif, 1, en\_U9

3.3 Strapping Options of the PLPA Section

| Configuration Straps settings PLPA Backpane AMP50 (both) Gradient TXF (both) Adjustment mode Operation mode RXF Cuevel Setting Adjustment step 1 Adjustment step 2 Adjustment step 3 Operation mode CLT100 Adjustment TXF-1 | General:         Bandwidth         C 5 kHz         C 5 kHz         C 12 kHz         C 12 kHz         C 16 kHz         C 24 kHz         C 32 kHz         Frequency In         Factory Number:         Transmitter:         Band:         40         to         44 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjustment TXF-2<br>Operation mode<br>Measuring mode                                                                                                                                                                        | Band: 60 to 68<br>Center frequency: 64                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                             | Visualize:<br>Zoom to fit                                                                                                                                                                                                                                        |

scplpasf-291110-01.tif, 1, e

Figure 3-48 The PLPAStraps configuration form

First enter the general settings of the PowerLink like transmit filter single or dual coil, one or two power supplies, bandwidth, the amplifier power and the output impedance. The frequency input is possible for the start frequency of the TX resp. RX band or for the center frequency.

The Factory Number of the equipment is an optional entry. When the frequencies for the transmitter and receiver are entered, the corresponding band and center frequency is displayed immediately.



## NOTE

The TX and the RX frequencies have to be both in the low band (24 kHz to 500 kHz) or in the high band (500 kHz to 1000 kHz). Working with mixed frequency band is not possible.

Entering mixed frequency bands causes the error message Invalid frequency values (Band mixture)! by the program.

| Table 3-31 | PLPAStraps Configuration |
|------------|--------------------------|
|------------|--------------------------|

| Selection        | Settings       | Remarks                                                                                                  |
|------------------|----------------|----------------------------------------------------------------------------------------------------------|
| Transmit filter  | Single Coil    | Transmit filter bandwidth: 5 to 16 kHz                                                                   |
|                  | Dual Coil      | Transmit filter bandwidth: 5 to 32 kHz                                                                   |
| Power Supply     | Single         | One power supply                                                                                         |
|                  | Dual           | Two power supplies                                                                                       |
|                  |                | must be for two amplifiers                                                                               |
|                  |                | <ul> <li>Second power supply used as redundant power supply<br/>(available for one amplifier)</li> </ul> |
| Bandwidth        |                | Bandwidth of PowerLink                                                                                   |
| Amplifier        | Up to 1 x 25 W | One or two amplifiers used.                                                                              |
|                  | Up to 1 x 50 W | Each amplifier can be set to reduced output power.                                                       |
|                  | Up to 2 x 25 W |                                                                                                          |
|                  | Up to 2 x 50 W |                                                                                                          |
| Output Impedance | 75             | Output impedance 75 Ohm                                                                                  |

| Selection       | Settings        | Remarks                                                                                      |
|-----------------|-----------------|----------------------------------------------------------------------------------------------|
|                 | 150             | Output impedance 150 Ohm                                                                     |
| Frequency Input | Start<br>Center | Transmit and Receive frequency input done with the start frequency of the transmission band  |
|                 |                 | Transmit and Receive frequency input done with the center frequency of the transmission band |
| Factory Number  |                 | Optional entry, (remark)                                                                     |
| Transmitter     |                 | Enter start or center frequency                                                              |
|                 |                 | Show start, stop and center frequency                                                        |
| Receiver        |                 | Enter start or center frequency                                                              |
|                 |                 | Show start, stop and center frequency                                                        |
| Visualize       |                 | The complete module is visible on the screen when activated                                  |



## NOTE

Save your configuration in a file for easy reuse of this values.

#### 3.3.2.6 Straps Settings

#### **PLPA Backplane**

Select the default settings according PLPAStraps program.

#### AMP50

The strap setting for the amplifier module AMP50 can be selected for the full or half Tx-power.

#### TXF

When selecting **<TXF** / **Operation mode>** the necessary strap settings for the TXF in the normal operation mode is calculated from the program and displayed subsequently. For the filter adjustment a slightly different strap setting is necessary. It is displayed with click on **<TXF** / **Adjustment mode>**. In case of using a 100 W power amplifier 2 AMP50 and 2 TXF modules are necessary. The strap settings are the same in both modules.

#### RXF

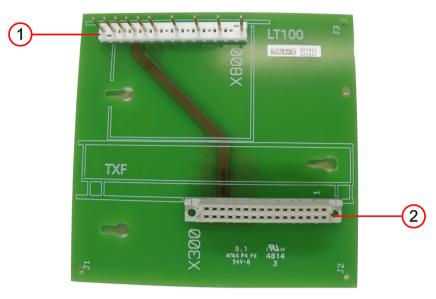
The strap settings for the receiver module RXF in the normal mode is calculated when selecting <**RXF** / **Operation mode**>. For the filter adjustment a slightly different setting is necessary. It is displayed with click on <**RXF** / **Adjustment Step 1 to 3**>. A final RX level correction for Receive Level Adjustment is required.

#### LT100

The strap setting for the LT100 module in the normal mode is calculated when selecting **<LT100 / Operating mode**>. For tuning the TXF in position 1 resp. 2 click on **<LT100 / Adjustment TXF-1**> resp. TXF-2. Setting **LT100 / Measuring** activates the LT100 BNC Connector to the level meter.

## 3.3.3 Tuning of the Transmit Filter (TXF-XB)

## 3.3.3.1 General




## NOTE

The following description applies to the low band or high band version of the modules. Therefore the module names are extended with XB.

## 3.3.3.2 Adjustment Module in PowerLink 50

The adjustment module allows the user to adjust the frequency of the Transmit Filter (TXF-XB) in the Power-Link 50 device.



#### [ScAdjusmod-220115, 1, --\_--]

- Figure 3-49 Adjustment Module
- (1) X800: Connector towards LT100 Module
- (2) X300: Connector towards TXF-XB Module



[ScAdjusdev-220115, 1, -\_-

Figure 3-50 Location of the Adjustment Module in the PowerLink 50

## Mounting the Adjustment Module



# CAUTION

Hazardous voltages may occur if the power is switched on and a signal is transmitted via the amplifier (TXF adjustment in operation mode).

- ♦ Before mounting the adjustment module with the LT100 and TXF modules, make sure that the power supply of the device is switched off.
- ♦ Pull out both LT100 and TXF modules from the module frame and connect the adjustment module to both modules as shown in *Figure 3-51*.

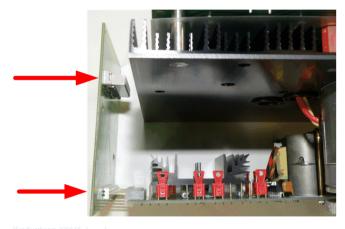
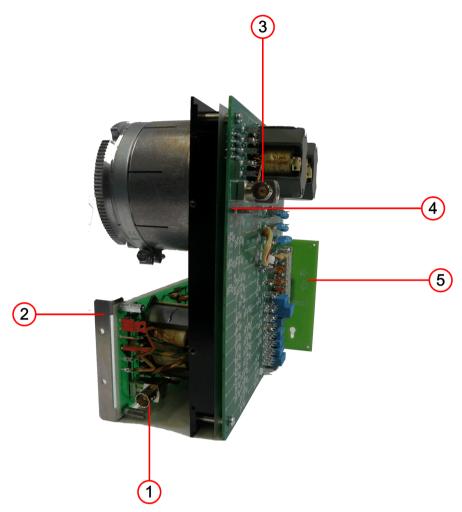




Figure 3-51Mounting the Adjustment Module on the LT100 and TXF Modules

 $\diamond$  Make sure that each connector is engaged properly in the right module.

3.3 Strapping Options of the PLPA Section



[Scadjustend-220115, 1, --\_--]

Figure 3-52 View of all mounted modules - Ready to be adjusted

- (1) LT100 BNC Connector to the Level Meter, Ri = 75 Ohm
- (2) LT100
- (3) TXF BNC Connector to the Level Oscillator, Ri = 75 Ohm, 0 dB
- (4) TXF-XB
- (5) Adjustment Module

## 3.3.3.3 Coarse Tuning of the Transmit Filter

The straps displayed from the program PLPAStraps with selecting **<TXF / Adjustment mode**> have to be soldered on the capacitor bank module (CB) of the TXF1-XB unit.



Figure 3-53 The CB module of the TXF1-XB unit (top view)

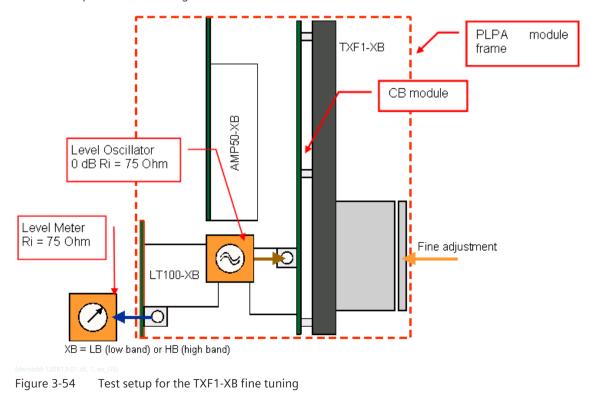
In case of a 100 W power amplifier 2 TXF1-XB units are existing. The settings on the second CB module are identical.

## 3.3.3.4 Fine Tuning of the TXF1 Line Filter 1

Switch off the power supply



## NOTE


ATTENTION!

Hazardous voltages may occur if the power is switched on and a signal is transmitted via the amplifier (TXF adjustment in operation mode).

In case of a PowerLink with 2 power amplifiers the second TXF1-XB module may be removed from the module frame to allow better access.

Select now TXF Adjustment mode and <LT100 / Adjustment TXF-1> in the PLPAStraps program and modify the corresponding straps to start with the fine adjustment of the TXF1-XB line filter 1.

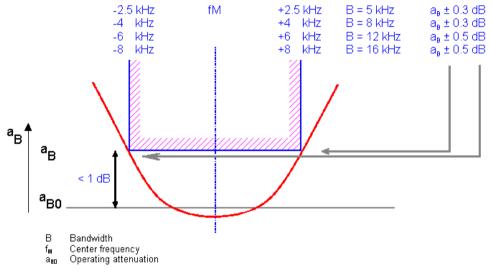
Basically an oscillator with an impedance of 75  $\Omega$  and a selective level meter are sufficient for filter tuning. The test setup is shown in the figure below:



Inject the corresponding frequency with 0 dB Ri = 75 Ohm.

Connect the level meter with Ri = 75 Ohm. The expected min. level is -16 dB ±1 dB.

For the filter adjustment the strap setting is displayed with click on **<TXF / Adjustment mode**> in the PLPA-Straps program. In case of using a PowerLink with 2 power amplifiers 2 AMP50-XB and 2 TXF1-XB modules are necessary.




## NOTE

TXF1-XB: First order filter TXF2-XB: Second order filter TXF-1: Transmit line filter 1 TXF-2: Transmit line filter 2

## 3.3.3.5 Tuning Procedure

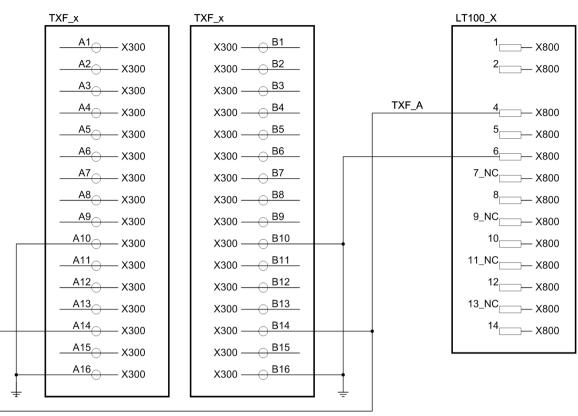
The TXF1-XB filter has to be tuned to a minimum pass band attenuation within the below illustrated tolerances and with a characteristic attenuation which is symmetrical to the center frequency.



[dwpbatxf-291110-01.tif, 1, en\_US]

Figure 3-55 Pass band attenuation of the 50 W Transmit Line Filter TXF1

The fine tuning (inductive) to the desired attenuation characteristic within the specified tolerances has to be reached with tuning of the coil in the transmit line filter. The following sequence is recommended:


- Tune to minimum attenuation at the center frequency f<sub>M</sub>.
- Tune to symmetrical attenuation at the pass band limits fM  $\pm \frac{1}{2}$  Bandwidth. (The difference may be not more than given in the figure above). The level difference from f<sub>M</sub> to the band limit has to be < 1 dB.



## NOTE

The adjusted filter characteristic can be altered slightly when tightening the coil with the spanner. If necessary the spanner has to be reopened and the deviation has to be corrected.

For PowerLink 50, use the adaptive test socket for TX filter tuning.



dw PL50-klemmenbelegung-191114, 1, -- --]

Figure 3-56 Test socket for TX filter tuning

## 3.3.3.6 Fine Tuning of TXF1 Line Filter 2

Remove the first line filter after the fine adjustment has been completed and start the same procedure like described before with the **second line filter**. The measurement is done in the **slot of the line filter 1** and in this case the strap setting of the LT100-XB module remains in the same position. Start with the fine adjustment like described under tuning procedure.



## NOTE

In case of tuning high band filters, it is recommended to do the measurement of the second line filter in the slot of line filter 2. Therefore the straps on the LT100-XB has to be changed to the position <**Adjustment TXF-2**> given from the program PLPAStraps.



## NOTE

After conclusion of the filter tuning the straps on the LT100-XB as well as TXF1-XB module(s) have to be brought into the normal operating position.

## 3.3.3.7 Fine Tuning of the TXF2 Line Filter 1

Switch off the power supply.



## ATTENTION

NOTE

Hazardous voltages may occur if the power is switched on and a signal is transmitted via the amplifier (TXF adjustment in operation mode).

3.3 Strapping Options of the PLPA Section

In case of a using a PowerLink with 2 amplifiers the second TXF2-XB module may be removed from the module frame to allow better access.

Select now TXF Adjustment mode and <LT100 / Adjustment TXF-1> in the PLPAStraps program and modify the corresponding straps to start with the fine adjustment of the TXF2-XB line filter 1.

Basically an oscillator with an impedance of 75  $\Omega$  and a selective level meter are sufficient for filter tuning. The test setup is shown in the figure below:

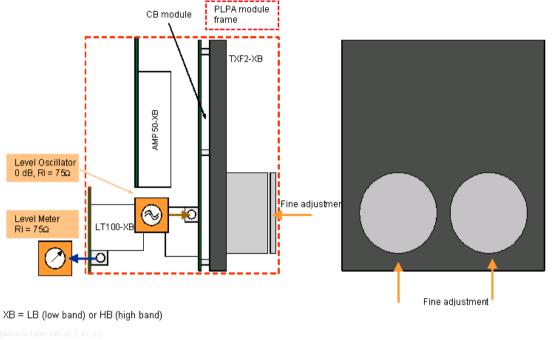
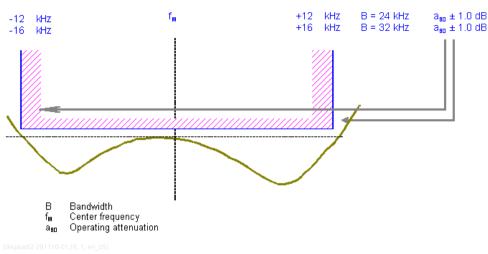
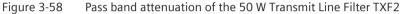



Figure 3-57 Test setup for the TXF2-XB fine tuning

Inject the corresponding frequency with 0 dB Ri = 75 Ohm. Connect the level meter with Ri = 75 Ohm. The expected min. level is -16 dB  $\pm$  1 dB.


# i


## NOTE

TXF1-XB: First order filter TXF2-XB: Second order filter TXF-1: Transmit line filter 1 TXF-2: Transmit line filter 2

## 3.3.3.8 Tuning Procedure

The TXF2-XB characteristic of the attenuation is shown in the figure below.





The fine tuning (inductive) to the desired attenuation characteristic within the specified tolerances has to be reached with tuning of the coil in the transmit line filter. The following sequence is recommended:

## Adjustment mode step 1:

Fine adjustment with T201 and T202 to the same and maximum level for the center frequency fm  $\pm \frac{3}{4}$  \*bandwidth, the difference to the fed level is approx. -40 dB.

- 1 Tune to minimum attenuation with the 2 coils of TXF2 at the center frequency f<sub>M</sub>. displayed from the PLPAStraps program after click on **<Straps settings / TXF / Adjustment mode**>.
- 2 Tune to symmetrical attenuation at the pass band limits fM  $\pm \frac{1}{2}$  Bandwidth. (The difference may be not more than given in the figure above). The level difference from f<sub>M</sub> to the band limit has to be < 2 dB.

## NOTE

The center frequency  $f_M$  for tuning the filter is not identically with the center frequency  $f_M$  of the transmission band.

# i

## NOTE

The adjusted filter characteristic can be altered slightly when tightening the coil with the spanner. If necessary the spanner has to be reopened and the deviation has to be corrected.

## 3.3.3.9 Fine Tuning of TXF2 Line Filter 2

Remove the first line filter after the fine adjustment has been completed and start the same procedure like described before with the **second line filter**. The measurement is done in the **slot of the line filter 1** and in this case the strap setting of the LT100-XB module remains in the same position. Start with the fine adjustment like described under tuning procedure.



## NOTE

In case of tuning high band filters, it is recommended to do the measurement of the second line filter in the **slot of line filter 2**. Therefore the straps on the LT100-XB has to be changed to the position <**Adjustment TXF-2**> given from the program PLPAStraps.



## NOTE

After conclusion of the filter tuning the straps on the LT100-XB as well as TXF2-XB module(s) have to be brought into the normal operating position.

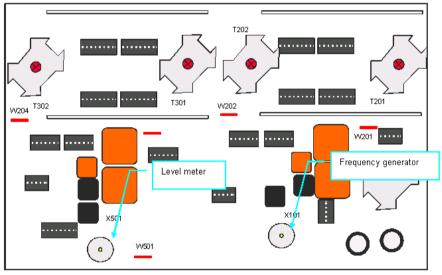
## 3.3.4 Tuning of the Receive Filter (RXF-XB)

## 3.3.4.1 General

# i

## NOTE

The following description applies to the low band or high band version of the modules. Therefore the module names are extended with XB.


## 3.3.4.2 Coarse Tuning of the Receive Filter

The adjustments for the filter bandwidth 5 kHz, 8 kHz, 12 kHz, 16 kHz, 24 kHz resp. 32 kHz as well as for the coarse tuning of the receive filter are determined by means of the PLPAStraps program (ref. to 3.3.2.5 Configuration Inputs).

For the tuning the RXF-XB module has to be removed from the PLPA module frame. The DIL switches displayed from the program PLPAStraps with selecting **<Straps settings / RXF / Adjustment step 1**> have to be adjusted on the RXF-XB module.

## 3.3.4.3 Fine Tuning of the RXF-XB

For the fine tuning the frequency generator (Rout = 75 Ohm impedance) has to be connected to the BNC-jack X101. Connect the level meter (Ri = 75 Ohm impedance) to the BNC-jack X501. Feed in a level of 0 dB.



(tdalserf-291110-01.tif, 1, en L

Figure 3-59 Allocation of setting elements on the receiver module RXF

Adjust the straps as well as the DIL switches according the PLPAStraps program (red marked).

## Adjustment mode step 1:

Select within PLPAStraps **<Straps settings / RXF / Adjustment step 1**>, and adjust the straps according the PLPAStraps program (red marked). In this step the same settings as under coarse tuning.

Fine adjustment with T201 and T202 to the same and maximum level for the center frequency fm  $\pm \frac{3}{4}$  \*bandwidth, the difference to the fed level is approx. -40 dB.

#### Adjustment mode step 2:

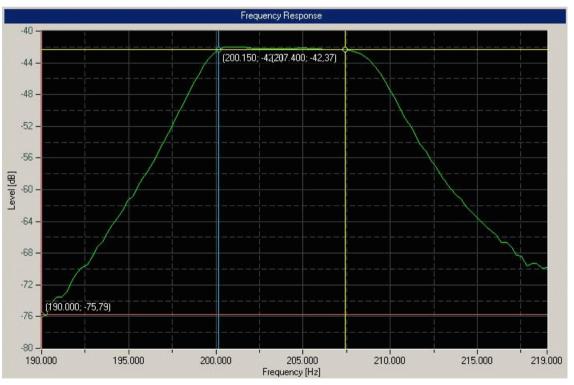
Select within PLPAStraps **<Straps settings / RXF / Adjustment step 2**>, and adjust the straps according the PLPAStraps program (red marked). Fine adjustment with T301 and T302 to the same and maximum level for the center frequency fm  $\pm$  <sup>3</sup>/<sub>4</sub> \*bandwidth.

#### Adjustment mode step 3:

Select within PLPAStraps <**Straps settings / RXF / Adjustment step 3**>, and adjust the straps as well as the DIL switches according the PLPAStraps program (red marked). Adjustment with T301 only, to the same level for the center frequency fm  $\pm$  <sup>3</sup>/<sub>4</sub> \*bandwidth

#### 3.3.4.4 Operation Mode

After the fine tuning has been completed adjust the straps to normal operation mode as shown according the PLPAStraps program when selecting **<Straps settings / RXF / Operation mode**> (red marked in *Figure 3-59*).


#### 3.3.4.5 Level Adjustment

The receive level adjustment for PowerLink is done as given in Chapter Receive Level Adjustment.



### NOTE

For level adjustment it may be necessary to change the setting of DIL switches on the RXF-XB module. Therefore the housing of the RXF-XB unit should be mounted after the level adjustment.



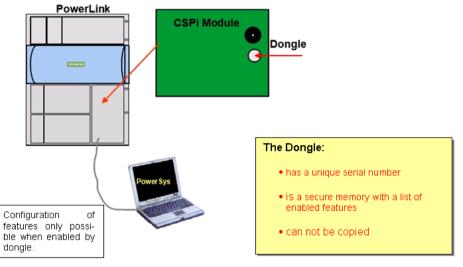

imm027-200913-33.tif, 1

Figure 3-60 Example for filter characteristic after RXF-XB Fine Tuning

# 3.4 Dongle

### 3.4.1 Overview

The various features of the PowerLink system are mainly implemented in the software. Only a low amount of hardware is necessary. All configurable features of the system are fixed in a firmware ordering number (FW-MLFB) and have to be enabled. This is carried out in the factory using a dongle which is located on the CSPi module.



[dwensfdg-120111-01.tif, 1, en\_US]

Figure 3-61 Enabling of the software features with a dongle

# 3.4.2 Features Which Have to be Enabled

The teleprotection signaling (F6) is always enabled. All other services have to be enabled by the dongle.

| Basic features                | Possible Selection |
|-------------------------------|--------------------|
| Voice channels F2             | 0 to 3             |
| Data channels F3              | 0 to 2             |
| Teleprotection F6             | always enabled     |
| Data Pump                     | 0/1                |
| Integrated FSK channel (iFSK) | 0 to 4             |
| Data channels via iMUX        | 0/4/8*             |
| CSPi features                 |                    |
| max. HF-Bandwidth [kHz]       | always enabled     |
| SNMP agent                    | 0/1                |
| Ethernet (remote bridging)    | 0/1                |
| Add-on features               |                    |
| Service telephone             | 0/1                |
| Remote Monitoring             | 0/1                |
| Dynamic Data Pump             | 0/1                |
| vMUX features                 |                    |
| Compressed voice channels     | 0 to 8             |
| fE1                           | 0/1                |

| Basic features | Possible Selection |
|----------------|--------------------|
| rFSK channels  | 0 to 2             |
| X.21 channels  | 0 to 2             |

\* also for vMUX

### 3.4.3 Dongle Upgrade

Additional features can be enabled afterwards in an existing dongle via dongle upgrade on site. Considerations before the dongle upgrade:

- Which hardware is existing?
- Must additional HW modules be ordered for using the new dongle?
- Is the function of the system still ensured?
- Is a change of the bandwidth or transmit power required after a dongle upgrade?

The customer orders additional features based on the serial number of the dongle. The new licensed features and the serial number are stored in new dongle file in the factory. The new dongle file will be sent to the customer by email.

The update of PowerLink on site is carried out with the PowerSys program using this file. The program connection to the PowerLink must be established.

Start the upgrade from PowerSys main menu > Update license..., select the dongle file and click OK button to update the dongle in the device. A restart of the device is required to activate the new dongle file.

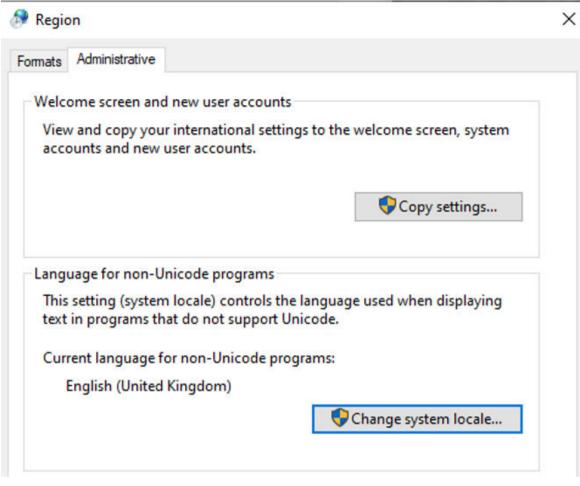

| License update                                                         | e                |  |  |
|------------------------------------------------------------------------|------------------|--|--|
| License type                                                           | PowerLink dongle |  |  |
| License file                                                           |                  |  |  |
| After the update the device must be restarted to activate the changes. |                  |  |  |
|                                                                        | $\checkmark$     |  |  |

Figure 3-62 License update dongle

#### **Region settings**

The language for non-Unicode programs settings other than "German", "English" may cause a dongle update fail.

- Open the operating system's Region Settings. For example, by typing "region settings" into the task bar search box.
- In the Region Settings window, click Language and then click Administrative language settings.
- In the Region dialog, on the Administrative tab, click "Change system locale".
- In the opened dialog, select the desired Unicode language, e.g., English (UK), from the Current system locale list.
- Click OK. You may need to restart the computer to apply the changes.



[sc\_region\_settings, 1, --\_--

# 3.5 Configuration with the Service PC

### 3.5.1 Service PC Connection to PowerLink via Ethernet Interface

#### 3.5.1.1 DHCP Server

#### **DHCP Server enabled**

The service PC is usually connected to the PowerLink via the Ethernet 10/100Base interface, located at the front of the module CSPi. For the connection to the service PC PowerLink is equipped with its own DHCP server. This causes that PowerLink assigns the IP-address to the service PC automatically. This requires that the PC is set to obtain an IP address automatically. Then the service PC will obtain the IP address within the address range of the DHCP server.

| Default address PowerLink:           | 192.168.20.5     |
|--------------------------------------|------------------|
| IP address range of the DHCP server: | 192.168.20.10-15 |

#### DHCP server disabled

When the DHCP server of PowerLink is disabled, the service PC connected to PowerLink must be assigned a fixed IP address. Otherwise PowerLink can not be reached.

The IP addresses you assign to the computer must be from the correct IP network. This means that the IP address is determined by the IP setting in PowerLink.

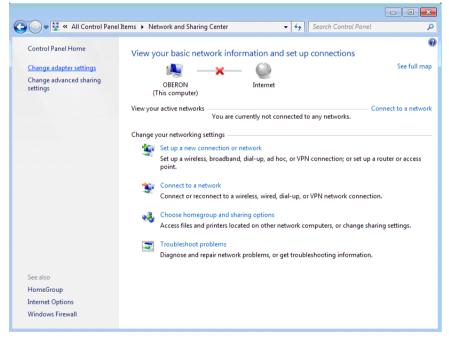
The following table indicate the IP address range available according to the factory settings. The table also list the addresses for subnet mask, default gateway and DNS server. These 3 entries are also required for the computer's IP settings.

| Settings                                     | Addresses         |
|----------------------------------------------|-------------------|
| IP address range for assigning to Service PC | 192.168.20.16-254 |
| Subnet mask                                  | 255.255.255.0     |
| Default gateway                              | 192.168.20.5      |
| DNS server                                   | 192.168.20.5      |

#### Service PC Network Setting

The actual Internet Protocol (TCP/IP) properties of the service PC can be checked or adapted. How to check the setting:

#### 3.5.1.2 Service PC Network Setting for Windows


• Start the control panel and choose Network and Sharing Center.

3.5 Configuration with the Service PC

| ) 🔍 🖓 🕨 Control Panel 🕨 All Co                               |                              | ✓ 4 Search Control Panel            |  |  |
|--------------------------------------------------------------|------------------------------|-------------------------------------|--|--|
| Adjust your computer's setting:                              | 5                            | View by: Small icons 🔻              |  |  |
| Action Center                                                | 🔠 Administrative Tools       | 🖬 AutoPlay                          |  |  |
| 🐌 Backup and Restore 📮 Color Management                      |                              | Credential Manager                  |  |  |
| 🐣 Date and Time                                              | 🛞 Default Programs           | 📑 Desktop Gadgets                   |  |  |
| 🚔 Device Manager                                             | 🖶 Devices and Printers       | 📮 Display                           |  |  |
| Ease of Access Center                                        | 📓 Folder Options             | 💦 Fonts                             |  |  |
| Getting Started                                              | 🜏 HomeGroup                  | 🚑 Indexing Options                  |  |  |
| Intel(R) Grafik und Medien                                   | 🐑 Internet Options           | 🕌 Java                              |  |  |
| Keyboard                                                     | 🗾 Location and Other Sensors | Ø Mouse                             |  |  |
| Network and Sharing Center                                   | 🛄 Notification Area Icons    | 🐉 Parental Controls                 |  |  |
| Performance Network and Sharing C                            | enter                        | 📰 Phone and Modem                   |  |  |
| Power Optio Check network status, of network settings and se | hange ams and Features       | 🚱 QuickTime (32-bit)                |  |  |
| Recovery for sharing files and pri                           |                              | 튫 RemoteApp and Desktop Connections |  |  |
| Sound                                                        | 🖶 Speech Recognition         | 🔞 Sync Center                       |  |  |
| 🕺 System                                                     | 📃 Taskbar and Start Menu     | Troubleshooting                     |  |  |
| 🛃 User Accounts                                              | 🍕 Windows Anytime Upgrade    | 📑 Windows CardSpace                 |  |  |
| 🖬 Windows Defender                                           | 🔗 Windows Firewall           | 🖑 Windows Update                    |  |  |

scwin7cp-140711-01.tif, 1, --\_--]

Choose Network Connections.



[scnwconn-140711-01.tif, 1, --\_--]

• Choose Local Area Connection.

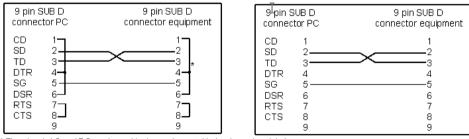
|            | Network and Internet 🕨 Network                                                   | twork Connections 🕨                                  | <del>•</del> 4  | • Search  | Network Connecti | ions | \$ |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------|-----------------|-----------|------------------|------|----|
| Organize 🔻 | Enable this network device                                                       | Diagnose this connection                             | Rename this con | nection 3 | » <b>1</b> =     | •    | ?  |
| Dis Inte   | Area Connection  Fnable Status Diagnose Create Shortcut Delete Rename Properties | Wireless Network Co<br>Disabled<br>Atheros AR5005G W |                 |           |                  |      |    |

[scchslan-140711-01.tif, 1, --\_--

• Scroll down to Internet Protocol (TCP/IP) and choose Properties.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83 10/100Mbps PCI Adap                                 | ter                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | Configure               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s the following items:                                 |                         |
| Client for M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                         |
| QoS Packe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nter Sharing for Microsoft                             |                         |
| bird bird bird bird bird bird bird bird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otocol Version 6 (TCP/IPv<br>otocol Version 4 (TCP/IPv | No. of Concession, Name |
| A Destruction of the second seco | Topology Discovery Mapp                                |                         |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Topology Discovery Resp                                |                         |
| Received and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | aseasta -<br>V          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                         |
| Install                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uninstall                                              | Properties              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uninstall                                              | Properties              |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uninstall                                              |                         |
| Description<br>Transmission Con<br>wide area network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | ocol. The default       |

scctcpip-140711-01.tif, 1, --\_-


3.5 Configuration with the Service PC

| ieneral  | Alternate Configuration                                                                   |             |   |     |         |
|----------|-------------------------------------------------------------------------------------------|-------------|---|-----|---------|
| this cap | n get IP settings assigned au<br>ability. Otherwise, you need<br>appropriate IP settings. |             |   |     |         |
| () ()    | otain an IP address automati                                                              | cally       |   |     |         |
| O Us     | e the following IP address:                                                               |             |   |     |         |
| IP ac    | ddress:                                                                                   |             | 5 |     |         |
| Subr     | iet mask;                                                                                 |             |   |     |         |
| Defa     | ult gateway:                                                                              |             |   | +   |         |
| ()<br>() | otain DNS server address au                                                               | tomatically |   |     |         |
| - O Us   | e the following DNS server a                                                              | addresses:  |   |     |         |
| Prefi    | erred DNS server:                                                                         |             |   |     |         |
| Alter    | nate DNS server;                                                                          | •           | 2 |     |         |
|          |                                                                                           |             |   | Adv | anced   |
|          |                                                                                           |             |   | mar | anceann |

[sctcpipp-140711-01.tif, 1, -- --]

# 3.5.2 RS232 Serial Cable for Connecting PowerLink via RM-1 Connector

The RS232 connection cable is necessary for downloading firmware via MemTool (as described in *PowerLink Web Interface Service Program PowerSys and MemTool Flash Programming*) via the RM1 connector. Also the communication between PowerSys and PowerLink is possible alternatively to the Ethernet communication via the RM1 connector.



\* The pins 1-4-6 and 7-8 are looped in the equipment. No hardware handshake

[sccncspc-301110-01.tif, 1, en\_US

Figure 3-63 Connecting cable for the Service PC

\* The pins 1-4-6 and 7-8 are looped in the equipment. No hardware handshake

# i

### NOTE

Instead of the shown connecting cable from Siemens on the left side also a standard cable without straps in the connector (shown on the right side) could be used.

# 3.5.3 PowerSys

The Service program PowerSys is required for commissioning, maintenance, and diagnosis of the PowerLink or SWT 3000 device.

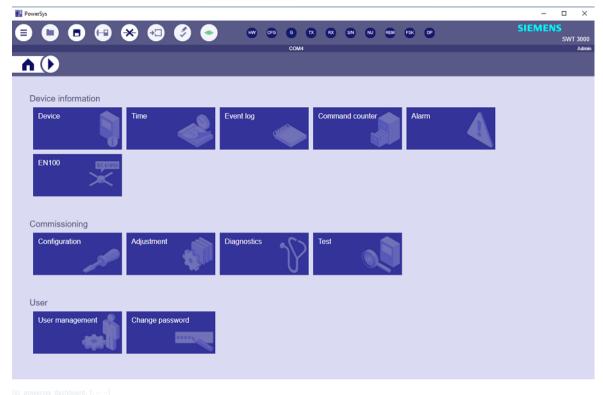



Figure 3-64 PowerSys dashboard

#### Header

It is always located on top and contains a toolbar with iconic buttons. It provides a drop-down menu, toolbar and alarm status bar. Additionally, it holds the Siemens logo and the product name.

The shown product name is changed dynamically depending on the loaded device database (SWT 3000 or PowerLink).

A toolbar is a prominently visible panel containing controls such as iconic buttons that directly invoke frequently used application functions.



[sc\_powersys\_header, 1, --\_--]

3.5 Configuration with the Service PC

| Toolbar button     | Description                                                                                                                                                                                                                                                                                                                  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Main menu          | Drop down menu provides device connection and file operation functions.                                                                                                                                                                                                                                                      |  |
| Open               | Opens the parameter from a configuration file. After the file has been loaded, the data can be modified or programmed to the device.                                                                                                                                                                                         |  |
|                    | *.ddb configuration file for device SWT 3000 and PowerLink 50/100                                                                                                                                                                                                                                                            |  |
|                    | *.xml configuration file for device PowerLink IP / CM                                                                                                                                                                                                                                                                        |  |
| Save               | Save the changes to the configuration file.                                                                                                                                                                                                                                                                                  |  |
| Connect            | Establishing the connection to the device. The program attempts to estab-<br>lish a connection to the device and then loads the data into PC. The<br>program detects from which device (PowerLink or SWT 3000) the data<br>were read and automatically changes to the appropriate dashboard view.                            |  |
| Disconnect         | Disconnecting the established connection.                                                                                                                                                                                                                                                                                    |  |
| Send configuration | Send the offline configuration file or online changed parameters to device.<br>Device is programmed and reset automatically after send offline configura-<br>tion file.                                                                                                                                                      |  |
| Program device     | Program the changed parameters to device. Device is reset automatically<br>after programming is successful and ready for operation again afterwards.<br>If changing an existing PowerLink or SWT 3000 configuration, use the<br>"Clear device setting" test command before programming the new config-<br>uration to device. |  |
| Connection status  | Indicates the connection Device is online.                                                                                                                                                                                                                                                                                   |  |
|                    | Device is offline.                                                                                                                                                                                                                                                                                                           |  |

The main menu contained cover all available application functionality, including actions for control of the application.

| 👔 PowerSys                 |  |
|----------------------------|--|
| ~                          |  |
| $\mathbf{\nabla}$          |  |
| Marris                     |  |
| New                        |  |
| Open                       |  |
| Close                      |  |
|                            |  |
| Save                       |  |
| Save as                    |  |
| Save as                    |  |
| 0                          |  |
| Connection setup           |  |
| Connect to device          |  |
| Connect to device using RM |  |
| Create system log          |  |
| Create system log          |  |
|                            |  |
| About                      |  |

[sc\_powersys\_menu, 1, --\_--]

| Menu                     | Description                                                                                                                                                                                                  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Menu > New               | Create a device configuration file (.ddb). Select device type and param-<br>eter release version. After that, choose the name and place of storage<br>of the configuration file in which the data is stored. |  |
| Menu > Open              | Same function as Open toolbar button.                                                                                                                                                                        |  |
| Menu > Close             | Same function as Close toolbar button.                                                                                                                                                                       |  |
| Menu > Save              | Same function as Save toolbar button.                                                                                                                                                                        |  |
| Menu > Save as           | Save the changes as another configuration file without replace existing file.                                                                                                                                |  |
| Menu > Connection setup  | The communication to the device can be carried out either via the serial interface or via a TCP/IP connection from the service PC.                                                                           |  |
|                          | • For a configuration of the serial interface, select the proper serial port with the Serial port to device list box.                                                                                        |  |
|                          | • For a configuration of the TCP/IP interface, select the proper IP address, port number and with or without SSL.                                                                                            |  |
|                          | The selection must be in accordance with device settings. The configu-<br>ration is done after clicking the Ok button.                                                                                       |  |
|                          | User preference settings (Connect method, COM, IP address, RM, Language, Last accessed file path) will be stored in user profile for next use.                                                               |  |
| Menu > Connect to device | Same function as Connect toolbar button.                                                                                                                                                                     |  |

3.5 Configuration with the Service PC

| Menu                              | Description                                                                                                                                                                                                                                                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Menu > Connect to device using RM | Establishing the connection to the remote device using RM. RM must be configured in device. RM link must be established.                                                                                                                                    |
|                                   | The RM address of the connected remote device is set with the Connec-<br>tion setup menu.                                                                                                                                                                   |
|                                   | After the connection is established, all data of the remote device are<br>downloaded. The duration of this procedure depends on the transmis-<br>sion data rate (50 bps or 300 bps).<br>With the remote monitoring function, device data can be transmitted |
|                                   | between one of the following cases:                                                                                                                                                                                                                         |
|                                   | • The terminals of one or more carrier frequency (CF) routes                                                                                                                                                                                                |
|                                   | • 2 PowerLink or SWT 3000 units                                                                                                                                                                                                                             |
|                                   | RM connection can be established over a chain of equipment                                                                                                                                                                                                  |
| Menu > Create system log          | If problems occurre in a PowerLink or SWT 3000 connection, this func-<br>tion can be used to create a zip file containing important system infor-<br>mation including the device configuration or the event log from the<br>device.                         |
|                                   | Select the folder for storing the zip file.                                                                                                                                                                                                                 |
|                                   | To create the system log takes serval minutes to complete, depending on the size of the log file.                                                                                                                                                           |
| Menu > About                      | About information (release version and date)                                                                                                                                                                                                                |

#### Alarm status bar

An alarm status bar displays the frequently monitored alarm status, like virtual LED of the device. The alarm is monitored periodically. If alarm is detected, the related alarm icon is changed to red color.

|                       | CFG    | 0 | •      | •     | 8    | - | FSK | (**) |
|-----------------------|--------|---|--------|-------|------|---|-----|------|
| and the second second | Dard D |   | ALC: N | and a | 1.00 |   |     |      |

sc\_powersys\_alarmstatus\_bar, 1, --\_--]

| Alarm | Description                                                                  |
|-------|------------------------------------------------------------------------------|
| HW    | Hardware alarm                                                               |
| CFG   | Configuration fault                                                          |
| G     | General alarm                                                                |
| TX    | Transmitter alarm                                                            |
| RX    | Receiver alarm                                                               |
| S/N   | Signal to noise alarm                                                        |
| NU    | Non urgent alarm                                                             |
| REM   | Fault in the remote device                                                   |
| FSK   | FSK alarm (available only in PowerLink if FSK is used)                       |
| DP    | DP switched to secondary bitrate (available only in PowerLink if DP is used) |

#### Info bar

The info bar is located between the header and the breadcrumb path. In the info bar provide short messages to the user. It shows on the left the opened file name, on the middle the COM port number, IP address and device name and on the right the name of the user that is currently logged in. The normal mode indicates normal operation mode.

| DevA_001.ddb | COM4 | Admin |
|--------------|------|-------|
|              |      |       |

Figure 3-65 Normal mode

The attention mode indicates that the application is not in the normal mode in order to avoid misunderstandings (e.g. IFC-Test).



#### Breadcrumb

A breadcrumb is used for navigating and showing the current path within the current task. It can be used to step higher via the home icon or path element. Furthermore, it is possible to navigate quickly via tap on the separator elements between the single path elements.



#### Dashboard

A dashboard gives the user an overview of all available areas and helps him to navigate through the application. It consists of several tiles which are grouped by theme.

The dashboard is changed dynamically when different device database are loaded (SWT 3000 or PowerLink). The navigated working area is the screen space available for viewing or editing the content which is represented by breadcrumb path. In this area everything is shown with which the user works in the application, e.g. logs, configurations.

- Device information Group for device information, alarm status and event log.
- Commissioning Group for device configuration, adjustment, diagnostic and test commands.
- User management Group for user management and change password.

| Device information             | Time            | Event log   | Command counter | Alarm |
|--------------------------------|-----------------|-------------|-----------------|-------|
| EN100                          |                 |             |                 |       |
| Commissioning<br>Configuration | Adjustment      | Diagnostics | Test            |       |
| 1990                           |                 | U (         |                 |       |
| User                           |                 |             |                 |       |
| User management                | Change password |             |                 |       |
|                                |                 |             |                 |       |



# 3.6 System Configuration

With PowerLink - Configuration - System the hardware of the system is defined.

For PowerLink 100, up to 3 VFx interface modules for connection of voice, external VF data channels resp. teleprotection signals can be used in the system and have to be defined if existing. Additionally up to 2 protection signaling devices (SWT 3000-1 and SWT 3000-2), up 2 ALR modules and the vMUX multiplexer can be integrated.

For PowerLink 50, up to 2 VFx interface modules for connection of voice, external VF data channels resp. teleprotection signals can be used in the system and have to be defined if existing. Additionally 1 protection signaling devices (SWT 3000-1), 1 ALR module and the vMUX multiplexer can be integrated.

| - |  |
|---|--|

#### NOTE

Unsupported features or hardware of PowerLink 50 are not blocked in the PowerSys configuration menus.

| System                        |                     |   |
|-------------------------------|---------------------|---|
| VFx-1                         | VFM                 | • |
| VFx-2                         |                     | • |
| VFx-3                         |                     | • |
| SWT-1                         | via CSPi            | • |
| SWT-2                         |                     | • |
| Amplifier                     | PLPA: up to 1x 50 W | • |
| Impedance nominal             | 75 Ohm              | • |
| Output power nominal          | 18                  | W |
|                               | ALRS-1 ALRS-2 VMUX  |   |
| Configuration of external SWT |                     |   |

Figure 3-68 The system configuration form

VFx-1 to VFx-3 setting options: VFM, VFS or VFO. Each module has 4 ports for the input of analog voice, data resp. teleprotection signals. The difference of the modules is always the port 1. The ports 2 up to 4 are on each module identical (ref. also to system description).

| Table 3-32 | Port 1 | difference | of the | VFx type |
|------------|--------|------------|--------|----------|
|------------|--------|------------|--------|----------|

| Module Type | Use of port 1                           |
|-------------|-----------------------------------------|
| VFM         | Analog voice channel with E&M signaling |
| VFS         | Telephone interface FXS                 |
| VFO         | Telephone interface FXO                 |

| Adjustment                                     | Settings options                     | Remarks                                                                                                                                  |
|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| VFx-1 to VFx-3 <sup>1)</sup>                   | VFM, VFS, VFO resp (off)             | System configuration for equipped VFx module(s). Refer to <i>Table 3-32</i> .                                                            |
| iSWT 3000-1, iSWT 3000-2 <sup>1)</sup>         | (off)                                | No iSWT integrated                                                                                                                       |
|                                                | via CSPi                             | integrated iSWT 3000 system,<br>transmission via PLC                                                                                     |
|                                                | via FOM <sup>1)</sup>                | remote iSWT 3000 system<br>connected via FOM, transmission<br>via PLC                                                                    |
|                                                | digital only <sup>1)</sup>           | SWT 3000 system for <b>exclusive</b><br><b>digital</b> transmission (via DLE / LID)<br>inserted                                          |
| vMUX                                           |                                      | System configuration for vMUX, if equipped.                                                                                              |
| Amplifier                                      | PLPA: up to 1x 25 W                  | Configuration of the PLPA amplifier                                                                                                      |
|                                                | PLPA: up to 2x 25 W <sup>1)</sup>    | type according to the hardware                                                                                                           |
|                                                | PLPA: up to 1x 50 W                  | equipment.                                                                                                                               |
|                                                | PLPA: up to 2x 50 W <sup>1)</sup>    |                                                                                                                                          |
|                                                | PLPA-HB: up to 1x 40 W               |                                                                                                                                          |
|                                                | PLPA-HB: up to 2x 40 W <sup>1)</sup> |                                                                                                                                          |
|                                                | resp. no PLE (TEST)                  |                                                                                                                                          |
| Impedance nominal                              | 75 Ohm, 150 Ohm resp. unknown        | Impedance of the HF output;<br>Unknown only for Test                                                                                     |
| Output Power nominal                           | PLPA (-LB):                          | Configurable min. and max. values                                                                                                        |
|                                                | 9 W up to 25 W resp.                 | depending on PLPA type.                                                                                                                  |
|                                                | 18 W up to 50 W resp.                | For specific required adjustments,                                                                                                       |
|                                                | 35 W up to 100 W <sup>1)</sup>       | refer to the Notes below.                                                                                                                |
|                                                | PLPA-HB:                             |                                                                                                                                          |
|                                                | 14 W up to 40 W resp.                |                                                                                                                                          |
|                                                | 28 W up to 80 W <sup>1)</sup>        |                                                                                                                                          |
| ALR-1, ALR-2 <sup>1)</sup>                     |                                      | System configuration for equipped ALR module(s)                                                                                          |
| Configuration of external SWT via<br>PowerLink |                                      | External SWT 3000 device<br>(connected <b>via FOM</b> ) is configured<br>via PowerLink 100. Recommended<br>setting for FOM connected SWT |
|                                                |                                      | Not configurable (no SWT via FOM available)                                                                                              |
| <sup>1)</sup> for PowerLink 100                | I.                                   | I.                                                                                                                                       |

#### Table 3-33 Setting options for the PowerLink System Configuration



### NOTE

In case of PowerLink 50/100 High Band or if using adjacent Tx and Rx bands it is necessary to reduce the output power of the PLPA.

# 3.7 HF Configuration

# 3.7.1 The HF Configuration Form

In the HF configuration form the HF-bandwidth, the frequency grid, the transmit resp. receive frequency and the frequency order has to be defined.

| HF                       |            |     |
|--------------------------|------------|-----|
| HF-Bandwidth             | 8.00 kHz   | ▼   |
| Frequency grid           | 4.00 kHz   | ▼   |
| Transmit start frequency | 200.00     | kHz |
| Transmit end frequency   | 208.00 kHz |     |
| Frequency order          | regular    | ▼   |
| Receive start frequency  | 240.00     | kHz |
| Receive end frequency    | 248.00 kHz |     |
| Frequency order          | regular    | ▼   |
| AXC                      | manual     | ▼   |
|                          |            |     |

[sc\_configuration\_hf, 1, --\_--]

Figure 3-69 HF configuration

| Table 3-34 | Setting | options | for the | ΗF | Configuration |
|------------|---------|---------|---------|----|---------------|
| Table 3-34 | Setting | options | for the | HF | Config        |

| Adjustment               | Setting options                      | Remarks                                                                      |
|--------------------------|--------------------------------------|------------------------------------------------------------------------------|
| HF-Bandwidth             | 2.5, 3.75, 5 resp. 7.5 kHz           | for use in the 2.5 kHz frequency grid                                        |
|                          | 2, 4, 8, 12, 16, 24, resp. 32<br>kHz | for use in the 4 kHz frequency grid                                          |
| Frequency grid           | 2.5 resp. 4 kHz                      |                                                                              |
| Transmit start frequency | 24 up to 1000 kHz                    | transmit and receive line filter must be adjusted accordingly                |
| Transmit end frequency   | -                                    |                                                                              |
| Frequency order **)      | regular resp. inversed               |                                                                              |
| Receive start frequency  | 24 up to 1000 kHz                    | transmit and receive line filter must be adjusted accordingly                |
| Receive end frequency    | -                                    |                                                                              |
| Frequency order          | regular resp. inversed               |                                                                              |
| AXC                      | (off)                                | without AXC                                                                  |
|                          | manual on                            | with AXC for adjacent band operation according to table <i>Table 3-38</i> *) |
|                          | automatic level 1 – 4                | for alarm criteria refer to Chapter AXC Auto-<br>matically Activated         |
|                          | adaptive                             | continuously adaption to the actual line conditions                          |

#### \*) For ADC adjustments refer to table Table 3-40.

\*\*) In case of **adjacent band operation** or **activated AXC** function refer to the recommendations in Chapter *Frequency order for adjacent Tx- and Rx-bands* 



### NOTE

**Without AXC function**, a frequency gap between transmit- and receive frequency band as given in Chapter *Frequency order for adjacent Tx- and Rx-bands* is required.

### 3.7.2 AXC Adaptive

If the AXC function is adjusted to adaptive the automatic crosstalk cancelling will be carried out continuously. PowerLink is adapting the input conditions for the received signal depending on the transmitted signal and the actual line conditions.

The adaptive AXC mode is the recommended setting for most common conditions with adjacent transmission bands.

In case of non adjacent band the AXC function has to be switched off. Otherwise the signal quality get worse.



### NOTE

In case of adjacent band operation the AXC function must be activated.

In case of non adjacent band operation the AXC function must not be activated, otherwise the signal quality will be influenced negatively.

In case the PowerLink works in Single Purpose Operation with an (i)SWT 3000 exclusively, the AXC function has to be deactivated by all means.

# 3.7.3 AXC Automatically Activated

The function AXC automatically activated (AAA) allows an activation of AXC depending on the behavior of selected alarm sources. The criteria of AAA are affected on one hand by the digital otherwise by the analog alarm sources of the PowerLink – System. These 2 characteristics are considered in quantifying the levels of automatic AXC activation.

| Level | Quantifying levels                                          |              |
|-------|-------------------------------------------------------------|--------------|
|       | Autom. AXC activation turned off                            |              |
| 1     | Analog as well as digital alarm criteria quantifying level: | Low          |
| 2     | Analog as well as digital alarm criteria quantifying level: | Medium       |
| 3     | Analog as well as digital alarm criteria quantifying level: | High         |
| 4     | Analog as well as digital alarm criteria quantifying level: | Very<br>High |

Table 3-35 Levels for automatic AXC activation

Alarm criteria causing automatic AXC activation can be seen in the tables below:

Table 3-36 Alarm criteria for automatic AXC activation for PowerLink without iSWT 3000

|                                   |                 | Level 1                  |                   | Level 2                        |                   | Level 3                        |                   | Level 4                        |                   |
|-----------------------------------|-----------------|--------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|
| Alarm resp. oper-<br>ating status | Alarm<br>source | AXC Start<br>after [min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] |
| Reset                             |                 | im                       |                   | im                             | -                 | im                             | -                 | im                             | -                 |

3.7 HF Configuration

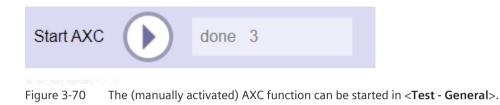

|                                 |         | Level 1 |    | Level 2 | 2  | Level | 3  | Level 4 | 1  |
|---------------------------------|---------|---------|----|---------|----|-------|----|---------|----|
| Change of Tx                    |         | im      | -  | im      | -  | im    | -  | im      | -  |
| resp. Rx level                  |         |         |    |         |    |       |    |         |    |
| Level of SysPil                 | analog  | im      | 30 | im      | 20 | im    | 10 | im      | 5  |
| out of range                    |         |         |    |         |    |       |    |         |    |
| ADC overflow                    | analog  | 5       | 50 | 4       | 40 | 3     | 30 | 2       | 30 |
| AGC out of range                | analog  | -       | -  | -       | -  | -     | -  | 2       | 30 |
| SNR alarm                       | analog  | -       | -  | -       | -  | -     | -  | 2       | 30 |
| Receive alarm of<br>iSWT 3000-x | analog  | -       | -  | -       | -  | -     | -  | -       | -  |
| Rx alarm of iFSK                | analog  | -       | -  | -       | -  | 5     | 10 | im      | 5  |
| Data Pump                       | digital | -       | -  | 5       | 10 | 2     | 10 | 2       | 5  |
| not synchronized                |         |         |    |         |    |       |    |         |    |
| Data Pump                       | digital | -       | -  | 2       | 30 | 2     | 30 | 2       | 30 |
| Blockerrors                     |         |         |    |         |    |       |    |         |    |
| (40/20/10/5) [%]                |         |         |    |         |    |       |    |         |    |
| Number of DP                    | digital | 20      | 60 | 10      | 50 | 7     | 40 | 5       | 30 |
| resync. within                  |         |         |    |         |    |       |    |         |    |
| 5 min interval                  |         |         |    |         |    |       |    |         |    |
| xMUX not                        | digital | -       | -  | 5       | 10 | 2     | 10 | 2       | 5  |
| synchronized                    |         |         |    |         |    |       |    |         |    |
| im = immediately                |         |         |    |         |    |       |    |         |    |

 Table 3-37
 Alarm criteria for automatic AXC activation for PowerLink with iSWT 3000

|                                                  |                 | Level 1                  |                   | Level 2                        |                   | Level 3                        |                   | Level 4                        |                   |
|--------------------------------------------------|-----------------|--------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|--------------------------------|-------------------|
| Alarm resp. oper-<br>ating status                | Alarm<br>source | AXC Start<br>after [min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] | AXC<br>Start<br>after<br>[min] | Repetion<br>[min] |
| Reset                                            |                 | im                       | -                 | im                             | -                 | im                             | -                 | im                             | -                 |
| Change of Tx<br>resp. Rx level                   |                 | im                       | -                 | im                             | -                 | im                             | -                 | im                             | -                 |
| Level of SysPil<br>out of range                  | analog          | -                        | -                 | 30                             | 30                | 10                             | 10                | 5                              | 5                 |
| ADC overflow                                     | analog          | -                        | -                 | 50                             | 50                | 40                             | 40                | 30                             | 30                |
| AGC out of range                                 | analog          | -                        | -                 | -                              | -                 | -                              | -                 | 2                              | 30                |
| SNR alarm                                        | analog          | -                        | -                 | -                              | -                 | -                              | -                 | 2                              | 30                |
| Receive alarm of<br>iSWT 3000-x                  | analog          | -                        | -                 | 2                              | 10                | im                             | 10                | im                             | 5                 |
| Rx alarm of iFSK                                 | analog          | -                        | -                 | -                              | -                 | 5                              | 10                | im                             | 5                 |
| Data Pump<br>not synchronized                    | digital         | -                        | -                 | 5                              | 10                | 2                              | 10                | 2                              | 5                 |
| Data Pump<br>Blockerrors<br>(40/20/10/5) [%]     | digital         | -                        | -                 | 2                              | 30                | 2                              | 30                | 2                              | 30                |
| Number of DP<br>resync. within<br>5 min interval | digital         | -                        | -                 | 10                             | 50                | 7                              | 40                | 5                              | 30                |

|                          |         | Level 1 |   | Level 2 |    | Level 3 |    | Level 4 |   |
|--------------------------|---------|---------|---|---------|----|---------|----|---------|---|
| xMUX not<br>synchronized | digital | -       | - | 5       | 10 | 2       | 10 | 2       | 5 |
| im = immediately         |         | 1       |   |         |    |         |    |         |   |

# 3.7.4 AXC Manually Activated





### NOTE

If the AXC function is adjusted to manual it will carry out the crosstalk cancellation once after re-start of the equipment. After this the AXC function has to be started manually ref. to figure above.

# 3.7.5 Definition of the Adjacent Mode

| HF-Bandwidth | Adjacent mode:<br>when the gap between the Tx and Rx band is |
|--------------|--------------------------------------------------------------|
| 32 kHz       | ≤ 24 kHz                                                     |
| 24 kHz       | ≤ 18 kHz                                                     |
| 16 kHz       | ≤ 12 kHz                                                     |
| 12 kHz       | ≤ 9 kHz                                                      |
| 8 kHz        | ≤ 6 kHz                                                      |
| 7.5 kHz      | ≤ 6.25 kHz                                                   |
| 5 kHz        | ≤ 3.75 kHz                                                   |
| 4 kHz        | ≤ 4 kHz                                                      |
| 3.75 kHz     | ≤ 3.75 kHz                                                   |
| 2.5 kHz      | ≤ 3.75 kHz                                                   |

Table 3-38 Definition of adjacent mode

All larger frequency gaps are non-adjacent mode

# 3.7.6 Frequency Order Using Adjacent Tx- and Rx-Bands

In case of **adjacent Tx and Rx bands** and activated AXC function the following rules have to be observed:

| Table 3-39 | Frequency order for adjacent Tx- and Rx-bands |
|------------|-----------------------------------------------|
|            | requercy order for dejucent fx and fx builds  |

| Service               | F6 Modulation   | HF Bandwidth | Frequency order lower / upper<br>frequency band |
|-----------------------|-----------------|--------------|-------------------------------------------------|
| DP only               |                 | all          | regular / inversed                              |
| DP and AMP            | coded / uncoded | all          | regular / inversed                              |
| DP and F2 / F3 / F6   | coded / uncoded | all          | inversed / regular                              |
| F2 / F3 / F6 (AMP/MP) | coded / uncoded | all          | regular / inversed                              |
| F6 SP Mode 1          | uncoded         | 2 kHz only   | inversed / regular                              |

3.7 HF Configuration

| Service                 | F6 Modulation | HF Bandwidth         | Frequency order lower / upper<br>frequency band |
|-------------------------|---------------|----------------------|-------------------------------------------------|
| F6 SP Mode 1            | uncoded       | all (except 2,0 kHz) | regular / inversed                              |
| F6 SP Mode 1            | coded         | all (except 2,0 kHz) | inversed / regular                              |
| F6 SP Mode 2, 3, 4      | uncoded       | all                  | regular / inversed                              |
| F6 SP Mode 5A           | uncoded       | all                  | inversed / regular                              |
| F6 SP Mode 2, 3a, 3b, 4 | codeda        | all                  | inversed / regular                              |

DP Data Pump

MP Multi purpose operation

AMP Alternate multi purpose operation

SP Single purpose operation

For the HF configuration of the PowerLink system refer to 3.7 HF Configuration.



### NOTE

For the ADC adjustment refer to 3.8.1 ADC Adjustments.

# 3.8 Configuration Options

# 3.8.1 ADC Adjustments

Especially in the adjacent mode of the PowerLink the analog / digital converter ADC in the receive path has to be adjusted according the following rules

| Options |     |    |    |
|---------|-----|----|----|
|         | ADC | 20 | dB |
|         |     |    |    |

Figure 3-71 <Configuration – Options> for adjustment of the ADC

| Tx/Rx Bands  | Service     | max. Line attenuation (from Tx-output to Rx-input) | ADC Adjustment |
|--------------|-------------|----------------------------------------------------|----------------|
| Non adjacent | analog      | *) dB                                              | 12 dB          |
|              | DP          | *) dB                                              | 12 dB          |
|              | DP + analog | *) dB                                              | 12 dB          |
| Adjacent     | analog      | 15 dB                                              | 12 dB          |
|              | analog      | 25 dB                                              | 20 dB          |
|              | analog      | 35 dB                                              | 26 dB          |
|              | DP          | 25 dB                                              | 20 dB          |
| l            | DP + analog | 25 dB                                              | 20 dB          |

Table 3-40Rules for adjustment of the ADC

\*) according minimum receive level and required SNR

# 3.8.2 Output Gain

For test purpose only! In case of low attenuation of the transmission line the output gain can be reduced with this adjustment. Range 10 % up to 100 % in steps of 1 %. The Tx level is adjusted in the Tx-leveling menu, refer to chapter 3.19.1 TX Level Setting.

Default setting: 100 %

# 3.8.3 Auto Reset

If the system detects a fault, an auto reset is carried out, if this function is activated  $_{(\Xi)}$ Default setting: activated  $_{(\Xi)}$ 

# 3.8.4 Test Mode and Diagnostic LED

Refer to chapter *Diagnostics and Error Handling*. Default setting: normal mode

# 3.8.5 Quality Data Interval

Refer to chapter *Diagnostics and Error Handling*. Default setting: 15 minutes

### 3.8.6 xMUX Supervision

Refer to chapter *Diagnostics and Error Handling*. Default setting: low

### 3.8.7 Clock Synchronization

#### 3.8.7.1 Sync. type

The following tables describe the configuration options for local clock synchronization of the Real Time Clock in PowerLink (CSPi) and the corresponding configuration for the iSWT 3000 (PU4).

| Clock synchronization                         |               |   |
|-----------------------------------------------|---------------|---|
| Synchronization type                          | off (no synch | ▼ |
| Active signal slope or active polarity (IRIG) | rising/normal | ▼ |
| Clock sync alarm (NU)                         |               |   |
|                                               |               |   |

[sc\_clock\_synchronization, 1, -\_-]

Configuration - Clock synchronization / Configuration - iSWT-x - Clock synchronization

 Table 3-41
 Configuration parameters for Clock synchronization

| PowerLink (CSPi) Configuration<br>(PowerSys: PowerLink > Configuration > Options ><br>Clock synchronization) |                                                 |                                | iSWT 3000 - Configuration<br>(PowerSys: PowerLink > Configura-<br>tion > iSWT 3000-x > Clock synchroni-<br>zation) |                        |                                                    |                                | ALR-1<br>(BI 1)                   |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------|--------------------------------|-----------------------------------|
| Sync.Type                                                                                                    | active signal<br>slope or<br>active<br>polarity | Clock<br>sync<br>alarm<br>(NU) | Local sync                                                                                                         | Sync<br>pulse<br>every | active<br>signal<br>slope or<br>active<br>polarity | Clock<br>sync<br>alarm<br>(NU) | Input of<br>clock sync.<br>signal |
| off (no synchronization)                                                                                     |                                                 |                                | off                                                                                                                |                        |                                                    |                                | 3)                                |
| USYNC signal (sync interval minute)                                                                          | rising or falling                               | on/off                         | USYNC<br>signal                                                                                                    | minute                 | 1)                                                 | 1)                             | 2)                                |
| USYNC signal (sync interval<br>hour)                                                                         | rising or falling                               | on/off                         | USYNC<br>signal                                                                                                    | hour                   | 1)                                                 | 1)                             | 2)                                |
| IRIG-B00x (sync. only)                                                                                       | normal or inverted                              | on/off                         | IRIG B00x<br>(sync. only)                                                                                          |                        | 1)                                                 | 1)                             | 2)                                |
| IRIG-B000 (sync + RTC time<br>adj.)                                                                          | normal or<br>inverted                           | on/off                         | IRIG B000<br>(RTC time<br>adj.)                                                                                    |                        | 1)                                                 | 1)                             | 2)                                |
| IRIG-B004 (sync + RTC time & date adj.)                                                                      | normal or<br>inverted                           | on/off                         | IRIG B000<br>(RTC time &<br>date adj.)                                                                             |                        | 1)                                                 | 1)                             | 2)                                |

| PowerLink (CSPi) Configuratio<br>(PowerSys: PowerLink > Confi<br>Clock synchronization) | otions >   | iSWT 3000 -<br>(PowerSys: F<br>tion > iSWT 3<br>zation) | PowerLin | k > Confi |    | ALR-1<br>(BI 1) |
|-----------------------------------------------------------------------------------------|------------|---------------------------------------------------------|----------|-----------|----|-----------------|
| NTP sync<br>(sync & RTC time & date adj.<br>for CSPi only)                              | <br>on/off |                                                         |          |           |    | 3)              |
| NTP sync & USYNC output<br>(sync+RTC time & date adj. for<br>CSPi+iSWT)                 | <br>on/off | USYNC<br>signal                                         | minute   | rising    | 1) | 4)              |

1) same setting as used for CSPi

2) Input BI1 on ALR 1 is used as for USYNC or IRIG B signal

3) Input BI1 on ALR 1 can be used as alarm input.

4) Input BI1 on ALR 1 must be not be wired!

#### Table 3-42Description of the RTC Synchronization types

| Synchronization Adjustment     | Remarks                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF                            | RTC synchronization is disabled                                                                                                                                                                                                                                                                                            |
| USYNC signal (minute or hour)  | An external impulse is received via the USYNC input every minute<br>resp. hour. The active signal slope rising or falling is synchronizing<br>the RTC seconds. The synchronization is done when the second<br>counter is within the "synchronization window":<br>seconds > 35 → RTC time set to xx:xx:59                   |
|                                | seconds < 25 $\rightarrow$ RTC time set to xx:xx:00                                                                                                                                                                                                                                                                        |
|                                | If the second counter is within the "synchronization window" the Usync alarm is cleared and a entry about a successful Usync is written in the event memory.                                                                                                                                                               |
|                                | If the second counter is outside the "synchronization window" will cause a Usync alarm and the entry Usync failed in the event memory.                                                                                                                                                                                     |
|                                | If no USYNC signal is detected within 70 seconds one alarm entry in the event memory is generated.                                                                                                                                                                                                                         |
| IRIG-B00x (sync only)          | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized.                                                                                                                                                                             |
|                                | The IRIG-B signal and RTC synchronization are supervised. In case of error the Usync alarm is generated.                                                                                                                                                                                                                   |
| IRIG-B000 (RTC time adj.)      | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized. Additional the IRIG-B-time (hour, minutes, seconds) is<br>compared with the RTC time of the iSWT. In case of a difference the<br>IRIG-B values are taken over into the RTC. |
|                                | The IRIG-B signal and RTC synchronization are supervised. In case of error the Usync alarm is generated.                                                                                                                                                                                                                   |
| IRIG-B004 (RTC time&date adj.) | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized. Additional the IRIG-B-time & date is compared with<br>the RTC time & date of the iSWT. In case of a difference the IRIG-B<br>values are taken over into the RTC.            |
|                                | The IRIG-B signal and RTC synchronization are supervised. In case of error the Usync alarm is generated.                                                                                                                                                                                                                   |

3.8 Configuration Options

| Synchronization Adjustment | Remarks                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NTP-Sync                   | Synchronization of the RTC (date and time of the CSPi) via the network time protocol.                                                                                                                                            |
|                            | IP address and polling interval of the NTP server are configured via the CSPi Webinterface.                                                                                                                                      |
|                            | The receive interval of the NTP telegram from the NTP-Agent is supervised. In case of timeout the Usync alarm is generated                                                                                                       |
| NTP sync & USYNC output    | Synchronization of the RTC (date and time) for CSPi and iSWT via the network time protocol.                                                                                                                                      |
|                            | An internal USYNC output to the iSWT 3000 is generated by the CSPi (sync. interval 1 minute).                                                                                                                                    |
|                            | IP address and polling interval of the NTP server are configured via<br>the CSPi Webinterface. The receive interval of the NTP telegram from<br>the NTP-Agent is supervised. In case of timeout the Usync alarm is<br>generated. |

#### 3.8.7.2 Active Signal Slope or Active Polarity (IRIG)

| Table 3-43 | RTC Active Signal Slope or Active Polarity (IRIG) for CSPi Clock |
|------------|------------------------------------------------------------------|
| 10010 0 10 |                                                                  |

| Settings         | Remark                             |
|------------------|------------------------------------|
| rising/normal    | The active signal slope is rising  |
| falling/inverted | The active signal slope is falling |

#### 3.8.7.3 Clock Sync Alarm (NU)

Table 3-44 Clock Sync Alarm CSPi Clock

| Settings                | Remark                                                          |
|-------------------------|-----------------------------------------------------------------|
| Clock Sync Alarm (NU) 🔲 | In case of clock sync. failed no alarm is activated.            |
| Clock Sync Alarm (NU) 🗹 | In case of clock sync. failed an non urgent alarm is activated. |

### 3.8.8 CSPi Date/Time Setting

After the data have been imported from a connected device, date and time of the CSPi can be set in <Time> If an iSWT is configured, the clock of both, CSPi and iSWT are adjusted.

| New time     03:28:01 PM       Use PC system time     Image: Comparison of the system time | New date           | 2021.07.21  | $\odot$ | Apply time to device |            | Device date | 2021.07.21  |
|--------------------------------------------------------------------------------------------|--------------------|-------------|---------|----------------------|------------|-------------|-------------|
| Use PC system time                                                                         | New time           | 03:28:01 PM |         |                      | $\bigcirc$ | Device time | 01:30:47 PM |
|                                                                                            | Use PC system time |             |         |                      |            |             |             |

Figure 3-72 Setting of date and time of CSPi

For the time adjustment the option **<use PC system time>** or a manual adjusted **<new date>** resp.**<new time>** can be used. The internal clock is adjusted when operating the **<Apply>** or **<OK>** button.

# 3.9 Configuration of the Services

# 3.9.1 General Information

In the service form the type and number of services like voice (F2), data (F3) or protection signaling (F6) have to be defined.

#### NOTE

The services which can be selected depend on the firmware ordering number which is stored in the dongle on the CSPi module, and the interface modules VFx. For further information refer to the section 3.4.2 Features Which Have to be Enabled

 Table 3-45
 Possible services which are selectable in the service configuration form

| Basic features                        | Selection PowerLink 50 | Selection PowerLink 100 |
|---------------------------------------|------------------------|-------------------------|
| Voice channels F2                     | 0 to 2                 | 0 to 3                  |
| Data channels                         | 0 to 2                 | 0 to 2                  |
| Teleprotection F6                     | always enabled         | always enabled          |
| Data Pump                             | 0/1                    | 0/1                     |
| Ethernet (transmission via Data Pump) | 0/1                    | 0/1                     |
| Integrated FSK channel (iFSK)         | 0 to 4                 | 0 to 4                  |
| Data channels via iMUX *)             | 0/4/8                  | 0/4/8                   |
| Add-on features                       |                        |                         |
| Service telephone                     | 0/1                    | 0/1                     |
| Remote Monitoring                     | 0/1                    | 0/1                     |
| Dynamic Data Pump                     | 0/1                    | 0/1                     |
| vMUX features                         |                        |                         |
| Voice channels (compressed voice)     | 0 to 8                 | 0 to 8                  |
| fE1                                   | 0/1                    | 0/1                     |
| rFSK channels                         | 0 to 2                 | 0 to 2                  |
| X.21 channels                         | 0 to 2                 | 0 to 2                  |

\*) Asynchronous data channels via iMUX / vMUX

In the PowerLink system maximum 4 different services can be defined.

# 3.9.2 Service Allocation

To prevent malfunction due to different order of service allocation for the devices in 1 PLC link, the services have to be defined always in the following order:

| Table 3-46 | Service Allocation |
|------------|--------------------|
|            | Jervice / mocution |

| 1. Service | Voice F2      |
|------------|---------------|
| 2. Service | Data F3       |
| 3. Service | Protection F6 |
| 4. Service | Data Pump     |



#### NOTE

The **bandwidth** and allocation of the services in the PowerLink systems from 1 link must be identical!

# 3.10 Voice Transmission (Service F2)

### 3.10.1 Overview

The following figure shows the configuration of a voice channel as service 1. The VFM-1 module displayed for the I/O of the voice signal has to be set in the PowerLink system configuration before. The provided type of voice signal (F2 E&M F2 office resp. F2 subscriber) depends on the module type(s) set in the system configuration

| Service 1 |                 |              |              |                |        |
|-----------|-----------------|--------------|--------------|----------------|--------|
|           | F2 E&M 🗸        | SERTEL       | RM           |                |        |
|           | I/O select      | Input level  | Output level | Bandwidth      |        |
|           | VFM-1/P1 🛛 🛨    | -3.5         | dB -3.5      | dB 0300-2040 🗸 |        |
|           | O 2 wire switch | 4 wire swite | ch           |                |        |
|           | AMP             |              |              |                |        |
|           |                 |              |              |                |        |
|           |                 |              |              |                |        |
| 2001      | kHz             |              | CF           |                | 208 kH |
|           |                 |              |              |                |        |
|           |                 |              |              |                |        |

[sc\_service\_F2\_em, 1, --\_

Figure 3-73 <Configuration - Service> Setting a voice channel as service 1

After selection of the service type, the input resp. output of the signal has to be defined with <**I/O Select**> in this example Port 1 of the VFM module in slot pos. 1). Then the input and output level of the fed voice signal is adjusted.

| Table 3-47 | Settings of the input and output levels for the voice interfaces |
|------------|------------------------------------------------------------------|
| Table 5-47 | Settings of the input and output levels for the voice interfaces |

| Voice Interface | Input Level dB | Output Level dB |
|-----------------|----------------|-----------------|
| E&M             | -3,5           | -3,5            |
| FXS             | 0              | -7              |
| FXO             | -7             | 0               |

Additionally the bandwidth for transmitting the voice channel in the PowerLink system must be defined (here 300 Hz - 2040 Hz). The corresponding pilot channel is determined automatically from the system. At the lower end of the service form the allocation of the PowerLink transmission band is displayed. It shows the position of the voice transmission band (green) and the corresponding pilot channel (blue).

# 3.10.2 The VFS Module

The interface FXS (first port of the VFS) is used to connect an analog telephone subscriber to the PowerLink.

### Possible Configurations:

```
FXS <-> FXS
Direct connection between 2 subscriber (hotline)
```

#### FXS <-> FXO

Connection of a subscriber to an exchange (using 2wire-subscriber-interface of exchange)

#### FXS <-> 4wire E&M

Connection of subscriber to exchange (using 4wire-trunk-line-interface of exchange)

#### Settings

| Basic                       |                |        |
|-----------------------------|----------------|--------|
| Ringing frequency           | 25 Hz          | ▼      |
| Audible tone frequency      | 450 Hz         | ▼<br>▼ |
| Signaling                   | Continous      | ▼      |
| Seizure pulse               | 100            | ms     |
| Release pulse               | 1000           | ms     |
| Seizure / release with ack. |                |        |
| Acknowledge mode            | after hook off | ▼      |
| Seizure delay               | 50             | ms     |
| Release delay               | 150            | ms     |
|                             |                |        |
| Priority calls              |                |        |
| Disconnect pulses           |                | 12     |
| Override pulses             |                | 11     |
| Baudrate                    | 20 Bd          | ▼      |

Figure 3-74 Settings for VFS module

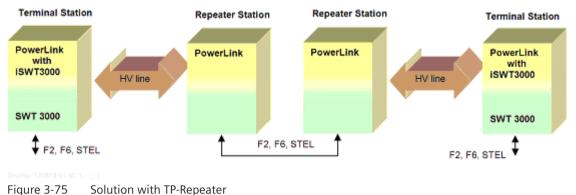
3.10 Voice Transmission (Service F2)

| Name                             | Value                         | Description                                                                                                                                                                                                                          |
|----------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seizure/release with acknowledge | y/n                           | In most signaling modes it is used<br>to acknowledge the seizure or release<br>of the channel. In special cases this<br>feature can be deactivated by selecting<br>"no" (depending on the E&M signaling<br>protocol of the exchange) |
| Audible tone frequency           | 450/800 Hz                    | When calling the subscriber an audible<br>tone signal will be send back. The<br>frequency can be selected                                                                                                                            |
| Signaling                        | continuous/impulse            | 2 different E&M signaling protocols are<br>possible:<br>continuous signaling When seizure the<br>channel the E&M-Wire is switched "on"                                                                                               |
|                                  |                               | and will stay in this state during the<br>telephone call until the channel is<br>released.<br>impulse signaling When seizure the<br>channel a short seizure pulse is trans-                                                          |
|                                  |                               | mitted via the E&M-Wire. The E&M-<br>Wires stay in the "off" state during the<br>telephone call. To release the channel a<br>long release impulse is transmitted.                                                                    |
| Acknowledge mode                 | immediately/after hook off    | The FXS can acknowledge an incoming call from the remote station immedi-<br>ately or after hook off.                                                                                                                                 |
| Baud rate                        | 20/40 Bd                      | Baud rate of disconnect – and override<br>impulses can be selected (depending on<br>exchange)                                                                                                                                        |
| Ringing frequency                | 25/50/60 Hz                   | The ringing current from the FXS to<br>the subscriber can be selected. Value<br>depends on the used subscriber.                                                                                                                      |
| Seizure delay                    | 1 to 255 ms in steps of 1 ms  | Suppression of short seizure pulses due to noise bursts.                                                                                                                                                                             |
| Release delay                    | 60 to 255 ms in steps of 1 ms | Suppression of short interruptions                                                                                                                                                                                                   |
| Disconnect impulses              | 0 to 125 in steps of 1        | Number of pulses to set up a priority call<br>(disconnect); depends on exchange                                                                                                                                                      |
| Override impulses                | 0 to 125 in steps of 1        | Number of pulses to set up a priority call (override); depends on exchange                                                                                                                                                           |
| Release pulse                    | 1 to 65 535 ms                | Duration of release pulse                                                                                                                                                                                                            |
| Seizure pulse                    | 5 to 250 ms                   | Duration of seizure pulse                                                                                                                                                                                                            |

#### Recommended Adjustments Depending on the Configuration Mode:

### Table 3-48 FXS settings

|                                  | FXS <-> FXS |            |            | FXS <-> E&M<br>impulse signaling |
|----------------------------------|-------------|------------|------------|----------------------------------|
| Seizure/release with acknowledge | У           | У          | y(n)       | y(n)                             |
| Audible tone<br>frequency        | 800 (450)   | 800 (450)  | 800 (450)  | 800 (450)                        |
| Signaling                        | continuous  | continuous | continuous | impulse                          |


|                     | FXS <-> FXS    | FXS <-> FXO    | FXS <-> E&M contin-<br>uous signaling | FXS <-> E&M<br>impulse signaling |
|---------------------|----------------|----------------|---------------------------------------|----------------------------------|
| Acknowledge mode    | after hook off | after hook off | immediately (after hook off)          | immediately (after hook off)     |
| Baud rate           | n.a.           | 20 (40)        | 20 (40)                               | 20 (40)                          |
| Ringing frequency   | 25/50/60 Hz    | 25/50/60 Hz    | 25/50/60 Hz                           | 25/50/60 Hz                      |
| Seizure delay       | 50 ms          | 50 ms50 ms     | 50 ms                                 | 50 ms                            |
| Release delay       | 150 ms         | 150 ms         | 150 ms                                | 150 ms                           |
| Disconnect impulses | n.a.           | 12             | 12                                    | 12                               |
| Override impulses   | n.a.           | 11             | 11                                    | 11                               |
| Release pulse       | n.a.           | n.a.           | n.a.                                  | 1000 ms                          |
| Seizure pulse       | n.a.           | n.a.           | n.a.                                  | 100 ms                           |

# 3.11 TP-Repeater Service

### 3.11.1 Overview

The TP-Repeater provides the protection-signal forwarding on voice-frequency level with the advantages of:

- No SWT 3000 hardware needed on repeater station.
- Reduction of transmission time because of no coding/decoding time carried out by the SWT 3000 in the repeater station. The additional transmission delay caused by the TP-Repeater is less than 14 ms.



#### Figure 5-75 Solution with TP-Repeater

### 3.11.2 Configure the Services in PowerLink Terminal Station

Service 1 F2 E&M SERTEL RM I/O select Input leve Output level Bandwidth 0300-2040 VFM-1/P1 -3.5 dB -3.5 dB 2 wire switch 4 wire switch AMP I/O select Bandwidth Variant iSWT1 VF40FX\_M6 3540 -Guard 2615 Hz Guard 3810 Hz 208 kHz 200 kHz CF

Configure the terminal PowerLink with service type **F2 AMP**. The voice channel E&M, subscriber, and office depend on the VFX module.

Figure 3-76 Service-configuration example for terminal

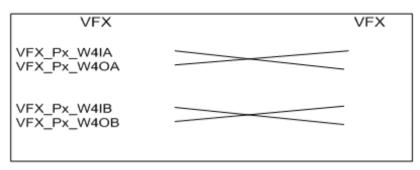
### NOTE

Do not configure RM or F3 service band between F2 voice and guard tone. The standard multiple-purpose setup like F2 + F3 + RM + Guard is not supported for the TP-Repeater service. For this reason, Siemens recommends that **terminals** only use a bandwidth from **300 Hz to 2400 Hz or 300 Hz to 3600 Hz**.

# 3.11.3 Configure Powerlink of the TP-Repeater Station

Configure the TP-Repeater PowerLink with service type TP-Repeater.

| 1  |               |             |              |                |
|----|---------------|-------------|--------------|----------------|
|    | TP-Repeater 🔻 | SERTEL      | RM           |                |
|    | I/O select    | Input level | Output level | Bandwidth      |
|    | VFM-1/P1 🛛    | 0           | dB 0.0       | dB 0300-2640 🗸 |
|    |               |             |              |                |
|    |               |             |              |                |
| 20 | 0 kHz         |             | CF           |                |


Figure 3-77 Service configuration for TP-Repeater

|            |             |         | <i>.</i> .    |
|------------|-------------|---------|---------------|
| Table 3-49 | TP-Reneater | service | configuration |
|            | II Repeater | JUINICC | configuration |

| Adjustment                           | Setting options | Remarks                                                                                                                                              |
|--------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                 | TP-Repeater     | Up to 4 TP-Repeater services can be configured, if sufficient HF bandwidth is available                                                              |
| SERTEL                               |                 | The STEL function not used                                                                                                                           |
|                                      |                 | The STEL function can be enabled temporarily between terminal and TP-Repeater by clicking STEL activation command in <b>Power-Link – Commands</b> >. |
| I/O Select                           | e.g. VFM-1/P1   | All VFX ports can be selected except VFS port 1 and VFO port 1.                                                                                      |
| Input Level                          | 0 dB            | Must be 0 dB for TP-Repeater service                                                                                                                 |
| Output Level                         | 0 dB            | Must be 0 dB for TP-Repeater service                                                                                                                 |
| Bandwidth                            |                 | Must be configured according the guard position of terminal:                                                                                         |
|                                      | 0300-2640       | AMP Guard position is 2615 Hz                                                                                                                        |
|                                      | 0300-3840       | AMP Guard position is 3810 Hz                                                                                                                        |
| RM                                   |                 | Disable RM service                                                                                                                                   |
|                                      |                 | Ensable RM service                                                                                                                                   |
| Allocation of trans-<br>mission band |                 | The frequency bar with pink color shows the TP-Repeater service bandwidth. Note that F2 pilot has been included in the TP-Repeater bandwidth.        |

The TP-Repeater I/O ports are connected with a VFX crossover cable as shown in the figure below. The pin signal is listed in *Table 3-50*. 4-wire operation is fixed for the TP-Repeater service.

3.11 TP-Repeater Service



[dwvfx4wr-140711-01.tif, 1, -\_\_-]

Figure 3-78 VFX 4-wires crossover cable

Table 3-50 VFX 4-wires signal

| Signal name | Remark          |
|-------------|-----------------|
| VFX_Px_W4IA | 4-wire input A  |
| VFX_Px_W4OA | 4-wire output A |
| VFX_Px_W4IB | 4-wire input B  |
| VFX_Px_W4OB | 4-wire output B |



#### NOTE

RM is forwarded via the existing RM-1 interface. The RS232 crossover cable must be connected between both RM-1 interfaces of the TP-Repeater.



#### NOTE

If the TP-Repeater is combined with other services, the setup sequence must follow the rules:

- TP-Repeater must be configured before services F3, F6, DP, for example: TP-Repeater + F2 + F3 + DP.
- TP-Repeater can be configured before or after service F2, for example: TP-Repeater + F2 + F3 + F6 or
   TP Prepeater + F2 + F3 + F6 or
  - F2 + TP-Repeater + F3 + F6.



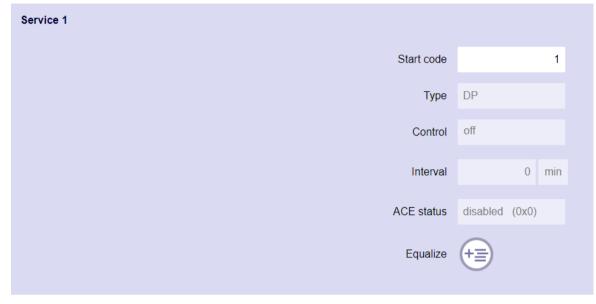
### NOTE

If TP-Repeater is at service 1, only F2 + AMP can be repeated. If TP-Repeater is configured after F2 service, e.g. Service 1 = F2, Service 2 = TP-Repeater, then F2 / F6 can also be repeated.



#### NOTE

RM may be assigned at F6+iSWT1 channel, but never at F6+iSWT2 channel nor F2+iSWT channel.




#### NOTE

With the form <**PowerLink – Adjustments – TX-Leveling**> a fully automatic transmit level setting of the configured services is performed. Manual change of ACN is not permitted.

# 3.11.4 ACE with TP-Repeater

The ACE number must be configured the same for all PowerLink used in both terminal and TP-Repeater stations. It is configured in form **<Configuration – ACE**>.



#### [sc\_ace\_service1, 1, -\_\_

Figure 3-79 ACE configuration for TP-Repeater

#### Table 3-51 ACE configuration

| Adjustment | Setting options | Remarks                                                                                                                                                                                   |
|------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start Code | 1 to 10         | To prohibit collision in a transit station with a neighboring link, 2 corresponding terminals of a link must be programmed with the same start code which is different for the next link. |
|            |                 | For the TP-Repeater service, this value must be the same for all terminals and TP-Repeater stations.                                                                                      |

# 3.12 Service Telephone (STEL)

# 3.12.1 Configuration and Operation of Service Telephone

The service telephone is transmitted via the service F2 resp. Data Pump (DP) and must be enabled in the dongle. The following example shows a configuration with 2 voice channels (Service 1 and 2) and a Data Pump (Service 3). The service telephone can be configured in 1 of these services.

| Service | 1   |              |     |               |    |             |    |             |        |
|---------|-----|--------------|-----|---------------|----|-------------|----|-------------|--------|
|         | F2  | E&M 🔻        |     | SERTEL        | RM |             |    |             |        |
|         |     | I/O select   |     | Input level   |    | Output leve |    | Bandwidth   |        |
|         |     | VFx-1/P2     | •   | -3.5          | dB | -3.5        | dB | 0300-2040 🗨 | -      |
|         |     | O 2 wire swi | tch | • 4 wire swit | ch |             |    |             |        |
|         | AMP |              |     |               |    |             |    |             |        |
|         |     |              |     |               |    |             |    |             |        |
|         |     |              |     |               |    |             |    |             |        |
| 76 kHz  |     |              |     | · · · ·       | CF |             |    |             | 84 kHz |
|         |     |              |     |               |    |             |    |             |        |

Figure 3-80 Transmission of the service telephone via the service 1

#### Activating the service telephone

For activating the service telephone the SERVICE-TEL push-button on the CSPi has to be pressed for at least 5 seconds. At the local station this is indicated by slow blinking of the LED SERVICE-TEL.

The remote station receives a call signal, indicated by buzzer and fast blinking of the LED SERVICE-TEL, which has to be confirmed with the SERVICE-TEL button within 1 minute (otherwise the SERVICE TEL LED and the call signal is switched off).

After accepting the call the LED SERVICE-TEL changes from fast blinking to steady light, the corresponding service is interrupted and the **general alarm is activated**.

If a station is called **during the activated Service telephone** (by pressing the SERVICE-TEL push button for 5 second) the call signal in the remote station is activated and the SERVICE TEL LED changes to fast blinking. If the SERVICE-TEL button in the called station is pressed within 1 minute the call signal is switched off and the SERVICE-TEL LED changes to steady light. Otherwise the call signal is switched off automatically after 1 minute and the SERVICE-TEL LED remains fast blinking.

For terminating the SERVICE-TEL mode the SERVICE-TEL push-button has to be pressed for min 5 seconds in both stations.

After terminating the SERVICE-TEL mode the corresponding service is switched on again and the general alarm is switched off.



### NOTE

Using the service telephone is interrupting the corresponding service and causes general alarm.

### 3.12.2 Service Telephone function in TP-Repeater stations

If STEL is configured for both terminal and repeater stations, only STEL between terminal stations is possible by default. If one terminal starts STEL, the terminal at the opposite end can accept an STEL call request and start communication.

STEL between the terminal and the TP-Repeater station is only available for commissioning purpose. During the commissioning and use of STEL on a TP-Repeater, the teleprotection function as well as the telephone-data transmission are blocked.

#### **Enable STEL on TP-Repeater**

STEL can be enabled temporarily on TP-Repeater with the following steps:

- Configure STEL in both terminal station and TP-Repeater station.
- Enable STEL in TP-Repeater station by clicking the Activate STEL on TP-Repeater button
- Click the **Yes** button in the opened warning dialog

Then STEL is enabled on TP-Repeater, and the Activate STEL on TP-Repeater button is changed to Deactivate STEL.

After that, you can start STEL between terminal and TP-Repeater by pressing the STEL and DIAG buttons together on the CSPi board.



#### NOTE

As long as the STEL is activated in the repeater station no F6 protection commands can be transmitted via the link.

#### Table 3-52 Test > General > Activate STEL command

| Command              | Remarks                                                                                                                                                                                                          |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activate STEL on TP- | STEL on TP-Repeater is only for commissioning purpose.                                                                                                                                                           |
| Repeater             | If you click the <b>Activate STEL</b> button, the warning-message dialog opens. After acceptance, the STEL on TP-Repeater is enabled temporarily and the button is changed to <b>Deactivate STEL</b> .           |
|                      | ATTENTION                                                                                                                                                                                                        |
|                      | If STEL is enabled temporarily, the Teleprotection and F2 functions become unavailable until you click the Deactivate STEL button. This button is only enabled if STEL is configured in the TP-Repeater service. |

#### Disable STEL on TP-Repeater

STEL can be disabled by sending a Deactivate STEL command or it is disabled automatically if the communication session of PowerSys is lost, for example, if you close PowerSys directly.

#### Table 3-53 STEL deactivation-command configuration

| Command         | Remarks                        |  |
|-----------------|--------------------------------|--|
| Deactivate STEL | Disable STEL on a TP-Repeater. |  |

# 3.13 Data Transmission (Service F3)

# 3.13.1 Possibilities of the Data Transmission

For data transmission F3 the PowerLink system offers various possibilities:

- Connection of an modem via the VFx interface modules. The input/output level for each port is adjustable.
- via the RS232 interfaces with up to 4 Frequency Shift Keying (FSK) channels adjustable from 50 up to 2400 Bd.
- As combination via the RS232 interfaces with up to 4 FSK channels and a VFx input.

Additionally the data transmission can be carried out:

• via the RS232 interface with up to 8 asynchronous channels from 300 bps to 115200 bps connected to an integrated multiplexer iMUX and the function Data Pump.

Maximum 2 F3 services can be configured in the PowerLink system.



Figure 3-81 Configuration of a F3 data service



### NOTE

FSK in the figure above appears only if enabled in the dongle!

# 3.13.2 Connection of an Modem via VFx Module

After the service type F3 has been defined the service form displays the configuration for the data channel:

|    | Bandwidth  | Start       |    | End          |    |
|----|------------|-------------|----|--------------|----|
| F3 | 3300 🗸     | 300         | Hz | 3600         | Hz |
|    | I/O select | Input level |    | Output level |    |
| P1 | VFx-1/P3   | -22.0       | dB | -22.0        | dB |
| P2 | 🔻          | 0           | dB | 0            | dB |
| P3 | 🔻          | 0           | dB | 0            | dB |
| P4 | 🔻          | 0           | dB | 0            | dB |



Figure 3-82 Configuration of the data channel via port 3 of an VFx interface

The available ports of the VFx module are displayed under <**I/O Select**>. The VFx-1 module displayed for the I/O of the data signal has to be set in the PowerLink system configuration previously. Then the input resp. output level has to be adjusted.



Figure 3-83 The measuring and input jacks of the VFx modules

# 3.13.3 Considerations About Level Adjustment

Generally all data channels have to feed into the VFx ports with nominal level:

| Table 3-54 Nominal level of data channel | ble 3-54 | Nominal | level of | data | channels | , |
|------------------------------------------|----------|---------|----------|------|----------|---|
|------------------------------------------|----------|---------|----------|------|----------|---|

| Data channel | Nominal level (P) | Allocated channel number (ACN) |
|--------------|-------------------|--------------------------------|
| 50 Baud      | -22.5 dB          | 1                              |
| 100 Baud     | -19.5 dB          | 1,4                            |
| 200 Baud     | -16.5 dB          | 2                              |
| 600 Baud     | -13.5 dB          | 2.8                            |
| 1200 Baud    | -10.5 dB          | 4                              |
| 2400 Baud    | -7.5 dB           | 5.7                            |

The input resp. output level has to be adjusted to the level of the feeding channel. **If several channels are connected**, the input/output level must be adjusted to the **peak level** of the data channels:

Calculation of the **peak level**:

| Ρ | $s = -22.5 + 20*\log(ACN)$ |  |
|---|----------------------------|--|
|---|----------------------------|--|

## Example:

2 x 50 Bd : ACN = 1 ; P1 = -22.5 dB 2 x 600 Bd : ACN = 2.8 ; P2 = -13.5 dB ACN: (2\*1 + 2\*2,8) = **7.6** Peak level:

Ps = -22.5 + 20\*log(7.6) = -4.8 dB

This peak level has to be adjusted for the input and output level of the VFx port! The peak level as well as the ACN calculation is carried out also with the Excel program "F3\_via\_vfx\_leveling\_xx\_xx.xls" (part of the PowerSys software package).

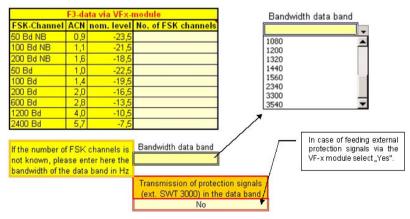


# NOTE

If several VFx ports are used for the data transmission, the **peak level and ACN** has to be calculated and adjusted for each port separate!

# Operating the F3\_via\_vfx\_leveling\_xx\_xx.xls program

For the data input the program offers 2 possibilities as shown in the figure below.



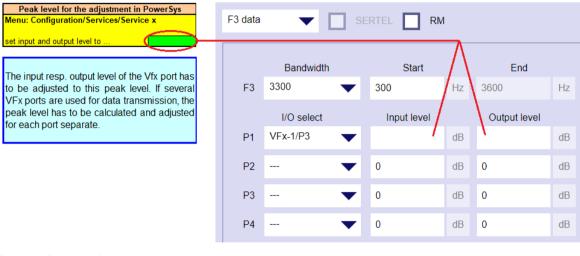




Figure 3-84 Data input of the level calculation program

Either the number of the corresponding FSK channels has to be entered or the bandwidth of the F3 data channel.

## Peak Level Adjustment

Subsequently the program shows the peak level which has to be adjusted for the corresponding VF-x ports (refer to *Figure 3-85*) and the allocated channel number (ACN) (refer to *Figure 3-86*) which has to be modified in the form PowerLink adjustments Tx leveling.



[sc\_peaklevel\_adjustment, 1, --\_--]

Figure 3-85 The peak level adjustment

## Adjustment of the Allocated Channel Number (ACN)

| Adjusted with Configuration/Services/Service x                                                                               | TX leveling        | RX leveling | Level supervision |     |               |              |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-------------------|-----|---------------|--------------|
| ACN to be adjusted in PowerSys<br>Menu: Adjustments/Tx-Levelling/Service x F3<br>data via VFx<br>set ACN for this service to |                    | TX-I        | evel CSPi 0       | _   | dBr           |              |
|                                                                                                                              | Service 1: F2 E&M  |             |                   |     |               |              |
| In case of feeding external modems via the<br>VFx ports the calculated ACN for the data                                      | Active I/O         | Input level | Output level      | ACN | TX level CSPi | TX level out |
| channels has to be entered in this form. If several VFx ports are used for data                                              | VFM-1/P1           | -3.5 dB     | -3.5 dB           | 20  | -26.5 dB      | 24.0 dB      |
| transmission, the ACN has to be calculated<br>and adjusted for each port separate. The                                       | SysPILOT           |             |                   | 20  | -26.5 dB      | 24.0 dB      |
| corresponding Tx levels CSP are calculated<br>from the system.                                                               | Service 2: F3 data |             |                   |     |               |              |
|                                                                                                                              | Active I/O         | Input level | Output level      | ACN | TX level CSPi | TX level out |
|                                                                                                                              | VFx-1/P2           | -22.0 dB    | -22.0 dB          | I   | -26.5 dB      | 24.0 dB      |

Figure 3-86 ACN adjustment according the peak level calculation

The adjustment of the ACN is carried out with a double click on the corresponding number in the Tx-leveling form. Now the value displayed in the field "ACN to be adjusted in PowerSys" has to be entered. With click on the **<Apply>** resp. **<OK>** button the new value for the ACN is taken over and all transmit levels of the PowerLink are new adjusted.



# NOTE

The HF level displayed in the PowerLink shows the peak level! All external data channels have to feed with the nominal channel level!

The next section gives detailed explanations for the measurement of external F3 voice frequencies in the HF range

| Display of the HF | <b>Output Leve</b> | l for Data | via VFx |
|-------------------|--------------------|------------|---------|
| ,,                |                    |            |         |

| System pilot (-) 200270 Hz |           | -37.0 dB | 7.0 dB System pilot(+) 200330 Hz |           | -37.0 dB      |              |
|----------------------------|-----------|----------|----------------------------------|-----------|---------------|--------------|
| Service 1                  | Service 2 |          | Service 3                        | Service 4 |               |              |
| F3 data                    | VF-Inpu   | t        | VF-Level                         | HF (Tx)   | HF-Level CSPi | HF-Level Out |
| F3-                        | 300 Hz    |          |                                  | 200060 Hz |               |              |
| F3 mid                     | 360 Hz    |          | -22.0                            | 200120 Hz | -43.0         | 11.2         |
| F3+                        | 420 Hz    |          |                                  | 200180 Hz |               |              |

## sc\_service\_F3\_data\_HF-level, 1,

Figure 3-87 Display of the F3 data band and the HF output level

The display of the HF-Level CSPi in **<Service>** is calculated for the VF **peak level** (this is the level adjustment of the VFx ports). Since all external data channels **feed with the nominal channel level**, the HF output is corresponding lower.

The "VF-Input" shows the limits of the data band adjusted in the service configuration. When feeding a defined voice frequency this can be measured by calculating first the frequency offset. For that purpose 1 of the displayed VF frequencies has to be subtracted from the HF. In the example shown in *Figure 3-87* the offset is 70525 Hz – 300 Hz = 70225 Hz (the data band is adjusted from 300 Hz up to 3600 Hz). Subsequently the offset has to be added to the feeding frequency to find the HF.

Example for feeding a voice frequency into the data band shown in *Figure 3-87*.

| Table 3-55 | Measuring an external | voice frequency in the H | IF range of the data band |
|------------|-----------------------|--------------------------|---------------------------|
|            |                       |                          |                           |

| Feeding VF Frequency | Feeding level | Offset   | HF Frequency         | Output level CSPi  |
|----------------------|---------------|----------|----------------------|--------------------|
| 3260 Hz              | -13.5 dB      | 70225 Hz | 70225 Hz + 3260 Hz = | -28.8 dB -13dB*) = |
|                      |               |          | 73485 Hz             | -41.8 dB           |

\*) the level of the data channel is 13 dB less than the peak level

The VF output level of the corresponding VF-x port in the remote station is again -13.5 dB.

# 3.13.4 System Configuration for iFSK Channel Transmission

Via the RS232 interfaces of the PowerLink system up to 4 Frequency Shift Keying (iFSK) channels adjustable from 50 up to 2400 Bd can be transmitted. The transmission of the iFSK channels is carried out in 1 or 2 F3 data bands (selectable).

|                          | Bandwidth  |     | Start      |    |    | End          |    |  |
|--------------------------|------------|-----|------------|----|----|--------------|----|--|
| 3                        | 3300       | 30  | 0          |    | Hz | 3600         | Hz |  |
|                          | I/O select |     | Input leve | el |    | Output level |    |  |
| P1                       | FSK        | 0.0 | D          |    | dB | 0.0          | dB |  |
| 22                       |            | 0.0 | D          |    | dB | 0.0          | dB |  |
| ⊃3                       |            | 0.0 | D          |    | dB | 0.0          | dB |  |
| P4                       |            | 0.0 | D          |    | dB | 0.0          | dB |  |
|                          |            |     |            |    |    |              |    |  |
| FSK<br>Datarate Datarate |            |     |            |    |    |              |    |  |
| С                        | h1 600 Bd  | •   | Ch3        |    |    | -            |    |  |
| C                        | h2         | -   | Ch4        |    |    | -            |    |  |

sc\_service\_f3\_data\_fsk, 1, --

Figure 3-88 Configuration of the service F3 for FSK channels

The 4 possible iFSK channels are transmitted within the bandwidth 3300 Hz. The setting options for adjustment of the bit rates are shown in the table below:

| Table 3-56 | Adjustable bit rates for the iFSK channels |
|------------|--------------------------------------------|
|------------|--------------------------------------------|

| System    | Nominal Bit rate | max. Bit rate |
|-----------|------------------|---------------|
| FM 120    | 50               | 85            |
| FM 240    | 100              | 170           |
| FM 480    | 200              | 340           |
| 50 Bd NB  | 50               | 60            |
| 100 Bd NB | 100              | 120           |
| 200 Bd NB | 200              | 240           |
| 600 Bd    | 600              | 880           |
| 1200 Bd   | 1200             | 1300          |
| 2400 Bd   | 2400             | 2500          |

## **iFSK Channel Configuration**

After the number of iFSK channels and the corresponding bit rates are adjusted with **<Configuration – Services**> the further settings for each channel have to be defined in **<Configuration – FSK**>.

| Channel configuration    |        |    |
|--------------------------|--------|----|
| Service number           | 1      |    |
| Bitrate                  | 600 Bd |    |
| Center frequency         | 1950   | Hz |
| Threshold of level alarm | -20    | dB |
| Tx supervision           | 0      | ms |
|                          |        |    |
| Rx supervision           | 0      | ms |

[sc\_fsk\_channel\_configuration, 1,

Figure 3-89 FSK - Channel configuration

| Interface configuration    |            |
|----------------------------|------------|
| Polarity of RXD1           | normal 🗸 🗸 |
| Polarity of RXD2           | normal 🗸   |
| Enable port RXD2           |            |
| Polarity of TxD            | normal 🗸   |
| Polarity of RTS            | normal 🗸   |
| Polarity of CTS            | normal 🗸   |
| Polarity of CONTACT        | normal 🗸   |
| Idle signal on level alarm | + 🔻        |
| Rx filter                  |            |
| Regenerator                |            |
|                            |            |



| Command                              |             |  |         |             |   |
|--------------------------------------|-------------|--|---------|-------------|---|
|                                      |             |  | Command | Channel off | ▼ |
|                                      |             |  | Send    | lacksquare  |   |
| [sc_fsk_channel_comma<br>Figure 3-91 | FSK Command |  |         |             |   |



# NOTE

In case of a vMUX configuration with rFSK channels the FSK channel configuration menu of these channels is disabled. The rFSK channels are configured with the vMUX Channel Setup.

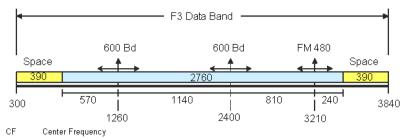
Each iFSK channel needs a center frequency which is determined automatically from the system. The frequency deviation as well as the channel level results from the adjusted bit rates and is also calculated from the system. For manual adjustments make sure, that the channels don't overlap and observe the grid distance.

The required bandwidth for the iFSK channels depends on the baud rate and is shown in the table below.

| No. | System       | Nominal<br>Bit rate | max. Bit<br>rate | Grid<br>distance<br>Hz | Bandwidth Hz | FM devia-<br>tion Hz | Nominal<br>channel level<br>dBr |
|-----|--------------|---------------------|------------------|------------------------|--------------|----------------------|---------------------------------|
| 1   | FM 120       | 50                  | 85               | 120                    | 100          | ±30                  | -22.5                           |
| 2   | FM 240       | 100                 | 170              | 240                    | 200          | ± 60                 | -19.5                           |
| 3   | FM 480       | 200                 | 340              | 480                    | 400          | ±120                 | -16.5                           |
| 4   | 50 Bd NB     | 50                  | 60               | 90                     | 75           | ± 22.5               | -24.5                           |
| 5   | 100 Bd<br>NB | 100                 | 120              | 180                    | 150          | ± 45                 | -21.5                           |
| 6   | 200 Bd<br>NB | 200                 | 240              | 360                    | 300          | ± 90                 | -18.5                           |
| 7   | 600 Bd       | 600                 | 880              | 1140                   | 1000         | ± 200                | -13.5                           |
| 8   | 1200 Bd      | 1200                | 1300             | 1710                   | 1440         | ± 400                | -10.5                           |
| 9   | 2400 Bd      | 2400                | 2500             | 3400                   | 2720         | ± 800                | -7.5                            |

Table 3-57 Definition of the iFSK bit rates

## Example of iFSK Channel Location in a Data Band


The following figure shows the location of two 600 Bd and one 200 Bd (FM480) iFSK channels in a data band with 3540 Hz bandwidth.



# NOTE

The iFSK channels are automatically located in the center of the corresponding F3 data bands!

3.13 Data Transmission (Service F3)



Idwscifsk-301110-01.tif. 1. en US



## **Remarks:**

The grid distance for 600 Bd iFSK is 1140 Hz. Therefore a gap of 570 Hz to the lower band frequency must be taken into account for calculating the channel center frequency. When calculating the center frequency for the next 600 Bd channel, the grid distance of 1140 Hz for 600 Bd has to be added.

For calculating the gap between the 600 Bd and the 200 Bd (FM480) channel half of the grid distances from the corresponding systems (1140 Hz / 2 = 570 Hz; 480 Hz / 2 = 240 Hz; 570 Hz + 240 Hz = 810 Hz) have to be added.

The min. bandwidth for the 3 iFSK channels is 2760 Hz, including the gap of 570 Hz for the 600 Bd channel and 240 Hz for the FM480 channel at the beginning and end of the band.

Placing the required bandwidth in the middle of the data band results in a space of 390 Hz ((3540 Hz - 2760 Hz) / 2 = 390 Hz) at the beginning and the end of the F3 transmission band.



# NOTE

The same rules for frequency space, have to be considered in case of working with external FSK channels.

## **Further Setting Options**

The polarity of the interface RxD, TxD, CTS, RTS data lines can be adjusted to normal **<norm>** (default setting) or inverted **<inv>**.

## Port RxD2 enabled:

Devices which are connected to the RxD2 port (RS232 B-Port) port must **activate a RTS** signal for **data transmission**! With this checkbox, the RxD2 port has to be enabled for using.

#### **Rx-Filter:**

A steep receive filter is activated by using this checkbox. Default setting: Rx-Filter deactivated

## Idle Signal on Level Alarm:

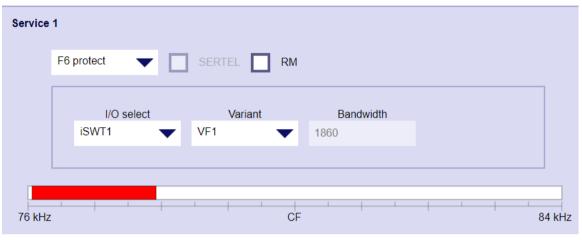
With this setting option the Idle-Signal polarity (+ or -) of the iFSK channel in case of a level alarm can be selected.

Default setting: < + >

## **Regenerator function:**

When the regenerator function is activated, it must be ensured, that the **bit rate fed to the RS232** interface and the **adjusted baud rate of the iFSK channel is identical**. Within the receiver the signal is regenerated. Default setting: Regenerator deactivated

# Commands:


With the commands menu different test modes and loop commands can be activated. It is also possible to initiate the Equalization of the iFSK channel from the commands menu. The commands are activated by the Send button.

To return to normal operation the Command Normal mode has to be selected (default setting).

# 3.14 Service Configuration F6 Protection

With the service F6 Protection the transmission service for an integrated or an external SWT 3000 is configured. The service reserves a certain bandwidth for the teleprotection service either for the Single Purpose (SP)operation of the iSWT 3000 in PowerLink or the Multi-Purpose (MP) operation of the teleprotection signaling in conjunction with other PowerLink services.

The In-/Output selection is either a configured iSWT or a VF-port 3 or 4 of a VFx module for connection of an external SWT 3000. For an integrated SWT 3000 the bandwidth is automatically assigned with selection of the iSWT- Variant.



[sc\_service\_F6\_protect, 1



For the configuration of a VFx connection to an external SWT 3000 the I/O levels have to be adjusted to the I/O levels of the SWT 3000 device (CLE module). The required bandwidth of the Service F6 depends on the configuration of the SWT 3000 (protection mode and variant).

| ervice 3 |              |                                       |              |             |         |
|----------|--------------|---------------------------------------|--------------|-------------|---------|
|          | F6 protect   | SERTEL                                | RM           |             |         |
|          | I/O select   | Input level                           | Output level | Bandwidth   |         |
|          | VFx-1/P3 🛛 🗸 | -10 dB                                | -10 dB       | 0620-1280 🔻 |         |
|          |              |                                       |              |             |         |
|          |              |                                       |              |             |         |
|          | 200 kHz      | · · · · · · · · · · · · · · · · · · · | CF           | +           | 208 kHz |
|          |              |                                       |              |             |         |

[sc\_service\_F6\_protect\_VFx, 1,

Figure 3-94 Service configuration F6 Protection, e.g. for VFx-1/ Port 3 (Multi-Purpose)

For details, refer to Chapter System Configuration with Protection Signaling SWT 3000.

# 3.15 Data transmission via Data Pump

# 3.15.1 iMUX

With the integrated multiplexer (iMUX) and the function Data Pump up to 8 asynchronous data channels with 1.2 Kbps up to 19.2 Kbps connected to the RS232 interfaces can be transmitted.

# Setting the Service Configuration

The service type for the above mentioned function must be DP (Data Pump). The DP interface is the integrated multiplexer iMUX. Select iMUX-IEC in case of connecting a RTU using IEC messages.

| Service 1        |         |     |             |       |       |
|------------------|---------|-----|-------------|-------|-------|
| DP               | -       | SER | TEL 🔲 R     | M     |       |
|                  |         |     |             |       |       |
| Interface        | iMUX    |     |             |       | -     |
| Sync-Mode        | adapted |     |             |       | •     |
| DP-Mode          | Master  |     |             |       | •     |
| Bandwidth        | 3500 Hz |     |             |       | -     |
| Primary datarate | 34800   |     |             |       | Bit/s |
| Expected SNR     | 46      | dB  | Max bitrate | 34800 |       |

[sc\_service\_dp\_imux, 1, --\_--]

Figure 3-95 Configuration for the transmission of RS232 interfaces via Data Pump

3.15 Data transmission via Data Pump

|        | Bitrate | Mode  | Cont Port<br>Inv B |     | Bitrate |   | Mode  |
|--------|---------|-------|--------------------|-----|---------|---|-------|
| Ch1 96 | 00 🔻    | 8N1 🔻 |                    | Ch5 | 19200   | ▼ | 8N1 🗡 |
| Ch2 48 | 00 🔻    | 8N1 🗡 |                    | Ch6 |         | ▼ | 8N1 🔻 |
| Ch3    | -       | 8N1 🗡 |                    | Ch7 |         | ▼ | 8N1 🔻 |
| Ch4    | •       | 8N1 🗡 |                    | Ch8 |         | ▼ | 8N1 🗡 |

sc\_service\_dp\_imux\_channel, 1, --\_--

Figure 3-96 Configuration data channels

## Setting Options for the iMUX

The iMUX has an priority management. Total bit rates assigned to the RS232 ports 1A/B to 4A/B may not exceed the aggregate bit rate of the DP. Then the transmission of this channels is guaranteed.

Devices which are connected to the RS232-1B up to RS232-4B ports must activate a RTS signal for data transmission! Activating the RTS signal via contact (via pin 9) is also possible. The contact can be inverted with activating the "Cont inv" at the corresponding channel (ref. to the figure above).

The bit rates assigned to RS232 ports 5 to 8 will be transmitted, if the transmission capacity is available (handshake signals RTS, CTS). Each channel can be adjusted to 1200, 2400, 4800, 9600 resp. 19200 bps. The supported UART modes are:

7N1, 7N2, 7E1, 7E2, 7O1, 7O2, 8N1, 8N2, 8E1, 8E2, 8O1 resp. 8O2 (data bits, parity, stop bits).

## Setting Options for the Data Pump

| Table 3-58 | Setting options for the Data Pump with iMUX connection |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Adjustment | Setting options       | Remarks                                                                                             |
|------------|-----------------------|-----------------------------------------------------------------------------------------------------|
| Interface  | iMUX                  | For connection of up to 8 asynchronous data chan-<br>nels via the RS232 interfaces.                 |
|            | iMUX-IEC              | For connection of RTU's transmitting IEC messages                                                   |
| Sync-Mode  | adapted               | <b>Optimized connection</b> between the 2 Data Pumps with best adaptation to the transmission path. |
|            | dynamic               | Fallback bit rate for adverse weather conditions.<br>Highest availability!                          |
|            |                       | (Must be enabled in the dongle)                                                                     |
| DP Mode    | Master                | Adjust the other DP to Slave                                                                        |
|            | Slave                 | Adjust the other DP to Master                                                                       |
| Bandwidth  | 3500 – 31 500 Hz      |                                                                                                     |
| Data rate  | 9600 up to 64 000 bps | Normal data rate in sync mode adapted.                                                              |

| Adjustment          | Setting options         | Remarks                                                                                                                                                        |
|---------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary data rate   | 10 000 up to 64 000 bps | Normal data rate in sync mode dynamic. The primary data rate <b>can't be higher adjusted</b> than the <b>bit rate calculated</b> with the bit rate estimation. |
| Secondary data rate | 9600 up to 63 600 bps   | Fallback data rate is only adjustable in sync mode dynamic. When the DP is working with the <b>secon-dary data</b> rate the <b>DPALR</b> is activated.         |

Table 3-59Lower Data Pump Data Rate depending on Data Pump Bandwidth

| Data Pump | Bandwidth [kHz] | min. lower Data<br>Rate [bps] |
|-----------|-----------------|-------------------------------|
|           | > 7.5           | 9 600                         |
|           | 11.5            | 14 400                        |
|           | 15.5            | 20 000                        |
|           | 23.5            | 32 400                        |
|           | 31.5            | 44 000                        |

A bit rate estimation is performed from the system after the expected SNR is entered.

Additional the teleprotection with integrated SWT 3000 in AMP mode and the transmission of remote monitoring channel RM is possible.

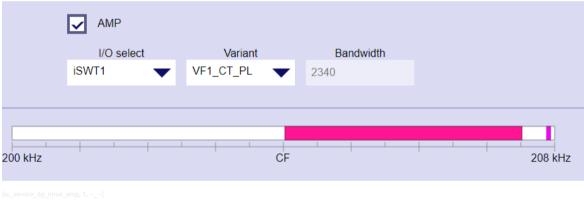



Figure 3-97 Configuration of iSWT 3000 in AMP mode and RM channel

# NOTE

The transmission of protection signals interrupts the Data Pump and with it the iMUX function!

# 3.15.2 Synchronous Interface X.21-DP

With the service Data Pump DP also a synchronous interface X.21 for connecting an external multiplexer is available in case the vMUX is not equipped. In this mode the iMUX can't be used.

# Installation and Commissioning

3.15 Data transmission via Data Pump

| Interface X.21-DP   Sync-Mode adapted   DP-Mode Master   Bandwidth 7500 Hz   Primary datarate 64000   Bit/s   Expected SNR   46 dB   Max bitrate 64000     X.21-DP clock mode DCE   DCE DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DP 🔻             | SERTEL        |     | RM          |       |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----|-------------|-------|-------|--|
| Sync-Mode adapted   DP-Mode Master   Bandwidth 7500 Hz   Primary datarate 64000   64000 Bit/s   Expected SNR 46 dB Max bitrate 64000 X.21-DP clock mode DCE DCE DCE DCE DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ¥ 44 55       |     |             |       |       |  |
| DP-Mode Master  Bandwidth 7500 Hz  Primary datarate 64000 Bit/s Expected SNR 46 dB Max bitrate 64000 X.21-DP clock mode DCE DCE DCE DCE DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Interface        | X.21-DP       |     |             |       | •     |  |
| Bandwidth 7500 Hz   Primary datarate 64000   Bit/s   Expected SNR   46 dB   Max bitrate   64000   Interview of the second se | Sync-Mode        | adapted       |     |             |       | ▼     |  |
| Primary datarate 64000   Expected SNR 46   46 dB   Max bitrate 64000     X.21-DP clock mode   DCE   DCE   DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DP-Mode          | Master        |     |             |       | ▼     |  |
| Expected SNR 46 dB Max bitrate 64000   X.21-DP clock mode DCE   DCE   DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bandwidth        | 7500 Hz       |     |             |       | •     |  |
| X.21-DP clock mode DCE<br>DCE<br>DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Primary datarate | 64000         |     |             |       | Bit/s |  |
| X.21-DP clock mode DCE<br>DCE<br>DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |               |     |             |       |       |  |
| DCE DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Expected SNR     | 46            | dB  | Max bitrate | 64000 |       |  |
| DTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | X.21-DP clock | mod | -           | •     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | AMP           |     |             |       |       |  |

#### [sc\_service\_dp\_X21, 1, --\_--

Figure 3-98 Configuration of the DP for connecting an external multiplexer via X.21-DP interface

| Table 3-60 Setting options for the Data Pump with X.21-DP int | erface |
|---------------------------------------------------------------|--------|
|---------------------------------------------------------------|--------|

| Adjustment | Setting options        | Remarks                                                                                             |
|------------|------------------------|-----------------------------------------------------------------------------------------------------|
| Interface  | X.21-DP                | Synchronous interface for connection of an external multiplexer                                     |
| Sync-Mode  | adapted                | <b>Optimized connection</b> between the 2 Data Pumps with best adaptation to the transmission path. |
|            | dynamic                | Fallback bit rate for adverse weather conditions.<br>Highest availability!                          |
|            |                        | (Must be enabled in the dongle)                                                                     |
| DP Mode    | Master                 | Adjust the other DP to Slave                                                                        |
|            | Slave                  | Adjust the other DP to Master                                                                       |
| Bandwidth  | 3500 – 31 500 Hz       |                                                                                                     |
| Data rate  | 9600 up to 320 000 bps | Normal data rate in sync mode adapted.                                                              |

| Adjustment          | Setting options          | Remarks                                                                                                                                                         |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary data rate   | 10 000 up to 320 000 bps | Normal data rate in sync mode optimized. The primary data rate <b>can't be higher adjusted</b> than the <b>bit rate calculated</b> with the bit rate estimation |
| Secondary data rate | 9600 up to 288 000 bps   | Fallback data rate only adjustable in sync mode<br>dynamic.<br>When the DP is working with the <b>secondary data</b><br>rate the <b>DPALR</b> is activated      |

 Table 3-61
 Lower Data Pump Data Rate depending on Data Pump Bandwidth

| Data Pump | Bandwidth [kHz] | min. lower Data<br>Rate [bps] |
|-----------|-----------------|-------------------------------|
|           | > 7.5           | 9 600                         |
|           | 11.5            | 14 400                        |
|           | 15.5            | 20 000                        |
|           | 23.5            | 32 400                        |
|           | 31.5            | 44 000                        |

 Table 3-62
 Additional setting options for the X.21-DP interface

| Adjustment         | Setting options | Remarks                                                                                                                    |
|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|
| X.21-DP clock mode | DCE             | The clock is provided for the connected multi-<br>plexer. This adjustment is necessary for the DP<br>synch. mode dynamic ! |
|                    | DTE             | The clock is expected from the connected MUX. (Only for DP Master adjustable).                                             |

# 3.15.3 Synchronous Interface G703.1-DP

With the service Data Pump DP also a synchronous interface G703.1 for connecting an external multiplexer with a G703.1 interface is available in case the vMUX is not equipped. In this mode the **iMUX can't be used**.

## Installation and Commissioning

3.15 Data transmission via Data Pump

| DP 🔻             | SERTE        |      | RM          |       |       |  |
|------------------|--------------|------|-------------|-------|-------|--|
|                  |              |      |             |       |       |  |
| Interface        | G703.1       |      |             |       | •     |  |
| Sync-Mode        | adapted      |      |             |       | •     |  |
| DP-Mode          | Master       |      |             |       | •     |  |
| Bandwidth        | 7500 Hz      |      |             |       | •     |  |
| Primary datarate | 64000        |      |             |       | Bit/s |  |
|                  |              |      |             |       |       |  |
| Expected SNR     | 46           | dB   | Max bitrate | 64000 |       |  |
|                  | G703.1 clock | mode | DTE         | •     |       |  |
|                  | AMP          |      |             |       |       |  |
|                  |              |      |             |       |       |  |

Figure 3-99 Configuration of the DP for connecting an external multiplexer via G703.1-DP interface

| Table 3-63 | Setting options for the Data Pump with G703.1-DP interface   |
|------------|--------------------------------------------------------------|
|            | Setting options for the butter unip with 0705.1 br interface |

| Adjustment        | Setting options  | Remarks                                                                                             |  |  |  |  |
|-------------------|------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Interface G703.1  |                  | Synchronous interface for connection of an external multiplexer                                     |  |  |  |  |
| Sync-Mode adapted |                  | <b>Optimized connection</b> between the 2 Data Pumps with best adaptation to the transmission path. |  |  |  |  |
|                   | dynamic          | not available                                                                                       |  |  |  |  |
| DP Mode           | Master           | Adjust the other DP to Slave                                                                        |  |  |  |  |
|                   | Slave            | Adjust the other DP to Master                                                                       |  |  |  |  |
| Bandwidth         | 3500 – 31 500 Hz | Minimum 6500 Hz required for Data rate 64000 bps                                                    |  |  |  |  |
| Data rate         | 64 000 bps       | Fixed data rate in sync mode adapted.                                                               |  |  |  |  |

<sup>[</sup>sc\_service\_dp\_g703.1, 1, --\_

| Adjustment        | Setting options | Remarks                                                                        |
|-------------------|-----------------|--------------------------------------------------------------------------------|
| G703.1 clock mode | DCE             | The clock is provided for the connected multi-<br>plexer.                      |
|                   | DTE             | The clock is expected from the connected MUX. (Only for DP Master adjustable). |

# 3.15.4 Ethernet Multiplexer EMUX

PowerLink together with the EMUX offers 2 possibilities to transmit Ethernet TCP/IP data.

- PowerLink is transmitting Ethernet TCP/IP data via the Data Pump only. ("Ethernet bridging")
- TCP/IP data is multiplexed with the vMUX data and transmitted via the Data Pump.

## System Configuration

VFx modules are not necessary, iSWT 3000 can be used additionally for transmitting teleprotection signals in the alternate multi purpose mode.

For the transmission via the high voltage line the **service Data Pump (DP)** is used. In this case the **X.21-DP resp. the G703.1-DP interface of the PowerLink is not available**. Connection of an external MUX to this interfaces will disturb the PowerLink function!

The corresponding service configuration is shown in the figure below:

| DP 🔻             | SERTEI  |    | RM          |       |       |  |
|------------------|---------|----|-------------|-------|-------|--|
| Interface        | EMUX    |    |             |       | •     |  |
| Sync-Mode        | adapted |    |             |       | -     |  |
| DP-Mode          | Master  |    |             |       | •     |  |
| Bandwidth        | 7500 Hz |    |             |       | •     |  |
| Primary datarate | 64000   |    |             |       | Bit/s |  |
| Expected SNR     | 46      | dB | Max bitrate | 64000 |       |  |
|                  | AMP     |    |             |       |       |  |

[sc\_service\_EMUX, 1, --\_--

Figure 3-100 Configuration of the service Data Pump with EMUX

## Setting Options for the Data Pump

The setting options for the Data Pump like Sync-Mode, DP-Mode, Bandwidth, Primary data rate resp. Secondary data rate (in case of sync mode dynamic) are shown in the table below:

| Table 3-65 | Setting options for the Data Pump with vMUX connection |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Adjustment          | Setting options          | Remarks                                                                                                                                                                 |
|---------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interface           | EMUX                     |                                                                                                                                                                         |
| Sync-Mode           | adapted                  | <b>Optimized connection</b> between the 2 Data<br>Pumps with best adaptation to the transmis-<br>sion path.                                                             |
|                     | dynamic                  | Fallback bit rate for adverse weather condi-<br>tions. Highest availability!                                                                                            |
|                     |                          | (Must be enabled in the dongle)                                                                                                                                         |
| DP Mode             | Master                   | Adjust the other DP to Slave                                                                                                                                            |
|                     | Slave                    | Adjust the other DP to Master                                                                                                                                           |
| Bandwidth           | 3500 – 31 500 Hz         |                                                                                                                                                                         |
| Data rate           | 9600 up to 320 000 bps   | Normal data rate in sync mode adapted.                                                                                                                                  |
| Primary data rate   | 10 000 up to 320 000 bps | Normal data rate in sync mode dynamic. The<br>primary data rate <b>can't be higher adjusted</b><br>than the <b>bit rate calculated</b> with the bit rate<br>estimation. |
| Secondary data rate | 9600 up to 288 000 bps   | Fallback data rate is only adjustable in sync<br>mode dynamic.<br>When the DP is working with the <b>secondary</b><br><b>data</b> rate the <b>DPALR</b> is activated.   |

 Table 3-66
 Lower Data Pump Data Rate depending on Data Pump Bandwidth

| Data Pump | Bandwidth [kHz] | min. lower Data Rate [bps] |
|-----------|-----------------|----------------------------|
|           | > 7.5           | 9 600                      |
|           | 11.5            | 14 400                     |
|           | 15.5            | 20 000                     |
|           | 23.5            | 32 400                     |
|           | 31.5            | 44 000                     |

Additional the teleprotection with integrated SWT 3000 in AMP mode. (refer also to Chapter Alternate Multi *Purpose Operation with DP*) and the transmission of remote monitoring channel RM is possible.

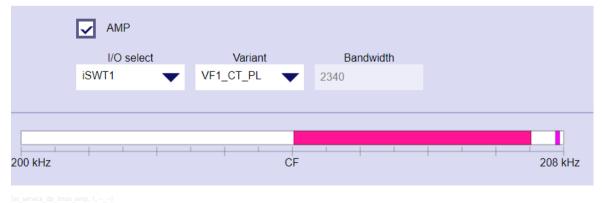



Figure 3-101 Configuration of iSWT 3000 in AMP mode and RM channel

# NOTE

The transmission of protection signals interrupts the Data Pump and with it the EMUX function!

# 3.15.5 Dynamic DP 5 steps

Dynamic Data Pump with 5 steps provides one primary data rate and up to four secondary data rates. The primary data rate is able to transmit all configured services as of today. The secondary data rate can only transmit service of dedicated priority. When DP is working with one of the secondary data rates the DPALR (DP Alarm) is activated. In normal case and after restart the Data Pump is working always with the primary data rate.

The interface type for the above mentioned function must be vMUX or X.21-DP.

# Setting the Service Configuration

| DP               | SERTEL 🔽      | RM         |       |          |
|------------------|---------------|------------|-------|----------|
|                  |               |            |       |          |
| Interface        | vMUX          |            |       | •        |
| Sync-Mode        | dynamic       |            |       | •        |
| DP-Mode          | Master        |            |       | •        |
| Bandwidth        | 7500 Hz       |            |       | -        |
| Primary datarate | 64000         |            |       | Bit/s    |
|                  | Secondary dat | tarate     |       | Priority |
|                  | 48000         |            | Bit/s | 1~4      |
|                  | 32000         |            | Bit/s | 2~4      |
|                  | 16000         |            | Bit/s | 3~4      |
|                  | 9600          |            | Bit/s | 4        |
| Expected SNR     | 46 dB Ma      | ax bitrate | 64000 |          |
|                  |               |            |       |          |
|                  | AMP           |            |       |          |
|                  |               |            |       |          |

Figure 3-102 Dynamic DP with 5 steps

When adjusting DP sync-mode to dynamic, a primary and maximum of four secondary data rates can be adjusted. The minimum valid data rate depends on DP bandwidth, see table below.

0 Bit/s means the step is not used. It is not possible to have a gap in the secondary rates set to 0. In the default setting, secondary data rates 2, 3, 4 are not configured.

The primary data rate can't be adjusted higher than the bit rate calculated with the bit rate estimation.

The restriction for next step data rate setting is that the DP must gain 6dB SNR with less data rate to transmit, which is controlled by PowerSys.

The down switch resp. up switch criterias are depending on 2 adjustments:

# The up switch after T-up (range 10 to 60 minutes in steps of 1 minute).

If the DP is working with one of the secondary data rate and the SNR for a higher configured data rate is available for the adjusted T-up time it will switch up to the available data rate.

# The down switch after an adjustable time without sync or after sync fail counter (range 1 to 10 minutes in steps of 1 minute).

If this is exceeded the DP will switch down to the next step data rate (if the next step data rate is valid).

## vMUX configuration

The configuration of the vMUX is carried out in the form "Configuration - vMUX -Channel setup

| rimary datara |           | Secondary data | rate 7280<br>data rate: 64000 | 4970 3781 | 1295       |        |         |          |
|---------------|-----------|----------------|-------------------------------|-----------|------------|--------|---------|----------|
| Label         | Port      | Datarate       | Data mode                     | UART mode | Cont. inv. | Port B | Channel | Priority |
|               | RS232-1 🔫 | 1200 👻         | Guaranteed                    | 7N1 🔫     |            |        | 1 🔫     | 0 🔻      |
|               | RS232-2   | 2400 🔻         | Guaranteed                    | • 7N1 🗸   |            |        | 2 🔻     | 1 🔻      |
|               | RS232-3 💙 | 1200 👻         | Guaranteed                    | • 7N1 👻   |            |        | 3 🔻     | 2 🔻      |
|               | RS232-4   | 2400 🔻         | Guaranteed                    | 7N1 🗸     |            |        | 4 🔻     | 3 🔻      |
|               | RS232-5   | 1200 🔻         | Guaranteed                    | 7N1 🗸     |            |        | 5 🔻     | 4 🔻      |

[sc\_configuration\_vMUX\_channel\_setup, 2, --\_--]

Figure 3-103 Configuration of vMUX

The vMUX has a priority management. Selection of priority is only possible when DP sync mode is dynamic! Each vMUX channel can be dedicated to a priority. Priority 0 is the lowest, and it can only run in the primary data rate. If the DP data rate reduces to next step, data with priority 0 cannot be transmitted. Priority 4 is the highest. It is recommended to assign a higher priority to urgent data so that it can be transmitted at even bad line condition. The allocated data displayed in the toolbar shall not exceeding the max value.

## Priority for dynamic DP 5 steps

| Priority | Remark                                                                                   |
|----------|------------------------------------------------------------------------------------------|
| 0        | data can only be transmitted in primary data rate                                        |
| 1        | data can be transmitted in primary data rate, or secondary data rate 1                   |
| 2        | data can be transmitted in primary<br>data rate, or secondary data rate<br>1 / 2         |
| 3        | data can be transmitted in primary<br>data rate, or secondary data rate<br>1 / 2 / 3     |
| 4        | data can be transmitted in primary<br>data rate, or secondary data rate<br>1 / 2 / 3 / 4 |

The priority settings for all vMUX channels are similar.

# 3.15.6 Supervision of the Transmission Line with the Data Pump

## **Alarm Configuration**

Each transmission error is recognized in the Data Pump as a block error. The block error rate is supervised continuously serving the criteria for restart with regard to:

- a number of continuous following errored blocks. This is recognized as loss of the transmission channel and a restart is executed. The adjustment is made in the menu <**Configuration DP Alarm**> **Block error sequence**
- the increase of block error rate without attention of impulse noise. A restart is executed. The adjustment
  is made in the menu <DP>/<Alarm> Block window size and Threshold. The number of blocks which
  have to be supervised is adjusted with "Block window size" and the number of errored blocks per window
  with "Threshold". If the threshold is exceeded in 3 successive windows a restart of the Data Pump is
  executed

| Alarm                |     |
|----------------------|-----|
| Block error sequence | 100 |
| Block window size    | 50  |
| Threshold            | 30  |
|                      |     |

Figure 3-104 Data Pump alarm configuration

# Example for the Alarm Setting

Block error sequence = 100

more than 100 blocks defective in sequence (short disturbers) will cause a Restart. The duration of a block depends on the bandwidth of the DP (15 ms for 7.5 kHz and 8 kHz; 22.5 ms for 5 kHz). A new synchronization is carried out after 100 \* 15 ms (in case of 8 kHz bandwidth), that means after a disturbance from 1.5 s duration.

1.5 s is the maximum bypass time for a disturbance. Higher values for the block error sequence are not sensible. Normally the restart is already carried out due to the second criterion:

Block window size = 50 and the Threshold = 30

With this adjustment 50 blocks are permanent supervised. If more than 30 of the 50 blocks mentioned before are faulty in **3 successive windows** in any sequence (ratio 90 : 150 = 0.6) a new start is carried out. The ratio between block error rate and bit error rate is about 100:1. The threshold for the new start corresponds to a bit error rate of  $0.6 / 100 = 6*10^{-3}$ 

3.15 Data transmission via Data Pump

## Adjustments for the Sync-Mode Dynamic

| Alarm                         |    |     |
|-------------------------------|----|-----|
| Block error sequence          |    | 100 |
| Block window size             |    | 50  |
| Threshold                     |    | 30  |
|                               |    |     |
| DP dynamic                    |    |     |
| Up switch with sufficient SNR | 10 | min |
| Down switch without sync      | 2  | min |
| Down switch after sync failes |    | 5   |
|                               |    |     |

#### [sc\_configuration\_dp, 1, --\_--

Figure 3-105 Setting options for the sync-mode dynamic

When adjusting the sync-mode to "dynamic" a "primary" and a "secondary" data rate can be adjusted. In normal case and after restart the Data Pump is working always with the "primary" data rate. The down switch resp. up switch criteria are depending on 2 adjustments:

• The up switch after T-up (range 10 to 60 minutes in steps of 1 minute).

If the DP is working with the **secondary** data rate and the SNR for the primary data rate is available for the adjusted **T-up time** it will change back to the primary data rate.

# The down switch

after an adjustable time without sync or after sync fail counter (range 1 to 10 in steps of 1).

Here the number of sync failures resp. sync aborts is defined which occur in the supervisory time fixed in the first (T-up) adjustment.

If this is exceeded and the DP is working with the **primary** data rate it will change to the secondary data rate.



# NOTE

When the **DP** is adjusted to the **dynamic** sync mode, the connected **multiplexer** must be adapted to the primary resp. secondary data rate. Therefore the X.21 interface of the multiplexer has to be set to **DTE** mode.

When the DP is working with the secondary data rate the DPALR is activated!

# 3.16 The Versatile Multiplexer vMUX

# 3.16.1 Overview

The vMUX makes it possible for PowerLink to compress speech, process data services, multiplex speech and different data services (including Ethernet) and transmit them via PLC.

The vMUX is a separate module and located in the PowerLink carrier frequency section CFS-2 (refer also to the chapter *System Description* of this manual).

# 3.16.2 System Configuration

For the transmission via the high voltage line the **service Data Pump (DP)** is used. In this case the **X.21-DP interface resp. the G703.1-DP interface of the PowerLink is not available**. Connection of an external MUX to this interfaces will disturb the vMUX function!

The corresponding service configuration is shown in the figure below:

| Service 1 |                  |                         |
|-----------|------------------|-------------------------|
|           | DP 🗸             | SERTEL RM               |
|           |                  |                         |
|           | Interface        | VMUX 🔻                  |
|           | Sync-Mode        | adapted 🗸               |
|           | DP-Mode          | Master 🗸                |
|           | Bandwidth        | 3500 Hz 🔻               |
|           | Primary datarate | 9600 Bit/s              |
|           | 5 ( 10)0         | 10 ID N. 17 1 0/000     |
|           | Expected SNR     | 46 dB Max bitrate 34800 |
|           |                  | AMP                     |
|           |                  |                         |

#### [sc\_service\_dp\_vmux, 1, --\_

Figure 3-106 Configuration of the service Data Pump with vMUX

# 3.16.3 Setting Options for the DP

The setting options for the Data Pump like Sync-Mode, DP-Mode, Bandwidth, Primary data rate resp. Secondary data rate (in case of sync mode dynamic) are shown in the table below:

| Table 3-67 | Catting antions for the Date Dump with WHIV connection |
|------------|--------------------------------------------------------|
|            | Setting options for the Data Pump with vMUX connection |

| Adjustment          | Setting options          | Remarks                                                                                                                                                                 |
|---------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interface           | vMUX                     |                                                                                                                                                                         |
| Sync-Mode           | adapted                  | <b>Optimized connection</b> between the 2 Data<br>Pumps with best adaptation to the transmis-<br>sion path.                                                             |
|                     | dynamic                  | Fallback bit rate for adverse weather condi-<br>tions. Highest availability!                                                                                            |
|                     |                          | (Must be enabled in the dongle)                                                                                                                                         |
| DP Mode             | Master                   | Adjust the other DP to Slave                                                                                                                                            |
|                     | Slave                    | Adjust the other DP to Master                                                                                                                                           |
| Bandwidth           | 3500 – 31 500 Hz         |                                                                                                                                                                         |
| Data rate           | 9600 up to 256 000 bps   | Normal data rate in sync mode adapted.                                                                                                                                  |
| Primary data rate   | 10 000 up to 256 000 bps | Normal data rate in sync mode dynamic. The<br>primary data rate <b>can't be higher adjusted</b><br>than the <b>bit rate calculated</b> with the bit rate<br>estimation. |
| Secondary data rate | 9600 up to 224 000 bps   | Fallback data rate is only adjust-able in sync<br>mode dynamic.<br>When the DP is working with the <b>secondary</b><br><b>data</b> rate the <b>DPALR</b> is activated.  |

 Table 3-68
 Lower Data Pump Data Rate depending on Data Pump Bandwidth

| Data Pump | Bandwidth [kHz] | min. lower Data<br>Rate [bps] |
|-----------|-----------------|-------------------------------|
|           | > 7.5           | 9 600                         |
|           | 11.5            | 14 400                        |
|           | 15.5            | 20 000                        |
|           | 23.5            | 32 400                        |
|           | 31.5            | 44 000                        |

Additional the teleprotection with integrated SWT 3000 in AMP mode (refer also to *Alternate Multi Purpose Operation with DP* and the transmission of remote monitoring channel RM is possible.

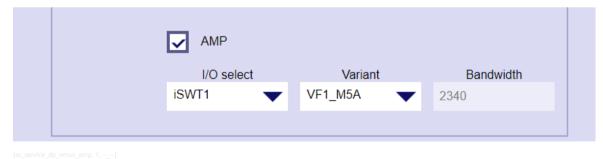
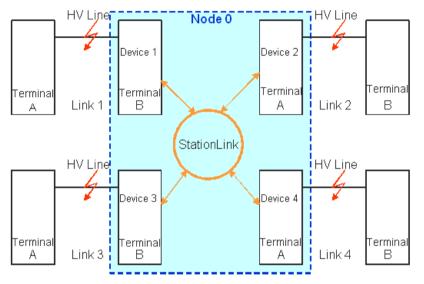



Figure 3-107 Configuration of iSWT 3000 in AMP mode




# NOTE

The transmission of teleprotection signals interrupts the Data Pump and with it the vMUX function!

# 3.16.4 vMUX and Station Link

# 3.16.4.1 Overview

The StationLink SL is a 2 wire bus system. It provides the routing of vMUX voice and data channels between max. 4 PowerLink 50/100 equipments in 1 substation each with up to 16 user channels.



[loslm4pl-110111-01.tif, 1, en\_US]

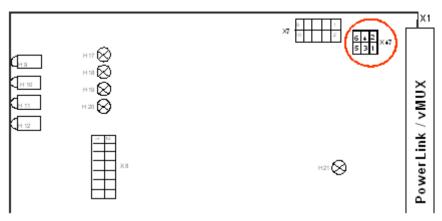
Figure 3-108 StationLink with max 4 PowerLink 50/100 in 1 substation

| Terminal A resp. B | PowerLink50/100 with vMUX |
|--------------------|---------------------------|
| Link 1 4           | PLC links                 |
| HV Line            | High voltage line         |
| Node 0             | StationLink               |

The figure above shows 4 PLC links (Link 1 - 4) with the terminals A and B which are connected to a StationLink in 1 substation. This StationLink is defined in a node number (0...1023). The connected PowerLink systems in this node are defined with device 1 up to device 4.

The maximum SL device distance is 30 m. The max. distance between PowerLink SL connector and Station Link bus is 3 m. Use **screened cables**!

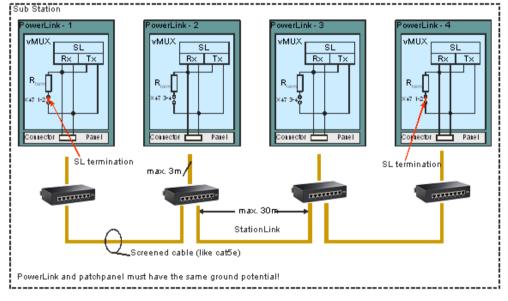



# NOTE

For more details of the PowerLink connector panel and the pin assignment of the StationLink connector refer to the chapter *Installation* in this manual.

# 3.16.4.2 StationLink Termination

The StationLink bus must be terminated on both ends (in 2 PowerLink equipment). Refer also to *Figure 3-109*. For this purpose a termination resistance Rterm is available which is located on the vMUX board. It has to be activated with jumper X47.


3.16 The Versatile Multiplexer vMUX



#### [tdljpx47-011210-01.tif, 1, en

Figure 3-109 Location of the jumper X47 on the vMUX for activating the SL termination resistance

| Jumper position<br>X47 | Function                                                   |
|------------------------|------------------------------------------------------------|
| 1-2                    | StationLink terminated                                     |
| 3-4                    | StationLink not terminated Park position (default setting) |
| 5-6                    | Not used                                                   |



[cdsl4p51-011210-01.tif, 1, en\_US

Figure 3-110 StationLink with 4 PowerLink 50/100

# 3.16.4.3 vMUX Station Address Form

For **each** PowerLink 50/100 which is connected to a StationLink the **Link settings**: Link (0 to 2047), Terminal (A resp. B) and the **Node settings**: Node (number 0 to 1023); Device (1 to 4) have to be defined in the vMUX Station Address form. For more details refer to *Figure 3-108* 

The Link settings are optional. The Node settings are needed for identification of the PowerLink in the PLC network.

| Link     |             |
|----------|-------------|
| Link     | 1           |
| Terminal | Α 🔷         |
|          |             |
| Node     |             |
| Node     | 22          |
| Device   | 1 🔷         |
|          | 1<br>2<br>3 |
|          | 3<br>4      |

Figure 3-111 The vMUX Station Address form

# i

# NOTE

The settings are only required when a routing of voice and data channels between several PowerLink systems via SL is requested.

After the vMUX station address is defined continue with the configuration of voice and data channels as described subsequently.

# 3.16.5 vMUX Configuration for Asynchronous Data

# 3.16.5.1 vMUX Channel Setup - RS232

The configuration of the vMUX is carried out in the form <**Configuration – vMUX – Channel Setup**>.

| Label     | Port      | Datarate | Data mode       | UART mode | Cont. inv. | Port B | Channel | Priority |
|-----------|-----------|----------|-----------------|-----------|------------|--------|---------|----------|
| RS232-Ch1 | RS232-1 🔻 | 19200 🔻  | Guaranteed 🔻    | 8N1 🗸     |            |        | 1 🔷     | 1 🔻      |
| RS232-Ch2 | RS232-2 🔻 | 9600 🔻   | IEC-101 🗸       | 7N1 🔻     |            |        | 2 🗸     | 2 🔻      |
| RS232-Ch3 | RS232-3 🔻 | 38400 🔻  | Best effort 🛛 🗨 | 7E1 🗨     |            |        | 3 🔻     | 3 🔻      |
|           | 🔻         |          |                 | 7N1       |            |        |         | 0        |
|           | 🔻         |          |                 | 7N1       |            |        |         | 0        |
|           | 🔻         |          |                 | 7N1       |            |        |         | 0        |
|           | 🔻         |          |                 | 7N1       |            |        |         | 0        |
|           | 🔻         |          |                 | 7N1       |            |        |         | 0        |

<sup>[</sup>sc\_vmux\_channel\_rs232, 1, --\_--

Figure 3-112 Configuration of asynchronous data channels local ports via vMUX

The vMUX has an priority management. Channels with activated priority (Prio  $\square$ ) may not exceed the secondary data rate of the DP. Then the transmission of this channels is guaranteed.

Selection of priority is only possible in the Data Pump sync. mode is set to dynamic!

Devices which are connected to the RS232-**1B** up to RS232-**4B** ports (e.g. RTU in polling mode) must **activate a RTS** signal (positive voltage) for **data transmission**! In this case the "Port B" check box has to be activated! Instead of a voltage a contact can be used for activating the RTS signal. It has to be connected to pin 19 resp. 25 of the SUB-D socket. RTS is activated when the contact is connected to GND. The contact can be inverted with activating the "Cont. inv." at the corresponding channel (ref. to the figure above).

For data mode adjustment "best effort" resp. transmission without "Prio" use in case of RS232-1 up to 4 interfaces the **B ports!**. In this case the "Port B" check box has to be activated!

# Setting Options for the Asynchronous Data Transmission via vMUX:

| Adjustment |              | Setting options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local Port | Label        | Identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enter here a name (abbreviation) for identifi-<br>cation of the data channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Port         | RS232-1 up to 8 *)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Devices which are connected to the RS232-1B<br>up to RS232-4B ports must activate the RTS<br>signal for data transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Data rate    | 300, 600, 1200, 2400,<br>4800, 9600 , 19 200, 38<br>400, 57 600 resp. 115 200<br>bps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Data Mode    | Guaranteed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>G</b> uaranteed <b>c</b> hannel: The channel is always transmitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |              | el       Identifier       Enter here a name (at cation of the data cha cation c | The channel is always transmitted and is designed for connection of RTU's transmitting IEC messages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Not guaranteed</b> channel. This channel is only transmitted if the transmission capacity is available. Use in case of RS232-1 up to 4 interfaces the <b>B ports</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | UART Mode    | 702, 8N1, 8N2, 8E1, 8E2,<br>801 resp. 802 (data bits,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UART mode of the connected RTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Cont. inv.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact connected to GND activates RTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |              | Identifier       Enter here a name (abbreviation) for cation of the data channel.         RS232-1 up to 8 *)       Devices which are connected to the up to RS232-4B ports must activate signal for data transmission         300, 600, 1200, 2400, 4800, 9600, 19 200, 38 400, 57 600 resp. 115 200 bps       Guaranteed         Guaranteed       Guaranteed channel: The channel is transmitted         IEC-101       The channel is always transmitted a designed for connection of RTU's traited if the transmission capa available. Use in case of RS232-1 up interfaces the B ports         7N1, 7N2, 7E1, 7E2, 701, 702, 8N1, 8N2, 8E1, 8E2, 801 resp. 802 (data bits, parity, stop bits).       Not checked         Contact connected to GND activate: signal       Checked         Ø       Checked         Open contact activates RTS signal (IRS232_xR_Contact; refer to Chapter transmission channel         Image: Port B not used       Port B not used         Image: Port B not used       Port B connected         Image: Port B connected       Port B connected         Image: Port B not used       Port B connected         Image: Port B not used       Port B connected         Image: Port B not used       Port B connected         Image: Port B not u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Open contact activates RTS signal (Contact:<br>RS232_xR_Contact; refer to Chapter <i>Installa</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | Port B       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Port B not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |              | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Port B connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Power Line | Channel (Ch) | 1 up to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cation of the data channel.Devices which are connected to the RS232<br>up to RS232-4B ports must activate the RT<br>signal for data transmission10,<br>, 38<br>(5 200)Guaranteed channel: The channel is alway<br>transmittedThe channel is always transmitted and is<br>designed for connection of RTU's transmitted<br>lEC messagesNot guaranteed channel. This channel is a<br>vailable. Use in case of RS232-1 up to 4<br>interfaces the B ports701,<br>, 8E2,<br>bits,Not checked<br>Contact connected to GND activates RTS<br>signalChecked<br>Open contact activates RTS signal (Contact<br>RS232_xR_Contact; refer to Chapter Install<br>tion RS232 interfaces)Port B not used<br>Porver Line transmission channel<br>Adjustment only possible if DP sync mode<br>dynamic is activated. Channels with Priori<br>are transmitted also with the secondary Da<br>Pump bit rate. |
|            | Prio         | ₽ = ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adjustment <b>only</b> possible if DP sync mode<br><b>dynamic</b> is activated. Channels with Priority<br>are transmitted also with the secondary Data<br>Pump bit rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |              | D=OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | primary Data Pump bit rate. Use in case of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 3-69Setting options for async. data channels

\*) the actual number of data channels depends on the dongle settings

# 3.16.5.2 StationLink Connection for Multicast Function

In this form it is possible to define up to 3 devices connected to the StationLink for the multicast function. Multicast for vMUX over SL means, that a RTU signal is not only sent to 1 SL target but to all which are selected. Normally in RTU mode there is a multiplexing between a local port and 1 SL port. If multicast is enabled, all SL targets are possible (for further details refer to chapter *System Description*).

| Label     | Channel | Priority | Dest. 1 dev. | Channel | Dest. 2 dev. | Channel | Dest. 3 dev. | Channel |
|-----------|---------|----------|--------------|---------|--------------|---------|--------------|---------|
| RS232-Ch1 | 1       | 1        | 2 🔻          | 1 🔻     | 3 🔻          | 4 🔻     | 4 🔻          | 7 🔻     |
| RS232-Ch2 | 2       | 2        | 2 🗸          | 5 🔻     | 2 🗸          | 🔻       | 2 🗸          | 🔻       |
| RS232-Ch3 | 3       | 3        | 2 🗸          | 🔻       | 2 🗸          | 🔻       | 2 🗸          | 🔻       |
|           | 0       | 0        | 2            |         | 2            |         | 2            |         |
|           | 0       | 0        | 2            |         | 2            |         | 2            |         |
|           | 0       | 0        | 2            |         | 2            |         | 2            |         |
|           | 0       | 0        | 2            |         | 2            |         | 2            |         |
|           | 0       | 0        | 2            |         | 2            |         | 2            |         |

[sc\_stationlink\_multicast, 1, --\_--]

Figure 3-113 StationLink settings for the RTU in multicast mode

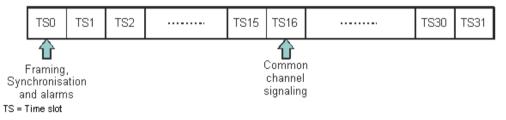
| Table 3-70 | Setting options for RS232 StationLink connection |
|------------|--------------------------------------------------|
|------------|--------------------------------------------------|

| SL-Connection | Adjustment    | Setting options                        | Remarks                                                                                       |
|---------------|---------------|----------------------------------------|-----------------------------------------------------------------------------------------------|
|               | Label         | taken over from local port settings    | Refer to Figure 3-112                                                                         |
|               | Ch            | taken over from local<br>port settings | Refer to Figure 3-112                                                                         |
|               | Prio          | taken over from local port settings    | Refer to Figure 3-112                                                                         |
|               | Dest (Dev.)   | 1 up to 4                              | Target device. The selectable devices<br>depend on the setting of the vMUX<br>station address |
|               | Channel (Ch.) | 1 up to 16                             | VL (vMUX link) transmission channel of the target device                                      |

# 3.16.6 Configuration Voice

# 3.16.6.1 vMUX Channel Setup - Voice

The interfaces for the analog voice channels are located on the VFx modules in the slot positions VFx-1 up to VFx-3. The connection of the voice channels is carried out via SUB-D plug sockets on the PowerLink connector panel. Via the modules in slot position 1 and 2 in each case 2 voice channels and via the module in slot position 3, 1 voice channel can be connected.


3.16 The Versatile Multiplexer vMUX

| Label  | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level |   | 4 wire | LEC | VAD | Channel | Priority | Group |
|--------|------------|---------------|-------------------|-------------|----|--------------|---|--------|-----|-----|---------|----------|-------|
| Ch08   | VFx-1/P1 🔻 | G.723 (5.3) 🔻 | DTMF 🔻            | -7          | dB | 0 d          | В |        |     |     | 8 🔻     | 0 🔻      | 1 🛨   |
| Ch09   | VFx-1/P2 🔻 | G.723 (6.3) 🔻 | S2 🔻              | 6           | dB | 0 d          | В |        |     |     | 9 🔻     | 0 🔻      | 2 🔻   |
| Ch11   | fE1 TS1 🔻  | G.729 (8.0) 🔻 | S2 🔻              | 0           | dB | 0 d          | В |        |     |     | 11 🗨    | 0 🔻      |       |
| Ch12   | fE1 TS2 🔻  | G.723 (5.3) 🔻 | S2 🔻              | 0           | dB | 0 d          | В |        |     |     | 12 🔷    | 0 🔻      |       |
|        | 🔻          |               | S2                | 0           | dB | 0 d          | В |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0           | dB | 0 d          | B |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0           | dB | 0 d          | В |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0           | dB | 0 d          | B |        |     |     |         | 0        |       |
| SIG Ch |            | 4401          |                   |             |    |              |   |        |     |     | 10 🔻    | 0        |       |

[sc\_channel\_vmux\_voice, 1

Figure 3-114 Configuration of voice channels via VFx modules

It is possible to transmit up to 8 voice channels (selectable time slots TS1 to TS15 resp. TS17 to TS31) from a 2 Mbps E1 frame of a digital telephone exchange. The exchange is connected via the fE1 interface on the PowerLink 50/100 connector panel.



[dwfe1frd-011210-01.tif, 1, en\_US] Figure 3-115 fE1 frame definition

For each fE1 channel an additional bit rate for the signaling channel has to be included in the required bit rate. The required bit rate for the signaling channel depending on the number of channels will be as follows calculated:  $2400 \times sum(3^{-1})$ .

n = 0 to k - 1 where k is the number of configured channels. The signaling data are transmitted via a separate vMUX channel which is created automatically from the service program.

## Setting Options for Voice Channels via vMUX:

| Adjustment |               | Setting options        | Remarks                                                                                                                                                 |  |  |  |  |  |
|------------|---------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Lokal Port | Label         | Identifier             | Enter here a name (abbreviation) for identification of the voice channel.                                                                               |  |  |  |  |  |
|            | Port          | VFx-1 module in slot 1 | Via the modules in slot position 1 and 2 max. 2 voice                                                                                                   |  |  |  |  |  |
|            |               | VFx-2 module in slot 2 | channels and via the module in slot position 3 max                                                                                                      |  |  |  |  |  |
|            |               | VFx-3 module in slot 3 | 1 voice channel can be connected. *)                                                                                                                    |  |  |  |  |  |
|            |               | fE1 TS1 to TS15        | Fractional E1 time slot 1 to 15 *)                                                                                                                      |  |  |  |  |  |
|            |               | fE1 TS17 to TS31       | Fractional E1 time slot 17 to 31 *)                                                                                                                     |  |  |  |  |  |
|            | Data rate     | G.723 5.3 Kbps         | Type of voice compression                                                                                                                               |  |  |  |  |  |
|            |               | G.723 6.3 Kbps         |                                                                                                                                                         |  |  |  |  |  |
|            |               | G.729 8.0 Kbps         |                                                                                                                                                         |  |  |  |  |  |
|            | Signalization | S2                     | Signaling of the voice channel                                                                                                                          |  |  |  |  |  |
|            |               | DTMF                   |                                                                                                                                                         |  |  |  |  |  |
|            |               | MFC                    |                                                                                                                                                         |  |  |  |  |  |
|            | Input level   | +20 up to -60 dB       | Only valid for analog voice channels                                                                                                                    |  |  |  |  |  |
|            | Output level  | +14 up to -60 dB       |                                                                                                                                                         |  |  |  |  |  |
|            | 4 wire        |                        | Only for VFM modules                                                                                                                                    |  |  |  |  |  |
|            |               |                        | VFM; VFS; VFO modules                                                                                                                                   |  |  |  |  |  |
|            | LEC           |                        | Line echo canceller ON                                                                                                                                  |  |  |  |  |  |
|            |               |                        | Line echo canceller OFF                                                                                                                                 |  |  |  |  |  |
|            | VAD           |                        | Voice activity detection checked = active. For more details refer to 3.16.6.2 vMUX Adjustments for Voice Transmission                                   |  |  |  |  |  |
| Power Line | Ch (Channel)  | 1 up to 16             | Power Line transmission channel                                                                                                                         |  |  |  |  |  |
|            | Prio          | ₽<br>=ON               | Adjustment only possible if DP sync mode <b>dynamic</b> is activated. Channels with Prio are transmitted also with secondary bit rate.                  |  |  |  |  |  |
|            |               |                        | Channels are only transmitted with the primary Data<br>Pump bit rate                                                                                    |  |  |  |  |  |
|            | Grp           | =OFF<br>, 1, 2         | Only for VFx voice channels. Serves for defining dynamic VFx channel groups. For more details refer to 3.16.6.2 vMUX Adjustments for Voice Transmission |  |  |  |  |  |

| Table 3-71 | Setting options for voice channels via vMUX |
|------------|---------------------------------------------|
|------------|---------------------------------------------|

\*) the actual number of voice channels depends on the dongle settings

# 3.16.6.2 vMUX Adjustments for Voice Transmission

# Voice Activity Detection VAD

When the VAD check is activated the channel, a static channel, optimizes the bit rate when there is no speech transmission. That means, when no one is speaking the channel is transmitting a very low amount of "Best effort" data, but the channel is always reserved for voice.

# Voice Groups

This is a group of configured voice channels (connected terminals/telephones) that are being transmitted through some common Power Line Channel. If no channel is active, nothing is being sent. If there is only 1

configured Power Line Channel and is being used, a second telephone would get the busy tone if it tries to make a call.

Both features are independent from each other.

| Label  | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level |   | 4 wire | LEC | VAD | Channel | Priority | Group |
|--------|------------|---------------|-------------------|-------------|----|--------------|---|--------|-----|-----|---------|----------|-------|
| Ch08   | VFx-1/P1 🔻 | G.723 (5.3) 🔻 | DTMF 🔻            | -7          | dB | 0 dE         | В |        |     |     | 8 🔻     | 0 🔻      | 1 🔻   |
| Ch09   | VFx-1/P2 🔻 | G.723 (6.3) 🔻 | S2 🔻              | 6           | dB | 0 dE         | В |        |     |     | 9 🔻     | 0 🔻      | 2 🔻   |
| Ch11   | fE1 TS1 🔻  | G.729 (8.0) 🔻 | S2 🔻              | 0 (         | dB | 0 dE         | В |        |     |     | 11 🗨    | 0 🔻      |       |
| Ch12   | fE1 TS2 🔻  | G.723 (5.3) 🔻 | S2 🔻              | 0 (         | dB | 0 dE         | В |        |     |     | 12 🔷    | 0 🔻      |       |
|        | 🔻          |               | S2                | 0 (         | dB | 0 dE         | B |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0 (         | dB | 0 dE         | В |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0 (         | dB | 0 dE         | B |        |     |     |         | 0        |       |
|        | 🔻          |               | S2                | 0 (         | dB | 0 dE         | B |        |     |     |         | 0        |       |
| SIG Ch |            | 4401          |                   |             |    |              |   |        |     |     | 10 🔻    | 0        |       |

#### [sc\_channel\_vmux\_voice, 1, --\_

Figure 3-116 Dynamic voice channels

It is not restricted to 1 active Power Line channel. For example, 5 VFx channels can be defined as a voice group using 3 Power Line Channels. The only restriction (because vMUX works only with 5 VFx channels) is the definition of up to 2 voice groups.



# NOTE

All voice channel assigned to 1 group must have the **same** voice compression data rate!

# 3.16.7 vMUX Configuration for Synchronous Data Channels (X.21, Ethernet)

# Synchronous User Interfaces X.21-1 / X21.2 and Ethernet Interface

The synchronous data interfaces X.21-1 resp. X.21-2 are located on the vMUX module. The connection of the data channels is carried out via 15-pin SUB-D plug sockets on the PowerLink connector panel.

| Label | Port     | Datarate   | Master | Channel | Priority |  |
|-------|----------|------------|--------|---------|----------|--|
| Ch4   | X.21-1 🔻 | 9600 bit/s |        | 4       | 0 🔻      |  |
| Ch13  | X.21-2 🗨 | 9600 bit/s |        | 13      | 0 🔻      |  |

[sc\_channel\_x21, 1, --\_-

Figure 3-117 Configuration of the synchronous data channels X.21 via vMUX

| Adjustment |              | Setting options           | Remarks                                                                                                                                                 |
|------------|--------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local Port | Label        | Identifier                | Enter here a name (abbreviation) for identification of the data channel.                                                                                |
|            | Port         | X.21-1                    | 15-pin SUB-D plug sockets for Synchronous user                                                                                                          |
|            |              | X.21-2                    | interface 1 resp. 2                                                                                                                                     |
|            | Data Rate    | 9600 up to 192 000<br>bps |                                                                                                                                                         |
|            | Master       |                           | <b>X.21 Clock Master</b> . For connection of several<br>PowerLink routes via StationLink observe a Master-<br>Slave sequence for the X.21 data channels |
|            |              |                           | X.21 Clock Slave                                                                                                                                        |
| Power Line | Channel (Ch) | 1 up to 16                | Power Line transmission channel                                                                                                                         |
|            | Prio         |                           | Adjustment only possible if DP sync mode <b>dynamic</b><br>is activated. Channels with Prio are transmitted<br>also with secondary bit rate             |
|            |              |                           | Channels are only transmitted with the primary<br>Data Pump bit rate                                                                                    |

| Table 3-72 | Setting options for the synchronous data channels |
|------------|---------------------------------------------------|
|------------|---------------------------------------------------|

| Label | Primary datarate | Secondary 1 dat | Secondary 2 dat | Secondary 3 dat | Secondary 4 dat | Chan | Priority |
|-------|------------------|-----------------|-----------------|-----------------|-----------------|------|----------|
| Ch14  | 3790 bit/s       | 40480 bit/s     | 32070 bit/s     | 23090 bit/s     | 14870 bit/s     | 14 🔻 | 4 🔻      |

[sc\_channel\_ethernet, 1, --\_--]

Figure 3-118 Configuration of the Ethernet channels via vMUX

| Table 3-73 | Setting options | for the Ethernet channels |
|------------|-----------------|---------------------------|
|            |                 |                           |

| Adjustment | :            | Setting options | Remarks                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Label        | Identifier      | Enter here a name (abbreviation) for identification of the data channel.                                                                                                                                                                                                                                                                                           |
|            | Data rate    | n.a.            | Calculated by PowerSys. Depending on the avail-<br>able data rate of the Data Pump and the used data<br>rate of the configured services, PowerSys provides<br>the free data rate for TCP/IP transmission. In case<br>of sync. mode dynamic, the available data rate is<br>calculated for the primary as well as for the secon-<br>dary data rate of the Data Pump. |
| Power Line | Channel (Ch) | 1 up to 16      | Power Line transmission channel                                                                                                                                                                                                                                                                                                                                    |
|            | Prio         |                 | Adjustment only possible if DP sync mode<br><b>dynamic</b> is activated. Channels with Prio are trans-<br>mitted also with secondary bit rate.                                                                                                                                                                                                                     |
|            |              |                 | Channels are only transmitted with the primary Data Pump bit rate                                                                                                                                                                                                                                                                                                  |

# 3.16.8 Setting Options for rFSK Channels via vMUX

The rFSK function allows the transmission from analog FSK channels (e.g. from a RTU with integrated modem) via the PowerLink 50/100 vMUX.

The connection of the data channels is carried out via the port 2, 3 or 4 in VFx slot 1 or port 2 or 3 in VFx slot 2 using the SUB-D plug sockets on the PowerLink connector panel.

In case of using VFM, the connection of the data channels can also be carried out via the port 1 in all slots.

# Installation and Commissioning

3.16 The Versatile Multiplexer vMUX

| Label         | Port          | Datarate   | Data r       | node   | UART m  | Sample rate  | Idle signal      | Center freque | ncy | Input level |    | Output level |    | Channel | Priority |
|---------------|---------------|------------|--------------|--------|---------|--------------|------------------|---------------|-----|-------------|----|--------------|----|---------|----------|
| Ch15          | VFx-1/P3 🔻    | 50 Bd (F   | Guarante     | ed 🔻   | 7N1 🔻   | Transparent  | Low 🔻            | 2000          | Hz  | -22         | dB | -22          | dB | 15      | 0 🖜      |
|               | 🔻             |            |              |        | 7N1     | Transparent  | Low              | 2000          | Hz  | -22         | dB | -22          | dB |         | 0        |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
|               |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
| 4             |               |            |              |        |         |              |                  |               |     |             |    |              |    |         |          |
| Label         | Channel       | Priority   | Dest. 1 dev. | Channe | I Dest. | 2 dev. Chann | nel Dest.        | 3 dev. Chan   | nel |             |    |              |    |         |          |
| Label<br>Ch15 | Channel<br>15 | Priority 2 |              |        | I Dest. | 2 dev. Chanr | mel Dest.<br>▼ 2 | 3 dev. Chan   | nel |             |    |              |    |         |          |

c\_channel\_rfsk, 1, --\_

Figure 3-119 Configuration of the rFSK channels



# NOTE

1 rFSK channel occupies 2 iFSK channels.

# Table 3-74 Setting options for rFSK-1 resp. rFSK-2 channels

| Adjustment  | Setting Options                                                                                                         | Remarks                                                                                                                                                            |
|-------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Label       | Identifier                                                                                                              | Enter here a name (abbreviation) for identification of the rFSK channel.                                                                                           |
| Data rate   | 50 Bd (FM120)<br>100 Bd (FM240)<br>200 Bd (FM480)<br>50 Bd NB<br>100 Bd NB<br>300 Bd *)<br>600 Bd<br>1200 Bd<br>2400 Bd | Baud rate of the rFSK channel                                                                                                                                      |
| Data Mode   | guaranteed<br>IEC-101                                                                                                   | Guaranteed channel:<br>The channel is always transmitted<br>The channel is always transmitted and is designed<br>for connection of RTU's transmitting IEC messages |
|             | Transparent                                                                                                             | The channel is transmitted without UART adjust-<br>ment using a sample rate instead of that.                                                                       |
| UART Mode   | 7N1, 7N2, 7E1, 7E2, 7O1,<br>7O2, 8N1, 8N2, 8E1, 8E2,<br>8O1 resp. 8O2 (data bits,<br>parity, stop bits).                | UART mode of the connected RTU.<br>Only visible in the data mode guaranteed resp.<br>IEC-101.                                                                      |
| Sample rate | Transparent 1200<br>Transparent 2400<br>Transparent 4800<br>Transparent 9600<br>Transparent 19200                       | The Sample rate in bps is only visible in case of data mode <b>"Transparent</b> "                                                                                  |

| Adjustment            | Setting Options                                       | Remarks                                                                                                                            |
|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Port                  | VFx-1/P2; VFx-1/P3;<br>VFx-1/P4 VFx-2/P2;<br>VFx-2/P3 | VFx-1/P2 = VF module type x in slot 1 /Port 2 etc.                                                                                 |
| Center frequency      | 338 to 3763 Hz                                        | Adjust here the <b>center</b> frequency of the connected analog FSK channel                                                        |
| Input level           | +10 up to -60 dB                                      | Adjust here the input resp. output level of                                                                                        |
| Output level          | +10 up to -60 dB                                      | connected analog FSK channel                                                                                                       |
| ldle signal           | High                                                  | Upper frequency in case of idle status                                                                                             |
|                       | Low                                                   | Lower frequency in case of idle status                                                                                             |
| Power Line Ch Prio    |                                                       |                                                                                                                                    |
| Channel               | 1 up to 16                                            | vMUX transmission channel                                                                                                          |
| Prio                  | Ø                                                     | Adjustment <b>only possible</b> if DP sync mode <b>dynamic</b> is activated.                                                       |
|                       | =ON                                                   |                                                                                                                                    |
|                       |                                                       | Channels with Prio are transmitted also with secondary bit rate.                                                                   |
|                       | =OFF                                                  |                                                                                                                                    |
| SL-Conn. (Dest.) = St | ationLink Connection (Destin                          | ation 1-3)                                                                                                                         |
| Device (Dev.)         | 1 up to 4                                             | PowerLink <b>device 1 to 4</b> defined in the <b>vMUX</b><br>Station address settings refer to <i>vMUX Station</i><br>Address Form |
| Channel (Ch.)         | 1 up to 16                                            | Power Line transmission channel for this device                                                                                    |

\*) 300 Bd not available in transparent mode

# 3.16.9 Setting Options for the StationLink

In this forms the routing of voice and data channels between up to 4 PowerLink systems in 1 Node via StationLink is carried out.

| Label | Туре    | Chanr | nel | Pri | ority | Dest. dev. | Dest. ch. | Datarate      | Datarate | Data mode    | UART mode | fE1 group |
|-------|---------|-------|-----|-----|-------|------------|-----------|---------------|----------|--------------|-----------|-----------|
| Ch01  | Voice   | 1     | ▼   | 1   | ▼     | 2 🔻        | з 🔻       | G.723 (5.3) 🔻 | 0        |              |           |           |
| Ch02  | RS232   | 2     | ▼   | 1   | ▼     | 3 🗖        | 2 🔻       | 9600 🗸        | 0        | Guaranteed 🔻 | 8N2 🔻     |           |
| Ch03  | rFSK 🗨  | 3 .   | ▼   | 0   | ▼     | 4 🗨        | 10 🔻      | 1200 Bd 🛛 🔻   | 0        | Guaranteed 🔻 | 8N1 🔻     |           |
| Ch04  | fE1-B 🗨 | 4     | ▼   | 1   | ▼     | 2 🔻        | 4 🔻       | G.729 (8.0) 🔻 | 0        |              |           | 2 🔻       |
| Ch05  | fE1-D 🗨 | 5     | ▼   | 1   | ▼     | 2 🔻        | 6 🔻       |               | 2401     |              |           | 2 🔻       |
| Ch06  | X.21    | 6     | ▼   | 0   | •     | 4 🔻        | 5 🔻       |               | 9600     |              |           |           |

Complete first the settings in the vMUX StationLink Address form.

Figure 3-120 StationLink configuration

Enter first an identifier for the corresponding channel. Then select the type of service: Voice, RS232, rFSK, X.21, fE1-B (speech channel) resp. fE1-D (signaling channel).

After that you choose the routing of the channels via the StationLink within the connected Power Link, followed by the specification of the channels.

3.16 The Versatile Multiplexer vMUX

| Table 3-75 | Setting options for the StationLink |
|------------|-------------------------------------|
|------------|-------------------------------------|

| Adjustment                 | Setting Options              | Remarks                                                                                                  |
|----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|
| Label                      | Identifier                   | Enter here a name (abbreviation) for identification                                                      |
|                            |                              | of the service.                                                                                          |
| Туре                       | Voice                        | Voice channel                                                                                            |
|                            | RS232                        | RS232 data                                                                                               |
|                            | rFSK                         | rFSK data                                                                                                |
|                            | X.21                         | X.21 data                                                                                                |
|                            | fE1-B                        | fE1 signalization channel                                                                                |
|                            | fE1-D                        | fE1 data channel                                                                                         |
| Power Line Ch Prio         |                              |                                                                                                          |
| Channel                    | 1 up to 16                   | vMUX transmission channel                                                                                |
| Prio                       | Ø                            | Adjustment only possible if DP sync mode <b>dynamic</b> is activated. Channels with Prio are transmitted |
|                            | =ON                          | also with secondary bit rate.                                                                            |
|                            |                              | Channels are only transmitted with the primary                                                           |
|                            | =OFF                         | Data Pump bit rate.                                                                                      |
| SL-Conn. (Dest.) = Station | Link Connection (Destination | <br>1 1-3)                                                                                               |
| Device (Dev.)              | 1 up to 4                    | Powerl ink device 1 to 4 defined in the vMUX                                                             |
|                            |                              | Station address settings refer to vMUX Station                                                           |
|                            |                              | Address Form.                                                                                            |
| Channel (Ch.)              | 1 up to 16                   | Power Line transmission channel for this device                                                          |

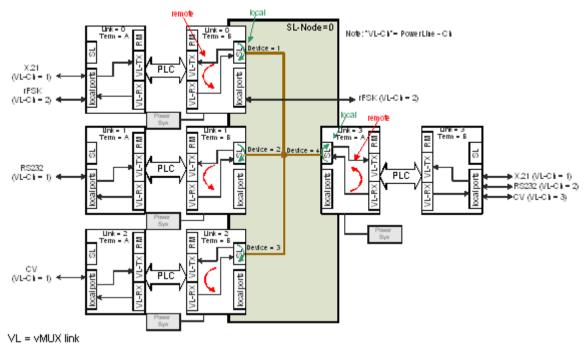
You find a detailed description about the adjustments like data rate, data mode or UART for async. data 3.16.5.1 vMUX Channel Setup - RS232, for voice 3.16.6.1 vMUX Channel Setup - Voice, for sync. data Synchronous User Interfaces X.21-x, Page 75, for rFSK channels 3.16.8 Setting Options for rFSK Channels via vMUX.

Detailed examples of using the StationLink for the channel routing of Point-to-Point and Point-to-Multipoint connections are provided in chapter 7.6 Examples of Using the vMUX and StationLink.



# NOTE

For transmission of a fE1 voice channel via StationLink the B- (signalization) channel as well as the D- (data) channel has to be configured in the setting options for the StationLink.




# NOTE

Ethernet data is not transmitted via StationLink.

# 3.16.10 StationLink Test Loops

In the PowerLink command form it is possible to switch StationLink test loops (local loop resp. remote loop). The data traffic via StationLink is interrupted in this case.



Indeltion 120912-01 tif 1 on 1

Figure 3-121 SL test loops principle

The test loops are activated in <**Test - Loop**>. The adjustments are taken over online.

| DP loop           |                                        |
|-------------------|----------------------------------------|
| xMUX loop         |                                        |
| Station link loop | off 🛛 🔻                                |
| Force DP sync     | off<br>SL local loop<br>SL remote loop |

[sc\_test\_stationlink\_loop, 1, --\_--]

Figure 3-122 StationLink loop settings

If "StationLink **local loop**" is selected the data are not sent to the StationLink but just back. Example from *Figure 3-121*:

If **local loop** is selected in Device 1 the data of the X.21 channel are sent back to Terminal A Link 0 If StationLink **remote loop** is selected the received data are sent back with its own device address. In this case the corresponding device can receive the data and it is proved that the StationLink is working properly.

If **remote loop** is selected in Device 1 the data of the X.21 channel are sent back via the StationLink to Device 4 Terminal A.

In order to test several connections at the same time, the test loops are **not** automatically cancelled after the connection to the service PC is interrupted.

## 3.17 Protection Signaling iSWT

## 3.17.1 Jumper Settings for iSWT 3000 Modules

#### NOTE

The program SWTStraps can be used as a graphical utility to find the correct jumper settings for the SWT 3000 modules. The program is supplied with the PowerSys software package.

## 3.17.2 Jumper Settings for IFC Modules

#### 3.17.2.1 Overview

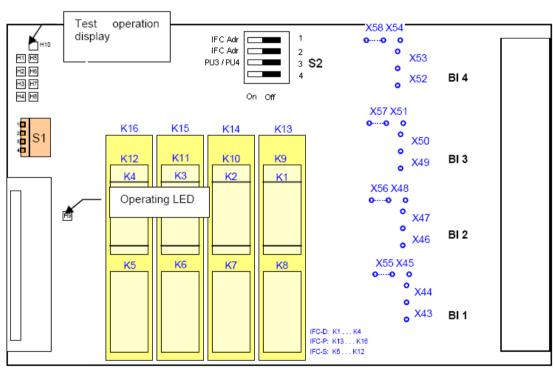




Figure 3-123 Position of Jumpers for the IFC-Modules

- (1) LED H1 to H4 (red): activated outputs
  - LED H5 to H8 (green): activated inputs
- (2) Test Operation Display (H10)
- (3) S2: IFC Slot Address Selection (S2.1, S2.2) and PU3 / PU4 switch:
   S2.3: closed/down PU3
   S2.3: open/up PU4
- (4) Jumpers X43 to X58
- (5) Operating LED (H9)

| Signal Input                  | 250 V          | 110 V          | 48 V/60 V      | 24 V           |
|-------------------------------|----------------|----------------|----------------|----------------|
| BI1 <b>X55 = inserted</b> X55 |                | X55 = open     | X55 = open     | X55 = open     |
|                               | X43 = open     |                | X43 = open     | X43 = open     |
|                               | X44 = open     | X43 = inserted |                | X44 = open     |
|                               | X45 = open     | X44 = open     | X44 = inserted | X45 = inserted |
|                               |                | X45 = open     | X45 = open     |                |
| BI2                           | X56 = inserted | X56 = open     | X56 = open     | X56 = open     |
|                               | X46 = open     |                | X46 = open     | X46 = open     |
|                               | X47 = open     | X46 = inserted |                | X47 = open     |
|                               | X48 = open     | X47 = open     | X47 = inserted | X48 = inserted |
|                               | All open       | X48 = open     | X48 = open     |                |
| BI3                           | X57 = inserted | X57 = open     | X57 = open     | X57 = open     |
|                               | X49 = open     |                | X49 = open     | X49 = open     |
|                               | X50 = open     | X49 = inserted |                | X50 = open     |
|                               | X51 = open     | X50 = open     | X50 = inserted | X51 = inserted |
|                               |                | X51 = open     | X51 = open     |                |
| BI4                           | X58 = inserted | X58 = open     | X58 = open     | X58 = open     |
|                               | X52 = open     |                | X52 = open     | X52 = open     |
|                               | X53 = open     | X52 = inserted |                | X53 = open     |
|                               | X54 = open     | X53 = open     | X53 = inserted | X54 = inserted |
|                               |                | X54 = open     | X54 = open     |                |



#### Table 3-76 Assignment of Jumpers X43 to X58

[scifcjum-010813-01.tif, 1, en\_US]

Figure 3-124 Position of jumpers X43 to X58

The second interface module is used in the case of an **IFC-D/P** module for doubling the output contacts. The binary inputs are only connected to **one** module (in slot IFC-1).

If the IFC-S module is used, jumpers X43 to X58 are not provided because the binary inputs do not exist. The module contains 8 signaling relays. For 7 relays, one change-over contact is brought out in each case. The contact of relay K5 can be used as a make contact or a break contact with jumper X42. All 8 signaling contacts have a **common root (3A1)**.

#### 3.17.2.2 DIP Switches on IFC Modules

There are 2 Dual Inline Package (DIP) switches added to each IFC modules:

- DIP switch S1 for the **Test Mode**.
   The activated output relays are displayed with LEDs H1 to H4 (red), and the activated binary inputs with LEDs H5 to H8 (green).
   For detailed information, refer to 3.18.3 Command Interface and 2.4.9.4 Test Mode.
- DIP switch S2 for the selection of PU3 and PU4 module and to indicate the slot address of each IFC module.

For detailed information, refer to 2.4.9.5 Slot and Module Identifier.

#### Table 3-77 Function of S2 Switch

| Switch | Function                   |
|--------|----------------------------|
| S2.1   | IFC slot address selection |
| S2.2   | IFC slot address selection |
| S2.3   | PU3 or PU4 selection       |
| S2.4   | Not connected              |

#### Table 3-78 IFC Slot Address

| Selection | S2.1 Position              | S2.2 Position              |
|-----------|----------------------------|----------------------------|
| IFC-1     | Open = up position = OFF   | Open = up position = OFF   |
| IFC-2     | Close = down position = ON | Open = up position = OFF   |
| IFC-3     | Open = up position = OFF   | Close = down position = ON |
| IFC-4     | Close = down position = ON | Close = down position = ON |

#### Table 3-79 PU3 or PU4 Selection

| Selection | S2.3 Position              |
|-----------|----------------------------|
| PU3       | Close = down position = ON |
| PU4       | Open = up position = OFF   |

#### Installation and Commissioning 3.17 Protection Signaling iSWT

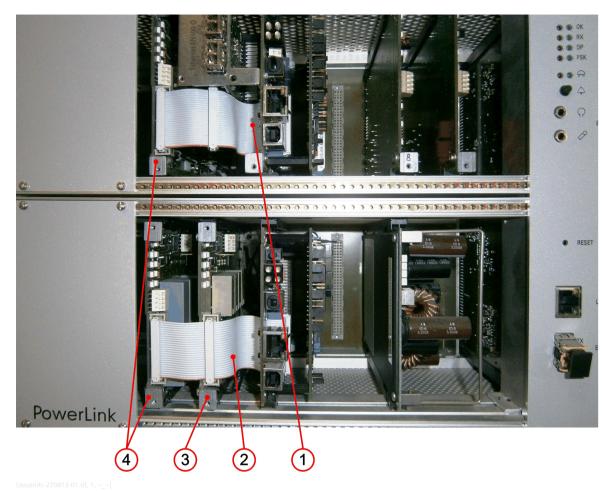
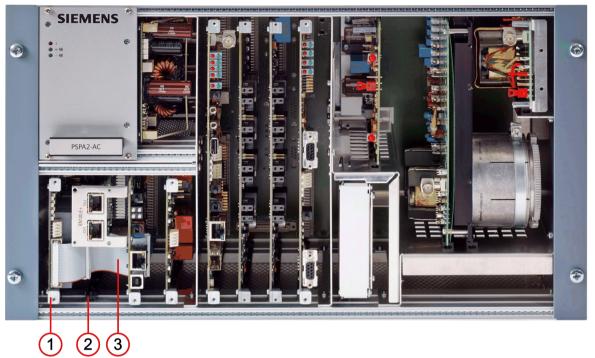




Figure 3-125 Slot positions of IFC-x modules in the iSWT 3000 system - PowerLink 100

- (1) iSWT-B (iSWT 3000-2)
- (2) iSWT-A (iSWT 3000-1)
- (3) Slot position IFC-2
- (4) Slot position IFC-1



Idw. pl50s. Front-offen-Blegendenpkt, 1 ....

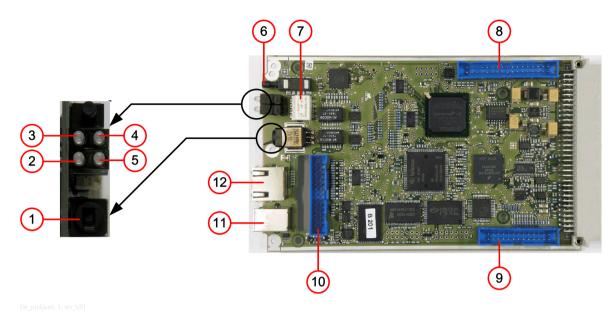
Figure 3-126 Slot positions of IFC-x modules in the iSWT 3000 system - PowerLink 50

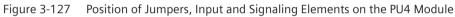
- (1) Slot position IFC-1
- (2) Slot position IFC-2 or EN 100
- (3) iSWT

## NOTICE

Changing the position of an IFC module without changing its address may lead to a failure in the transmission.

The IFC module will be detected on a wrong slot. No information or wrong information may be transmitted to the corresponding protection relay.


 $\diamond$  Make sure that the IFC module is in the right slot.




### NOTE

The slots IFC-3 and IFC-4 are available only in PU4-mode of stand alone SWT 3000.

## 3.17.3 Jumper Settings for PU4 Module





- 1 S2: Power ON/OFF
- 2 LED OK/GBAL
- 3 LED Status Interface LID-2
- 4 LED Status Interface LID-1
- 5 LED Status Interface LIA
- 6 S1: Reset button
- 7 S3 (3.1 to 3.4)
- 8 Connection on DLE
- 9 Connection on DLE
- 10 Connection of the IFC Modules
- 11 LCT: Service Interface (USB)
- 12 NMS: Ethernet Interface

The Digital line equipment is not applicable for PowerLink 50.

#### Table 3-80Function of the S3 DIP Switch on the PU4 Module

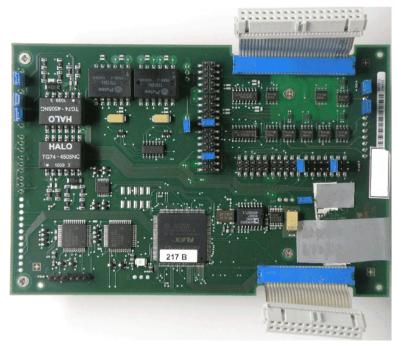
| Switch Number | Position | Function                          |
|---------------|----------|-----------------------------------|
| \$3.1         | OFF      | Normal operation                  |
|               | ON       | Programming with Memtool          |
| \$3.2         | OFF      | Monitor inactive                  |
|               | ON       | Monitor active                    |
| \$3.3         | OFF      | Disable debugger                  |
|               | ON       | Enable debugger                   |
| \$3.4         | OFF      | Disable initialization in monitor |
|               | ON       | Enable initialization in monitor  |



#### NOTE

For normal operation all switches must be in the OFF-position.

## 3.17.4 Jumper Settings for DLE Module


#### 3.17.4.1 Overview



## NOTE

The Digital Line Equipment DLE is only available in PowerLink 100.

When using digital line interfaces, links must be set on the DLE module. Module DLE is designed as a self-contained PC board that is connected electrically to the PU4 via a ribbon cable and mechanically via spacer sleeves. All external interfaces are routed via the PU4 module.



[scdlejum-301111-01.tif, 1, en\_U

Figure 3-128 Position of the Jumpers on the DLE Module

#### 3.17.4.2 Jumper Settings for the Selection of Digital Line Interfaces LID-1

| Table 3-81 | Interface Selection | for the LID-1 |
|------------|---------------------|---------------|
|            | intenace selection  |               |

| Interface         | X48   | X49   | X42 | X43 | X6  | X4  | X5  | X20 | X21 |
|-------------------|-------|-------|-----|-----|-----|-----|-----|-----|-----|
| X.21              | 1-2   | 1-2   | 1-2 | 2-3 | 2-3 | 2-3 | 2-3 | 1-2 | 1-2 |
|                   | 11-12 | 11-12 |     |     |     |     |     |     |     |
| G703.1            | 3-4   | 3-4   | 1-2 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 |
|                   | 13-14 | 13-14 |     |     |     |     |     |     |     |
| G703.6 symmetric  | 5-6   | 5-6   | 1-2 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 | 2-3 |
|                   | 15-16 | 15-16 |     |     |     |     |     |     |     |
| G703.6 asymmetric | 7-8   | 5-6   | 2-3 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 | 1-2 |
|                   | 15-16 | 15-16 |     |     |     |     |     |     |     |

#### 3.17.4.3 Selection of the Input Gain for G703.6 Interfaces

Table 3-82Selection of the Input Gain for G703.6 Interfaces

| Input gain | LID-1     |
|------------|-----------|
| 12 dB      | X53 / 2-3 |
| 43 dB      | X53 / 1-2 |

## 3.17.5 System Configuration for iSWT 3000

In the PowerLink 100 system, up to 2 iSWT 3000 can be used. In the PowerLink 50 system, 1 iSWT 3000 can be used. The iSWT 3000 have to be defined in the system configuration.

| iSWT Option  | Signification                                                    |  |
|--------------|------------------------------------------------------------------|--|
| via CSPi     | using the SSI interface of the iSWT for protection signaling     |  |
| via FOM      | connection of an external SWT 3000 via optical fiber module FOM  |  |
| digital only | using the digital interface of the iSWT for protection signaling |  |

## 3.17.6 External SWT 3000 Connection to PowerLink

#### 3.17.6.1 Fiber-Optic Connection

With the FOM, it is possible to connect up to 2 external SWT 3000 via fiber-optic cable to the PowerLink PLC system (for each transmission direction one fiber).

In the PowerLink 100 system, 2 SWT 3000 can be connected via fiber-optic cables (iSWT-1 and iSWT-2). Fiber-optic modules are installed in the slots of the PU4.

In the PowerLink 50 system, the connection of an iSWT 3000 via fiber-optic cables is not supported. The PU4 in the external SWT 3000 is connected to the iLAN interface and its Serial Synchronous Interface (SSI) via FOM to PowerLink. From the point of view of the PowerLink, the external SWT 3000 is considered **like integrated**, because the internal iLAN of the system is extended through the fiber-optic connection.

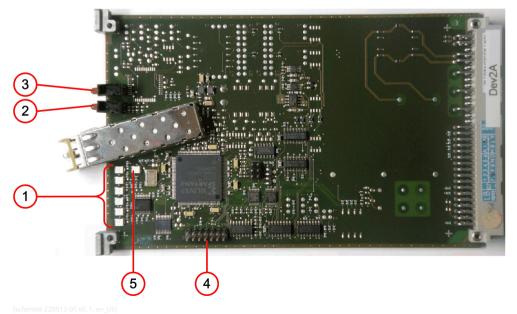


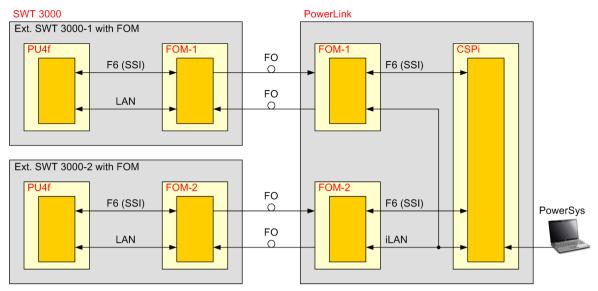

Figure 3-129 Position of the LED on the FOM

- (1) LED H4 to H9: Diagnosis
- (2) LED H3 Rx-Alarm
- (3) LED H2 Tx-Alarm
- (4) Programming Interface
- (5) LED H1: FPGA Readiness

On the FOM, no jumper settings are required. The LED indications are described in the following table:

| LED |        | LED Indication when Lighted                                              | LED Indication with FOS3 for C37.94                                                                                                |  |  |
|-----|--------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| H1  | red    | FPGA not ready                                                           | FPGA not ready                                                                                                                     |  |  |
| H2  | red    | Tx-Alarm                                                                 | Tx-Alarm                                                                                                                           |  |  |
|     |        | F6 supervisory alarm                                                     | F6 supervisory alarm                                                                                                               |  |  |
| H3  | red    | Rx-Alarm                                                                 | Rx-Alarm                                                                                                                           |  |  |
| H4  | yellow | ILAN high                                                                | LOS alarm ("lose of signal" alarm)                                                                                                 |  |  |
|     |        |                                                                          | LED on: DCE and DTE not synchronized or<br>when in sync state, there are at least two<br>bit errors in consecutive 8 C37.94 frames |  |  |
| H5  | yellow | BUF alarm                                                                | AIS alarm ("Alarm Indication Signal" alarm)                                                                                        |  |  |
|     |        | Buffer overflow or under run                                             | LED on: "all ones" received. The multiplexer                                                                                       |  |  |
|     |        | Source: Supervisory circuit of FPGA                                      | lost the higher order link, it will send all one in the data bits to SWT3000.                                                      |  |  |
| H6  | yellow | MOD-alarm                                                                | RDI alarm ("remote defect indicator" alarm)                                                                                        |  |  |
|     |        | Modulation alarm, carrier frequency at the optical receiver not detected | LED on: remote side of C37.94 connection entered a LOS alarm state.                                                                |  |  |
| H7  | yellow | COM-alarm                                                                | Debug information (for test purpose)                                                                                               |  |  |
|     |        | Communication alarm at the electrical interface                          |                                                                                                                                    |  |  |
| H8  | yellow | SFP_LOS                                                                  | Debug information (for test purpose)                                                                                               |  |  |
|     |        | The received optical power is below the                                  |                                                                                                                                    |  |  |
|     |        | receiver sensitivity                                                     |                                                                                                                                    |  |  |
|     |        | Loss of signal                                                           |                                                                                                                                    |  |  |
| H9  | yellow | S6 asserted                                                              | Debug information (for test purpose)                                                                                               |  |  |

Table 3-84 Signification of the Alarm LED on the FOM


# i

## NOTE

If there is a FOM connection to PowerLink, the configuration of the external SWT 3000 is executed via the PowerLink with the **service program PowerSys**. **The service interface of the PU4 in the external SWT 3000 cannot be used**.

#### 3.17.6.2 iSWT 3000 via FOM for PowerLink 100

With this system configuration it is possible to connect up to 2 external SWT 3000 via optical fiber to the PowerLink system (for each transmission direction 1 fiber). This is considered in the PowerLink like iSWT 3000. In the PowerLink 50 system, the connection of a iSWT 3000 via fiber-optic cables is not supported. The FOM in the PowerLink device modules are installed in the slots of the PU4. In SWT 3000 the FOM is located in slot FOM-1/CLE. Optionally a second FOM for a digital alternate path can be installed in slot FOM-2.



[dwiswtfo-010813-01.tif, 1, en\_US]

Figure 3-130 Configuration of 2 external SWT 3000 via FOM and the PowerLink

The basis (hardware) configuration for settings of the external SWT is carried out at the external SWT 3000 device with the PowerSys program, as shown in the following figures.

| Operation mode             |                                     |
|----------------------------|-------------------------------------|
| Operation mode             | Mode3a (4 independent commands) 🛛 💙 |
| Purpose                    | Alternate multi-purpose             |
| System                     | Standalone                          |
| Reflection                 |                                     |
| Continuous signalling      |                                     |
| T-scheme mode              |                                     |
| Mode 6 receive check       |                                     |
| Mode 6 supervision command |                                     |
| Redundant power supply     |                                     |

Figure 3-131 Configuration of the operation mode of the external SWT 3000 with FO connection to Power-Link

3.17 Protection Signaling iSWT

| Line interface                     |                                          |
|------------------------------------|------------------------------------------|
| Analog                             | FOM-1 analog 🔻 💿 Prim. 🔵 Sec.            |
| Digital 1                          | Off Prim. O Sec.                         |
| Digital 2                          | Off   Prim.  Sec.                        |
| Ethernet                           | Off Off Sec.                             |
| Variant                            | VF1_CT 🗨                                 |
| Application                        | Permissive tripping O Direct tripping CT |
| Double primary                     |                                          |
| Configuration via PowerLink (Slot) | iswT-1                                   |
|                                    | ISWT-1<br>ISWT-2                         |

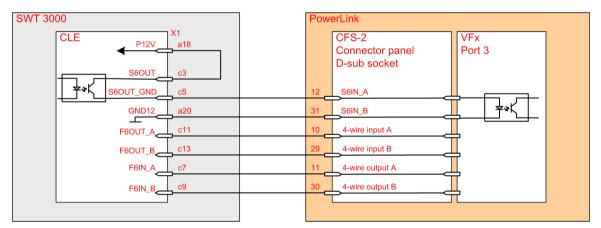
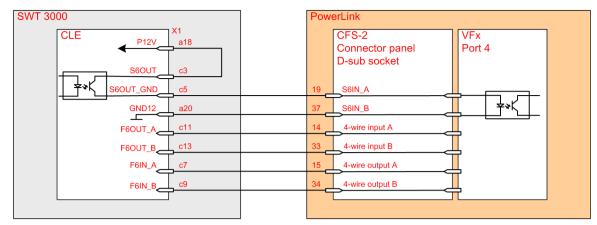



Figure 3-132 Configuration of the line interface of the external SWT 3000 with FO connection to PowerLink

The further settings like VF variant, must be executed via the PowerLink. In this case the same settings from the external SWT 3000 must be defined in the configuration of the (iSWT 3000) PowerLink.


#### 3.17.6.3 CLE connection of an External SWT 3000 to the PowerLink 50/100

The connection of the CLE module from an external SWT 3000 to the VFx modules is carried out via D-sub sockets. The principle is shown in the following figures. In this case, the VFx ports 3 or 4 must be used.



[dwcovfx3-110711-01.tif, 1, en\_U

Figure 3-133 Connecting an External SWT 3000 to Port 3 of the VFx Modules



[dwcovfx4-110711-01.tif, 1, en\_US]

Figure 3-134 Connecting an External SWT 3000 to Port 4 of the VFx Modules

## 3.17.7 Operating Mode with PLC Equipment

#### 3.17.7.1 Overview

Power system protection signals can be transmitted over the high-voltage overhead line. These signals are protected within the PLC equipment. For this purpose, the devices of the SWT 3000 system are connected to special inputs and outputs of the PLC unit. If you are using a PowerLink system, the integration of SWT 3000 is only possible in a PowerLink system with CSPi.

When using PLC equipment, several variants of teleprotection signaling are possible as described in the following cases:

- Single Purpose (SP) operation
- Multi-Purpose (MP) operation
- Alternate Multi-Purpose (AMP) operation

#### 3.17.7.2 Single Purpose Operation

In this operating mode, the transmission band of the PowerLink is used exclusively for teleprotection signaling. The greatest transmission distances are reachable in this mode with maximum security against impulse noise and minimum signal transmission time.

The following equipment combinations are possible:

- SWT 3000 remote with VF or optical connection to PowerLink
- SWT 3000 integrated in PowerLink

| Service | 1    |            |   |           |    |           |
|---------|------|------------|---|-----------|----|-----------|
|         | F6 p | rotect 🗸 🔻 |   | SERTEL    | RM |           |
|         |      | I/O select |   | Variant   |    | Bandwidth |
|         |      | ISWT1      | • | VF1_CT_PL | •  | 2340      |
|         |      |            |   |           |    |           |

Figure 3-135 Configuration example for Single Purpose Operation of an iSWT 3000

#### 3.17.7.3 Multi Purpose Operation

In this operating mode, the teleprotection signals are simultaneously transmitted with voice and data signals. The distribution of the available transmission power (between the services, which must be transmitted) results in shorter transmission ranges. The command transmission times are the same as in single purpose operation. The following equipment combinations are possible:

- SWT 3000 remote with VF or optical connection to PowerLink
- SWT 3000 integrated in the PowerLink

| <ul> <li>Configuration</li> </ul> | Service 3                                                                                        |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
| System                            | F6 protect 🗨 🔲 SERTEL 🔲 RM                                                                       |
| HF                                | -                                                                                                |
| <ul> <li>Service</li> </ul>       | I/O select Variant Bandwidth                                                                     |
| Service 1                         | iSWT1 VF1 VF1                                                                                    |
| Service 2                         |                                                                                                  |
| Service 3                         |                                                                                                  |
| Service 4                         |                                                                                                  |
| ▶ ACE                             | 100 kHz CF 108 F                                                                                 |
| DP                                | Pilot channel                                                                                    |
| RM                                |                                                                                                  |
| ALR                               | Service 1: Voice transmission F2 Service 2: Data transmission F3 Service 3: Protection signaling |
| Option                            |                                                                                                  |

Figure 3-136 Example for Multi Purpose Operation of an iSWT 3000

#### 3.17.7.4 Alternate Multi Purpose Operation

| Normal operation | In this operating mode, the transmission band is used for the transmission of voice (F2) and data, or Data Pump (DP) as long as there is no protection case. In the idle state, that is, the high-voltage system is operating the signals of all services including the guard tone are transmitted simultaneously. The pilot of the PLC system is used as the guard tone in this operating mode. |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protection mode  | While the protection command is being transmitted, the voice or DP transmis-<br>sion is interrupted. This operating mode saves frequency space but results in<br>shorter transmission ranges and higher signal transmission times than with single<br>purpose or multi-purpose operation.                                                                                                        |

|                       | Service 1 | I                      |                     |           |              |     |             |   |
|-----------------------|-----------|------------------------|---------------------|-----------|--------------|-----|-------------|---|
| Configuration         |           | _                      |                     |           |              |     |             |   |
| System                | F2        | 2 E&M 🔽 🗌              | SERTEL 🔽            | RM        |              |     |             |   |
| HF                    |           |                        |                     |           |              |     |             |   |
| ✓ Service             |           | I/O select             | Input level         |           | Output level | I   | Bandwidth   |   |
| Service 1             |           | VFM-1/P1 🛛 🔻           | -3.5                | dB -      | 3.5          | dB  | 0300-2400 🗸 |   |
| Service 2             |           | 2 wire switch          | 4 wire switch       | 1         |              |     |             |   |
| Service 3             |           | 0                      | 0                   |           |              |     |             |   |
| Service 4             |           | AMP                    |                     |           |              |     |             |   |
| ACE                   |           |                        |                     |           |              |     |             |   |
| DP                    |           | I/O select             | Variant             |           | Bandwi       | dth |             |   |
| RM                    |           | iSWT1                  | VF1_CT_PL           |           | 2340         |     |             |   |
| ALR                   |           | Guard 2615             | Hz O Guard :        | 3810 Hz   |              |     |             |   |
| Option                |           | In the AMP mode, the   |                     |           |              |     |             |   |
| Clock synchronization |           | as well as guard frequ | ency for the protec | ction sig | inaling.     |     |             |   |
| ISWT-1                |           |                        |                     |           |              |     |             |   |
|                       | 100 kHz   |                        |                     | CF        |              |     |             | 1 |

Figure 3-137 Alternate Multi Purpose Operation with a voice channel

3.17 Protection Signaling iSWT

|                             | DF           | · •            | SERTE    | L 🗌 F   | RM        |               |         |       |
|-----------------------------|--------------|----------------|----------|---------|-----------|---------------|---------|-------|
| Configuration               |              |                |          |         |           |               |         |       |
| System                      | Inter        | face iMUX      |          |         |           | -             |         |       |
| HF                          |              |                |          |         |           |               |         |       |
| <ul> <li>Service</li> </ul> | Sync-N       | lode adapted   |          |         |           | •             |         |       |
| Service 1                   | DP-N         | Iode Slave     |          |         |           | -             |         |       |
| Service 2                   |              |                |          |         |           | •             |         |       |
| Service 3                   | Bandy        | vidth 7500 Hz  |          |         |           | •             |         |       |
| Service 4                   |              |                |          |         |           | -             |         |       |
| ACE                         | Primary data | arate 56000    |          |         |           | Bit/s         |         |       |
| DP                          |              |                |          |         |           |               |         |       |
| RM                          | Expected     | SNR 35         | dB Ma    | bitrate | 56000     |               |         |       |
| ALR                         |              |                |          |         |           |               |         |       |
| Option                      |              | Bitrate        | Mode     | Cont F  | Port<br>B |               | Bitrate | Mode  |
| Clock synchronization       |              |                |          |         | _         |               | Dirate  |       |
| iSWT-1                      | Ch1          | 9600           | ▼ 8N1 ▼  | ш       | Ch5       | 19200         | •       | 8N1 🔻 |
| Ethernet                    | Ch2          | 1200           | ▼ 8N1 ▼  |         | Ch6       |               | •       | 8N1 🗡 |
|                             | Ch3          | 2400           | ▼ 8N1 ▼  |         | Ch7       |               | -       | 8N1 🗡 |
|                             | Ch4          | 9600           | ▼ 8N1 ▼  |         | Ch8       |               | -       | 8N1 🗡 |
|                             | 100 KHZ      | I/O s<br>iSWT1 | elect VI | Varian  |           | Bandv<br>1860 | vidth   |       |

[sc\_example\_amp\_dp, 1, -

Figure 3-138 Alternate Multi Purpose Operation with the service DP

## 3.18 Configuration of an iSWT

## 3.18.1 Single or Multi Purpose Operation

| Operation mode             |                                           |
|----------------------------|-------------------------------------------|
| Operation mode             | Mode3a (4 independent commands) 🛛 🗨       |
| Purpose                    | Single purpose                            |
| System                     | Single purpose<br>Alternate multi-purpose |
| Reflection                 |                                           |
| Continuous signalling      |                                           |
| T-scheme mode              |                                           |
| Mode 6 receive check       |                                           |
| Mode 6 supervision command |                                           |
| Redundant power supply     |                                           |
|                            |                                           |

Figure 3-139 Example of the system configuration of an iSWT 3000 in SP resp. MP operation mode

| Line interface                     |                                              |
|------------------------------------|----------------------------------------------|
| Analog                             | CSPi O Prim. O Sec.                          |
| Digital 1                          | Off   Prim.  Sec.                            |
| Digital 2                          | Off O Prim. O Sec.                           |
| Ethernet                           | Off Orim. O Sec.                             |
| Variant                            | VF1_CT_PL                                    |
| Application                        | ● Permissive tripping ● Direct tripping ● CT |
| Double primary                     |                                              |
| Configuration via PowerLink (Slot) | Off                                          |
|                                    |                                              |

Figure 3-140 Example of variant configuration

The figures above show the system configuration of an iSWT 3000 working in the single purpose (SP) operation mode. Here the adjustment <**single purpose**> must be activated. The connection of the analog interface is carried out digital to the CSPi module.

The same setting is necessary if the protection signals are transmitted with other services like voice and data. From the point of view of PowerLink system this is considered as **multi purpose** (MP) operation. The iSWT 3000 distinguishes only between single resp. alternate multi-purpose operation.

In the single or multi purpose mode the frequency variants VF1 up to VF5, VF1\_CT or VF3\_CT, VF1\_M5A, VF3\_M5A and NB1, can be used. The variant depends on the operation mode of the iSWT 3000 (refer to *Table 3-85*). The variant **NB1 is only suitable for the single purpose** (resp. multi purpose) operation and the **operation modes 1, 2, 3 and 4**.



## NOTE

The further setting options like connection, operation mode, variant etc. are identical with the alternate multi purpose operation and described in this section.

If continuous commands are transmitted with the iSWT 3000, the option "Continuous signaling  $\underline{\omega}$ " must be activated. In this case the iSWT 3000 sends the guard tone for 170 ms at cyclical intervals so that a connection can be re-established automatically after a line interruption or failure of a device. In this case the command output time must be extended accordingly (see timer settings).

## 3.18.2 Alternate Multi Purpose Operation

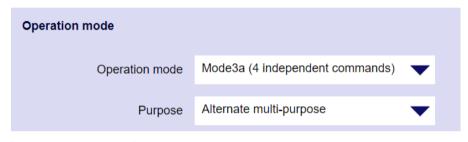



Figure 3-141 Example of the system configuration of an iSWT 3000 in AMP operation mode

The figure above shows the system configuration for an iSWT 3000 in the alternate multi purpose operation. Here the adjustment <**alternate multi purpose**> must be activated. The connection of the analog interface is carried out digital to the CSPi module. The alternate multi purpose operation is possible with the service voice (F2) or Data Pump (ref. to section service configuration).



#### NOTE

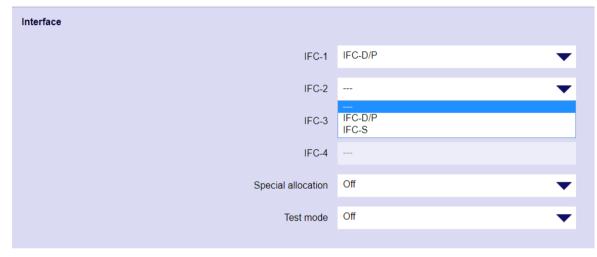
The frequency variant NB1 can not be used in AMP mode. For **frequency measurement** switch **AMP Meas** "ON" in the <**iSWT-x - Test**> form.

#### **Operating Mode**

The following settings are possible:

| Table 3-85 | Selection of the operation modes |
|------------|----------------------------------|
|------------|----------------------------------|

| Operating mode                         | Possible frequency variant                      |
|----------------------------------------|-------------------------------------------------|
| Mode 1 (double system protection)      | Variants VF1, VF3 or VF5 resp. VF1_CT or VF3_CT |
| Mode 2 (single-phase protection)       | Variants VF1 and VF3 resp. VF1_CT or VF3_CT     |
| Mode 3 (4 commands with priority)      | Variants VF1 and VF3                            |
| Mode 3a (4iC) (4 independent commands) | Variants VF1_CT or VF3_CT                       |
| Mode 3b (2 plus 2)                     | Variants VF1_CT or VF3_CT                       |


| Operating mode                   | Possible frequency variant                  |
|----------------------------------|---------------------------------------------|
| Mode 4 (only 1 command active)   | Variants VF1 and VF3 resp. VF1_CT or VF3_CT |
| Mode 5A (3 independent commands) | Variants VF1 M5A and VF3 M5A                |

The menu option  $\langle \text{Reflection} \rangle_{\square}$ "Yes" or  $\square$ "No " offers the additional option of reflecting the received command if there is no local excitation (setting "Yes").

This setting is only evaluated by the device in the operation modes "Mode 1 (Double system protection)" or "Mode 2 (Single-phase protection)". In these modes the fourth binary input of the IFC D/P module can be used for excitation. In the operation mode Mode 3, 3a, 3b, resp. Mode 4, this input is provided for input of the fourth command.

## 3.18.3 Command Interface

In the menu the number and type of the interface module IFC-x are defined. In addition test mode is selectable.



#### [sc\_iswt\_interface, 1, --\_--]

Figure 3-142 Defining the Interface modules IFC

#### Interfaces

Only IFC-D or IFC-P modules can be inserted at the corresponding slot IFC1. Slot IFC2 can also be equipped with the IFC-D/P modules or alternatively with the IFC-S module. When a second IFC-D/P module is existing only the output relays from the module can be used, because the max. number of commands is 4. In this case the function contact doubling must be activated.

#### Test Mode

Switch over to test mode with the setting **<Test mode**>. In this mode you can enter commands on the IFC module for every input by means of DIL switches \$1.1 to \$1.4 on the IFC module



#### NOTE

For security reasons after switching over to test mode all inputs are signaled by the controller as "off" regardless of the actual switch position. The "ON" state can only be reached by switching **all** switches to the "**Open**" position and then "ON".

To prevent false trips, make sure that the command outputs in the remote station are disconnected from protection relay

3.18 Configuration of an iSWT

#### Application

| Line interface                     |                         |                             |
|------------------------------------|-------------------------|-----------------------------|
| Analog                             | FOM-1 analog 🔻          | Prim. O Sec.                |
| Digital 1                          | Off                     | O Prim. O Sec.              |
| Digital 2                          | Off 🔷 🗸                 | O Prim. O Sec.              |
| Ethernet                           | Off                     | O Prim. O Sec.              |
| Variant                            | VF1_CT                  | ▼                           |
| Application                        | Permissive trip         | ping 🔘 Direct tripping 🔽 CT |
| Double primary                     |                         |                             |
| Configuration via PowerLink (Slot) | iSWT-1                  | -                           |
|                                    | Off<br>iSWT-1<br>iSWT-2 |                             |
|                                    | 15111-2                 |                             |

#### Configuration of application

#### coded transmission:

Due to the operating mode it is possible to switch over to the coded transmission if this button is enabled. direct tripping:

This adjustment offers a higher transmission security of the analog communication interface. It should be selected when using protection systems with intertripping. The transmission time is approx. 5 ms longer compared with the adjustment <permissive>.

#### permissive tripping:

This adjustment should be selected when using permissive protection systems.

#### **Configuration via PowerLink Slot**

In case of an FOM connection from an external SWT3000 this is considered like integrated (iSWT-1 resp. 2). In this case it must be defined which FOM module (in slot iSWT1 resp. iSWT2) of the PowerLink is used for the configuration of the external SWT 3000 ref. also to iSWT via FOM

## 3.18.4 Output Allocation

| ( | Output | Enable | Output port  | Name          | Output | Enable | Output port | Name |
|---|--------|--------|--------------|---------------|--------|--------|-------------|------|
|   | (1)    |        | IFC-1/OUT1 🔻 | IED X POTT RX | (9)    |        |             |      |
|   | (2)    |        | IFC-1/OUT2 🔻 | IED X DEF RX  | (10)   |        |             |      |
|   | (3)    |        | IFC-1/OUT3 🔻 | IED Y POTT RX | (11)   |        |             |      |
|   | (4)    |        | IFC-1/OUT4 🔻 | IED Y DEF RX  | (12)   |        |             |      |
|   | (5)    |        |              |               | (13)   |        |             |      |
|   | (6)    |        |              |               | (14)   |        |             |      |
|   | (7)    |        |              |               | (15)   |        |             |      |
|   | (8)    |        |              |               | (16)   |        |             |      |

[sc\_output\_allocation, 2, --\_--]

Figure 3-143 Command output allocation

In the iSWT 3000 every possible combination of binary inputs (IN1 to IN4) is permanently assigned to a protection frequency depending on the operating mode (Mode 1 to Mode 5A) and the function Un-blocking "On" or "Off".

At the receive end, every protection frequency can be assigned to 1 or more signal outputs (OUT1 to OUT4) with the output allocation for the operation mode **3a and 5A**. In digital operation it is also possible to assign the outputs to the activated binary inputs for the operation mode **5D**.

Each command input / output has a naming text field with maximum 16 characters. The configured command name will be displayed in timer configuration, command counter and event log. It is helpful to better understand offline without circuit diagram which command has been configured or tripped. The command name is only configurable in free allocation mode (Mode 3a / 3b / 5D).

## 3.18.5 Timer Setting Options for the iSWT 3000

| System timer                                            |      |    |
|---------------------------------------------------------|------|----|
| Duration of unblocking impulse                          | 0    | ms |
| Delay of unblocking impulse                             | 10   | ms |
| Delay of receiver alarm                                 | 2000 | ms |
| Delay of S/N and/or BE alarm                            | 2000 | ms |
| -<br>Transmit duration                                  | 20   | ms |
| Supervision duration of transmission                    | 10   | s  |
|                                                         |      |    |
| Limit of supervision command                            | 0    | S  |
| Tansmit duration for permissive command                 | 20   | ms |
| BI 1+2 interrupt single command BI or BI2 without delay |      |    |

[sc\_system\_timer, 1, -\_-Figure 3-144

The iSWT 3000 timer configuration

Table 3-86Settings of the iSWT 3000 timer configuration

| Selection                                                                                                    | Settings                                              | Remarks                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duration of unblocking impulse                                                                               | 30 to 300 ms in<br>steps of 10 ms                     | "0" setting means no unblocking signal.<br><b>Note</b> : If using the unblocking function<br>the Relay outputs in the operation modes<br>1 and 2 are different than without<br>unblocking |
| Delay of unblocking impulse                                                                                  | 10 to 100 ms in steps of 1 ms                         | Adjustment only possible when duration<br>of unblocking is >0 ms                                                                                                                          |
| Delay of receiver alarm                                                                                      | 0 to 2000 ms in steps of 50 ms                        | Delay time for activation of the receive alarm <b>relay</b> .                                                                                                                             |
| Delay of S/N alarm                                                                                           | 0 to 2000 ms in steps of 50 ms                        | Delay time before output of the S/N alarm signal.                                                                                                                                         |
| Transmit Duration (Only when switching<br>functions in the system configuration or<br>MCM is parameterized.) | 15 to 100 ms in<br>steps of 5 ms (for<br>mode 3 or 6) | Transmission time of each activated single command (displayed only with switching functions <b>Mode 3</b> ).                                                                              |
| Supervision duration of transmission                                                                         | 5 to 30 s in steps<br>of 1 s                          | Supervision of the transmit duration in<br>MCM mode. After the adjusted time<br>is exceeded the system is mandatory<br>switched back from AMP to "normal"<br>transmission mode.           |

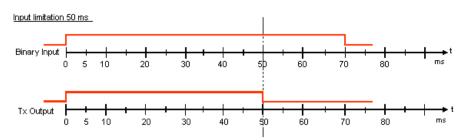
| Selection                                 | Settings       | Remarks                                                                                                                                                                                                      |
|-------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmit Duration for permissive command  | 15 ms or 20 ms | Only for Mode 3b. (Default is 20 ms)                                                                                                                                                                         |
| BI1+2 interrupt single command BI1 or BI2 | Enabled        | Only for Mode 3b. (Default is unchecked)                                                                                                                                                                     |
| without delay                             |                | <b>Checked:</b> Permissive command 1 or 2<br>transmission can switch to input combi-<br>nation 1+2 without waiting for minimal<br>transmission duration time-out.<br><b>Unchecked:</b> Function not enabled. |

#### Timer Settings for the Command Input

| Input | Time |    | Input | Time |    | Input | Time |    |
|-------|------|----|-------|------|----|-------|------|----|
| (1)   | 0    | ms | (9)   | 0    | ms | (17)  | 0    | ms |
| (2)   | 0    | ms | (10)  | 0    | ms | (18)  | 0    | ms |
| (3)   | 0    | ms | (11)  | 0    | ms | (19)  | 0    | ms |
| (4)   | 0    | ms | (12)  | 0    | ms | (20)  | 0    | ms |
| (5)   | 0    | ms | (13)  | 0    | ms | (21)  | 0    | ms |
| (6)   | 0    | ms | (14)  | 0    | ms | (22)  | 0    | ms |
| (7)   | 0    | ms | (15)  | 0    | ms | (23)  | 0    | ms |
| (8)   | 0    | ms | (16)  | 0    | ms | (24)  | 0    | ms |

[sc\_timer\_input\_limitation, 1, --\_--]

Figure 3-145 Input limitation


| Input | Time |    | Input | Time |    | Input | Time |    |
|-------|------|----|-------|------|----|-------|------|----|
| (1)   | 20   | ms | (9)   | 20   | ms | (17)  | 20   | ms |
| (2)   | 20   | ms | (10)  | 20   | ms | (18)  | 20   | ms |
| (3)   | 20   | ms | (11)  | 20   | ms | (19)  | 20   | ms |
| (4)   | 20   | ms | (12)  | 20   | ms | (20)  | 20   | ms |
| (5)   | 20   | ms | (13)  | 20   | ms | (21)  | 20   | ms |
| (6)   | 20   | ms | (14)  | 20   | ms | (22)  | 20   | ms |
| (7)   | 20   | ms | (15)  | 20   | ms | (23)  | 20   | ms |
| (8)   | 20   | ms | (16)  | 20   | ms | (24)  | 20   | ms |

[sc\_timer\_input\_extension, 1, --

Figure 3-146 Input extension

#### Table 3-87Setting options for limitation of input command

| Command input               | Setting options    | Comments                                                                                                                 |
|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| Limitation of input command | steps of 1 ms (for | "0" setting means no limitation. The transmis-<br>sion of the tripping signal is stopped when this<br>value is exceeded. |



[dwinlm50-011210-01.tif, 1, en\_L

Figure 3-147 Example for input limitation set to 50 ms

Table 3-88Setting options for input command extension to min.

| Command input                | Setting options  | Comments         |
|------------------------------|------------------|------------------|
| Input command extension min. | 0 to 100 ms      | 0 = no extension |
|                              | in steps of 1 ms |                  |

The commands at the binary input are extended to adjusted value in case they are shorter. If they are longer this adjustments is irrelevant.

The figure below shows 1 command (red) at the binary input with a length of 10 ms. This is extended to 15 ms. The next command (blue) has a length of 30 ms. This command is not extended.

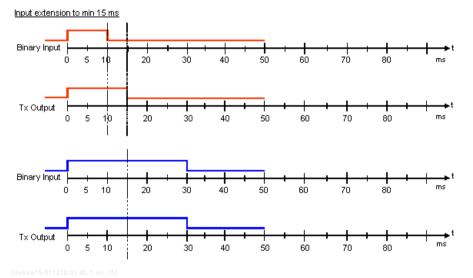
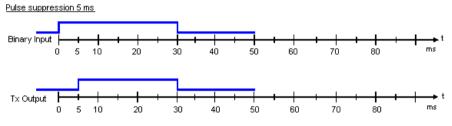




Figure 3-148 Example for an input command extension to min 15 ms

With Command Input-2 a pulse suppression in the range 0 - 100 ms in steps of 1 ms can be adjusted for each released binary input.

| Input | Time |    | Input | Time |    | Input | Time |    |
|-------|------|----|-------|------|----|-------|------|----|
| (1)   | 0    | ms | (9)   | 0    | ms | (17)  | 0    | ms |
| (2)   | 0    | ms | (10)  | 0    | ms | (18)  | 0    | ms |
| (3)   | 0    | ms | (11)  | 0    | ms | (19)  | 0    | ms |
| (4)   | 0    | ms | (12)  | 0    | ms | (20)  | 0    | ms |
| (5)   | 0    | ms | (13)  | 0    | ms | (21)  | 0    | ms |
| (6)   | 0    | ms | (14)  | 0    | ms | (22)  | 0    | ms |
| (7)   | 0    | ms | (15)  | 0    | ms | (23)  | 0    | ms |
| (8)   | 0    | ms | (16)  | 0    | ms | (24)  | 0    | ms |





[dwplssp5-021210-01.tif, 1, en\_US

Figure 3-150 Example for a pulse suppression of 5 ms



## NOTE

Commands which are **shorter** than the adjusted pulse suppression time are **not** transmitted by the iSWT!

#### Timer Settings for the Command Output

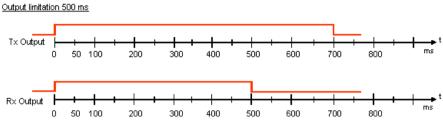

| Output | Time |    | Output | Time |    | Output | Time |    |
|--------|------|----|--------|------|----|--------|------|----|
| (1)    | 0    | ms | (9)    | 0    | ms | (17)   | 0    | ms |
| (2)    | 0    | ms | (10)   | 0    | ms | (18)   | 0    | ms |
| (3)    | 0    | ms | (11)   | 0    | ms | (19)   | 0    | ms |
| (4)    | 0    | ms | (12)   | 0    | ms | (20)   | 0    | ms |
| (5)    | 0    | ms | (13)   | 0    | ms | (21)   | 0    | ms |
| (6)    | 0    | ms | (14)   | 0    | ms | (22)   | 0    | ms |
| (7)    | 0    | ms | (15)   | 0    | ms | (23)   | 0    | ms |
| (8)    | 0    | ms | (16)   | 0    | ms | (24)   | 0    | ms |

Figure 3-151 Output limitation

 Table 3-89
 Setting ranges for limiting or increasing the output time

| Command output               | Setting options | Comments          |
|------------------------------|-----------------|-------------------|
| Limitation of output command | 0 or to 500 ms  | 0 = no limitation |

The command in the example below is transmitted for 700 ms (Tx output). With the activated out-put limitation the command output is switched off after 500 ms.



[scactocl-021210-01.tif, 1, en\_US]

Figure 3-152 Example of an activated output command limitation

| Output | Time |    | Output | Time |    | Output | Time |    |
|--------|------|----|--------|------|----|--------|------|----|
| (1)    | 15   | ms | (9)    | 15   | ms | (17)   | 15   | ms |
| (2)    | 15   | ms | (10)   | 15   | ms | (18)   | 15   | ms |
| (3)    | 15   | ms | (11)   | 15   | ms | (19)   | 15   | ms |
| (4)    | 15   | ms | (12)   | 15   | ms | (20)   | 15   | ms |
| (5)    | 15   | ms | (13)   | 15   | ms | (21)   | 15   | ms |
| (6)    | 15   | ms | (14)   | 15   | ms | (22)   | 15   | ms |
| (7)    | 15   | ms | (15)   | 15   | ms | (23)   | 15   | ms |
| (8)    | 15   | ms | (16)   | 15   | ms | (24)   | 15   | ms |

[sc\_timer\_ouput\_extension, 1, --\_--]

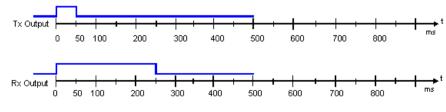

Figure 3-153 Output extension

 Table 3-90
 Setting ranges for the output command extension

| Command output           | Setting options  | Comments |
|--------------------------|------------------|----------|
| Output command extension | 0 to 2000 ms     |          |
|                          | in steps of 5 ms |          |

The command in the example below is transmitted for 50 ms (Tx output). With the output com-mand extension on the Rx output it is extended for 200 ms.

Output extension 200 ms



[dwoex200-021210-01.tif, 1, en\_US]

Figure 3-154 Example for an output extension of 200 ms

#### Setting Options for the iSWT 3000 < Alarms>

| Alarm control                                    |                       |    |
|--------------------------------------------------|-----------------------|----|
| Threshold for receiver alarm                     | -20                   | dB |
| Threshold for S/N alarm                          | 15                    | dB |
| S/N-Time                                         | 3                     | S  |
| Force receiver alarm on S/N and/or BE alarm      |                       |    |
| Blocking outputs on S/N and/or BE alarm          |                       |    |
| Blocking outputs on limit of supervision command |                       |    |
| Switch NU-Relay on GAL                           |                       |    |
| Alarm output RXALR used for                      | Receiver alarm(RXALR) | •  |
| Disable auto reset                               |                       |    |
| Auto reset delay                                 | 0                     | S  |
|                                                  |                       |    |

[sc\_alarm\_control, 1, --\_--]

Figure 3-155 The iSWT 3000 Alarm Settings

#### Table 3-91Setting options for the iSWT 3000 alarm settings

| Selection                                                           | Setting options                    | Comments                                                        |
|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|
| Threshold for receive level alarm                                   | -30 to -10 dB                      | When the PU4 input level drops about the                        |
|                                                                     | in steps of 5 dB                   | adjusted value, this is causing receive alarm                   |
| Threshold for S/N alarm                                             | -20 to -10 dB                      | In case of an worse SNR then adjusted this is                   |
|                                                                     | in steps of 5 dB                   | causing S/N alarm20 dB is the most sensitive adjustment.        |
| S/N Time                                                            | 1 up to 30 sec                     | Measuring time for the signal to noise ratio                    |
|                                                                     | in steps of 1 sec.                 |                                                                 |
| Force receiver alarm on S/N and/or                                  | Ø                                  | Receive alarm relay is activated in case of S/N                 |
| BE alarm                                                            |                                    | alarm or bit error alarm                                        |
|                                                                     |                                    | Function deactivated                                            |
| Blocking outputs on S/N and/or BE alarm                             | Ø                                  | Command output disabled in case of S/N alarm or bit error alarm |
|                                                                     |                                    | Function deactivated                                            |
| Switch NDR relay on GAL                                             |                                    | Only for stand alone devices                                    |
| Alarm output EALR used for                                          | Receive Alarm (EALR)               | Default setting                                                 |
| The <b>output RXALR</b> can be allo-<br>cated to an alarm output in | unblocking (UNBL)                  | Time of the unblocking impulse must be more than 0 ms.          |
| the alarm configuration (ref. to <i>Figure 3-179</i>                | input limitation alarm<br>(INPLIM) | Function must be activated (ref. to <i>Table 3-87</i>           |

## 3.18.6 Setting Recommendations for the iSWT 3000 Timer Configuration

#### **Broadband Versions**

| Table 3-92 | Timer settings for broadband versions |
|------------|---------------------------------------|
| Table J-92 |                                       |

| SP opera-<br>tion              | a- Timer                                |                                |                        | Command input                |                                         | Command output                     |                                          |
|--------------------------------|-----------------------------------------|--------------------------------|------------------------|------------------------------|-----------------------------------------|------------------------------------|------------------------------------------|
|                                | Duration of the<br>Un-blocking<br>pulse | EALR<br>relay<br>delay<br>[ms] | S/N alarm<br>delay [s] | Pulse<br>suppression<br>[ms] | Command<br>extension<br>to min.<br>[ms] | Limiting<br>of output<br>time [ms] | *) Increase in<br>output time by<br>[ms] |
| Double<br>system<br>protection | 0                                       | 2000                           | 2                      | 0                            | 15                                      | to 500                             | 0                                        |
| Single-phase protection        | 0                                       | 2000                           | 2                      | 0                            | 15                                      | to 500                             | 0                                        |
| Switching<br>functions         | 0                                       | 2000                           | 2                      | 0                            | 15                                      | none                               | 100                                      |

Switching functions: Time slot 20ms

\*) If continuous signaling is activated the increase in the output time must be set to min. 180 ms

| Table 3-93 | Alarm settings for broadband versions |
|------------|---------------------------------------|
|            | riann settings for broadband versions |

| SP operation                   | Alarms                       |                                       |                                          |                                       |  |  |  |  |
|--------------------------------|------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|--|--|--|--|
|                                | Threshold for EAL in<br>[dB] | Activate EALR in<br>case of S/N alarm | Disable the outputs in case of S/N alarm | Switch NDALR relays<br>in case of GAL |  |  |  |  |
| Double<br>system<br>protection | -30                          | yes                                   | no                                       | no                                    |  |  |  |  |
| Single-phase protection        | -30                          | yes                                   | no                                       | no                                    |  |  |  |  |
| Switching<br>functions         | -30                          | yes                                   | no                                       | no                                    |  |  |  |  |

Table 3-94Timer settings for alternate purpose operation

| AMP<br>opera-<br>tion               | Timer                                       |                          |                        | Command input                  |                                         | Command output                     |                                          |
|-------------------------------------|---------------------------------------------|--------------------------|------------------------|--------------------------------|-----------------------------------------|------------------------------------|------------------------------------------|
|                                     | Duration<br>of the Un-<br>blocking<br>pulse | EALR relay<br>delay [ms] | S/N alarm<br>delay [s] | Pulse<br>suppres-<br>sion [ms] | Command<br>extension<br>to min.<br>[ms] | Limiting of<br>output time<br>[ms] | *) Increase in<br>output time<br>by [ms] |
| Double<br>system<br>protec-<br>tion | 0                                           | 2000                     | 2                      | 0                              | 15                                      | to 500                             | 0                                        |
| Single-<br>phase<br>protec-<br>tion | 0                                           | 2000                     | 2                      | 0                              | 15                                      | to 500                             | 0                                        |
| Switching<br>functions              | 0                                           | 2000                     | 2                      | 0                              | 15                                      | none                               | 100                                      |

Switching functions: Time slot 20 ms

| Table 3-95 | Alarm setting for alternate multipurpose operat | ion |
|------------|-------------------------------------------------|-----|
|            |                                                 |     |

| AMP operation            | Alarms                    |
|--------------------------|---------------------------|
|                          | Threshold for EAL in [dB] |
| Double system protection | -20                       |
| Single-phase protection  | -20                       |
| Switching functions      | -20                       |

## 3.18.7 iSWT 3000 Date/Time

It is only possible to set the time and date after the data have been imported from a connected device.

| ISWT-1 Time        |             |                      |            |               |
|--------------------|-------------|----------------------|------------|---------------|
|                    |             | 0                    |            |               |
| New date           | 2021.08.03  | Apply time to device | Device dat | e 2021.07.30  |
| New time           | 11:34:07 AM |                      | Device tim | e 06:53:33 AM |
| Use PC system time |             |                      |            |               |
|                    |             |                      |            |               |
|                    |             |                      |            |               |

Figure 3-156 Setting of date and time of an iSWT 3000

For the time adjustment the option **<use PC system time>** or a manual adjusted **<new date>** resp. **<new time>** can be used. The internal clock is adjusted when operating **<Apply time to device>**.

## 3.18.8 Clock Synchronization

The system-internal clock can be synchronized by an external clock. The clock synchronization input (USYNC) on the module ALR (terminal a1/c3) is provided for this. The operating point of the input voltage can be set.

| Clock synchronisation                                             |                                                                                                                                     |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Clock sync non-urgent alarm                                       |                                                                                                                                     |
| Local sync.                                                       | Off                                                                                                                                 |
| Sync. pulse every<br>Active signal slope or active polarity(IRIG) | Off<br>USYNC signal(minute or hour)<br>IRIG-B00x(sync. only)<br>IRIG-B000(RTC time adj.<br>IRIG-B004(RTC time&date adj.<br>NTP-Sync |
| Line sync. mode                                                   | Off 🔹                                                                                                                               |
| Line sync. hour                                                   | 0                                                                                                                                   |



Figure 3-157 Options for the iSWT 3000 clock synchronization

The setting options for the local sync are described in the table below.

| Table 3-96 | Setting options for the local clock synchronization of the iSWT 3000 |
|------------|----------------------------------------------------------------------|
|            |                                                                      |

| Adjustment local sync          | Remarks                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF                            | No local clock synchronization                                                                                                                                                                                                                                                                                              |
| USYNC signal (minute or hour)  | An external impulse is received via the USYNC input every minute<br>resp. hour. The active signal slope rising or falling is synchronizing<br>the RTC seconds. Note: If the local sync setting of CSPi is adjusted to<br>NTP, iSWT receives a sync signal from the CSPi                                                     |
| IRIG-B00x (sync only)          | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized                                                                                                                                                                               |
| IRIG-B000 (RTC time adj.)      | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized. Additional the IRIG-B-time (hour, min-utes, seconds)<br>is compared with the RTC time of the iSWT. In case of a difference<br>the IRIG-B values are taken over into the RTC. |
| IRIG-B004 (RTC time&date adj.) | The IRIG-B message is received via the USYNC input and decoded.<br>With each change of the IRIG-B minutes the RTC seconds are<br>synchronized. Additional the IRIG-B-time & date is compared with<br>the RTC time & date of the iSWT. In case of a difference the IRIG-B<br>values are taken over into the RTC.             |
| NTP-Sync                       | Synchronization of the RTC with the network time protocol. This function requires additional a SNMP Server V1.32 or higher                                                                                                                                                                                                  |



#### NOTE

#### In case of IRIG-B sync:

For input voltages of 5 V and 12 V the actual alarm module ALR (refer to 3.21.4 PowerLink Alarm Configuration - ALR Module is required.

In the configuration form for the clock synchronization additional a non urgent alarm (NUALR) can be activated in case of USYNC failure (see figure below).

| Clock synchronisation                        |                              |
|----------------------------------------------|------------------------------|
| Clock sync non-urgent alarm                  |                              |
| Local sync.                                  | IRIG-B004(RTC time&date adj. |
| Sync. pulse every                            | Minute                       |
| Active signal slope or active polarity(IRIG) | Rising/normal                |
| Line sync. mode                              | Master 🗸                     |
| Line sync. hour                              | 18 💌                         |
|                                              |                              |

[sc\_iswt\_clock\_synchronisation\_nu\_alarm, 1, --\_--]

Figure 3-158 Activation of NU alarm in case of USYNC failure

#### Line Clock Synchronization

It is also possible to synchronize the clock through 1 of the devices via the connecting route (line sync. mode <**off**>, <**Master**>, <**Slave**>. The device that is to perform the synchronization is designated as the "master" and the device to be synchronized as the "slave" <sup>2</sup>. This means that it is only necessary to synchronize 1 device (the master) externally <sup>1</sup>.

The line synchronization is performed once a day at 24:00 resp. at the time defined with <Line sync. hour>. by transmitting the synchronizing tone (fs). The difference in time between master and slave must not be greater than 30 sec otherwise clock synchronization is not possible. The maximum difference in the time between master and slave is thus the signal run time.

Select <Line synch.> <off> for both devices if both devices are provided with external synchronizing pulses <sup>3</sup>. In this case synchronization between the devices is **not** implemented.

## 3.19 Tx Level Adjustment

## 3.19.1 TX Level Setting

At **Configuration – System** the type of amplifier has to be selected.

#### **PLPA** amplifier

Select the provided hardware and power amplifier (PLPA: up to  $1 \times 25$  W; up to  $1 \times 50$  W etc.). Select the impedance of the HF output and adjust the output power.

#### Output power adjustment:

For some reasons it is necessary to adjust the output power to a certain value:

- in case of limitations by regulation authorities
- for frequency planning (re-use of the frequency band)
- overload of the amplifier by out-of-band signals

Using adjacent Tx and Rx bands it is necessary to reduce the output power according the following tables:

 Table 3-97
 Max output power adjustment PowerLink 50/100 Low Band

| Amplifier            | Mode   | PowerLink 50/100-LB      |
|----------------------|--------|--------------------------|
|                      |        | max. output power [Watt] |
|                      |        | 24 – 500 kHz             |
| PLPA: up to 1 x 25 W | NADJ   | 25 W (+44 dBm)           |
|                      | ADJ    |                          |
| PLPA: up to 1 x 50 W | NADJ   | 50 W (+47 dBm)           |
|                      | ADJ*)  | 32 W (+45 dBm)           |
| PLPA: up to 2 x 25 W | NADJ   | 50 W (+47 dBm)           |
|                      | ADJ    |                          |
| PLPA: up to 2 x 50 W | NADJ   | 100 W (+50 dBm)          |
|                      | ADJ *) | 63 W (+48 dBm)           |

\*) The PLPA output power in adjacent mode corresponds with the output power of PowerLink with PLE LB = Low frequency band

Table 3-98Max output power adjustment PowerLink 50/100 High Band

| Amplifier            | Mode        | PowerLink 50/100-HB<br>max. output power [Watt] |                     |                      |                      |                       |  |
|----------------------|-------------|-------------------------------------------------|---------------------|----------------------|----------------------|-----------------------|--|
|                      |             | 500 kHz -<br>600 kHz                            | 600 kHz<br>-700 kHz | 700 kHz -<br>800 kHz | 800 kHz -<br>900 kHz | 900 kHz -<br>1000 kHz |  |
| PLPA: up to 1 x 25 W | NADJ<br>ADJ | 20 W                                            | 18.5 W              | 17 W                 | 15.5 W               | 14.5 W                |  |
| PLPA: up to 1 x 50 W | NADJ<br>ADJ | 40 W                                            | 37 W                | 34 W                 | 31 W                 | 29 W                  |  |
| PLPA: up to 2 x 25 W | NADJ<br>ADJ | 40 W                                            | 37 W                | 34 W                 | 31 W                 | 29 W                  |  |
| PLPA: up to 2 x 50 W | NADJ<br>ADJ | 80 W                                            | 74 W                | 68 W                 | 62 W                 | 58 W                  |  |

HB = High frequency band

## 3.19.2 TX Leveling with PLPA

With the form <**Adjustment - Leveling - TX-Leveling**> a fully automatic transmit level setting of the configured services is performed. Depending on the selected amplifier and the adjusted output power the corresponding TX level output is shown.

| cleveling                                    | RX leveling      | Level<br>supervision |                  |                           |                                |   |
|----------------------------------------------|------------------|----------------------|------------------|---------------------------|--------------------------------|---|
|                                              |                  |                      |                  |                           |                                |   |
|                                              |                  |                      |                  | Tx-level CSPi             | -3.7                           |   |
| rice 1: DP                                   |                  |                      |                  |                           |                                |   |
| Active I/O                                   | Input level      | Output level         | ACN              | TX level CSPi             | TX level out                   |   |
| DP                                           |                  |                      | 66               | -23.4 dB                  | 30.8 dB                        |   |
| SysPILOT                                     |                  |                      | 4                | -47.7 dB                  | 6.5 dB                         |   |
| rice 2: F6 protec                            | t                |                      |                  |                           |                                | _ |
| rice 2: F6 protec                            | t                |                      |                  | · ·                       |                                |   |
| rice 2: F6 protec<br>Active I/O              | t<br>Input level | Output level         | ACN              | TX level CSPi             | TX level out                   | ĺ |
|                                              |                  | Output level         | <b>ACN</b><br>20 | TX level CSPi<br>-39.8 dB | <b>TX level out</b><br>14.5 dB | ] |
| Active I/O                                   | Input level      |                      |                  |                           |                                |   |
| Active I/O<br>iSWT1                          | Input level      |                      |                  |                           |                                |   |
| Active I/O<br>iSWT1<br>rice 3:               | Input level      |                      | 20               | -39.8 dB                  | 14.5 dB                        |   |
| Active I/O<br>iSWT1<br>rice 3:<br>Active I/O | Input level      |                      | 20               | -39.8 dB                  | 14.5 dB                        |   |
| Active I/O<br>iSWT1<br>rice 3:               | Input level      |                      | 20               | -39.8 dB                  | 14.5 dB                        |   |

[sc\_adjustment\_leveling, 1, --\_--

Figure 3-159 Tx level setting with PLPA amplifier

The Tx output level of the SysPil has to be measured (refer to 3.19.4 Measuring the Tx Levels at the PLPA *Output*) and verified with the displayed values. In case of difference a correction may be carried out with the Tx Level CSPi fine adjustment. The adjustable range is -4.5 dBr up to +1.0 dBr in steps of 0.1 dB (default: 0.0 dBr).

The values displayed under Tx Level CSPi can be measured at the HF output CSPi.

### 3.19.3 Tx Level Setting DP

When using the Data Pump function DP the signal generator has to be used for the level setting. The signal generator is located in the form **<Test - Signal generator**>.

3.19 Tx Level Adjustment

| Test    |           |              |                              |
|---------|-----------|--------------|------------------------------|
| General | Loop      | Signal ge    | nerator                      |
|         |           |              |                              |
|         |           |              |                              |
|         | S         | ignal mode   | off 🔹                        |
|         | Frequer   | ncy position | Lower band Center Upper band |
|         | Frequency | adjustment   | O 1000 Hz O 100 Hz O 10 Hz   |
|         |           |              | Down Up                      |

[sc\_test\_signal\_generator, 1, -\_--]

Figure 3-160 The signal generator of the Data Pump

When the signal generator is on it is generating the center frequency. With the button "upperB" resp. "lowerB" it can be adjusted to the upper resp. lower band limit. Additional it is possible to adjust the frequency of the signal generator in steps of 10, 100 resp. 1000 Hz. The corresponding HF frequencies are calculated from the PowerSys program and displayed in the form **<Service**>.

| Service                                                                                                        |         |    |           |           |               |              |
|----------------------------------------------------------------------------------------------------------------|---------|----|-----------|-----------|---------------|--------------|
| System pilot (-)         207940 Hz         -47.7 dB         System pilot(+)         207940 Hz         -47.7 dB |         |    |           |           |               |              |
| Service 1 Service 2 Service 3 Service                                                                          |         |    | Service 4 |           |               |              |
| Signalgenerator                                                                                                | VF-Inpu | ıt | VF-Level  | HF (Tx)   | HF-Level CSPi | HF-Level Out |
| DP-                                                                                                            | 510 Hz  |    |           | 204083 Hz |               |              |
| DP mid                                                                                                         | 2232 H  | z  |           | 205805 Hz | -23.4         | 30.8         |
| DP+                                                                                                            | 3954 H  | Z  |           | 207527 Hz |               |              |

[sc\_service1, 1, --\_--]

Figure 3-161 Display of the HF frequencies for the service Data Pump

Additional to the signal generator the system pilot is displayed from the service program and has to be checked. The min HF output level from the service can be calculated by adding the displayed gain from the corresponding amplifier to the HF level CSPi.


## 3.19.4 Measuring the Tx Levels at the PLPA Output

The Tx levels and frequencies for the various services displayed in the PowerSys menu <**Information – Serv**ices> can be measured at the PLPA output measuring jack. Compared with the signal at the HF output to the line, the signal is 40 dB reduced. This makes it possible to use level meters without additional pre-attenuator.



(scmstxlp-021210-01.tif. 1. en US)





[PowerLink50S\_rueck\_Asusschnitt-PLPA, 2, --\_

Figure 3-163 Measuring the Tx levels at the PLPA - PowerLink 50

| Service                             |                                         |  |                |        |           |          |            |              |
|-------------------------------------|-----------------------------------------|--|----------------|--------|-----------|----------|------------|--------------|
| System pilot (-) 207940 Hz -47.7 dB |                                         |  | System pilot(+ | ) 2079 | 40 Hz     | -47.7 dB |            |              |
| Service 1                           | Service 1 Service 2 Service 3 Service 4 |  | rvice 4        |        |           |          |            |              |
| Signalgenerator                     | VF-Input                                |  | VF-Level       |        | HF (Tx)   | HF       | Level CSPi | HF-Level Out |
| DP-                                 | 510 Hz                                  |  |                |        | 204083 Hz |          |            |              |
| DP mid                              | 2232 Hz                                 |  |                |        | 205805 Hz |          | -23.4      | 30.8         |
| DP+                                 | 3954 Hz                                 |  |                |        | 207527 Hz |          |            |              |

<sup>[</sup>sc\_service1, 1, --\_

Figure 3-164 The Menu <Service>



#### NOTE

During the level measurement the HF- line output of the equipment has to be terminated with the dummy load that has to be set to corresponding impedance. Otherwise the measured level will be wrong.

| Power Ampli-<br>fier | Level [dBm]          | Level at 600<br>Ohm | Level at 150<br>Ohm | Level at 75<br>Ohm |
|----------------------|----------------------|---------------------|---------------------|--------------------|
| 25 W                 | 10*lg(25W/1mW) = 44  | 44 dBm              | 38 dB               | 35 dB              |
| 50 W                 | 10*lg(50W/1mW) = 47  | 47 dBm              | 41 dB               | 38 dB              |
| 100 W                | 10*lg(100W/1mW) = 50 | 50 dBm              | 44 dB               | 41 dB              |

 Table 3-99
 Level calculation for different impedances

The max. output level of the amplifier can be calculated also by using the formula below

### $L[db] = 10 \cdot log(P/((0.775^2)/R))$

[fomxolma-201113-01.tif, 1, en\_US]

L = Output level in dB

P = Output power in Watt

R = Impedance in Ohm

Power and voltage level have the same value at a impedance of 600 Ohm.

## 3.19.5 TX Level Supervision

In the menu < **Adjustment – Leveling – Leveling supervision**> thresholds can be set for the Tx level supervision. Tx alarm is activated when the value of the current level is less than the adjusted min value.

| Level supervision |                |                        |        |         |
|-------------------|----------------|------------------------|--------|---------|
|                   |                | min                    | max    | current |
|                   | TX level PLPA1 | 93                     | 257    | 1023    |
|                   | TX level PLPA2 | 0                      | 0      | 0       |
|                   | S/N threshold  |                        | 0      | 0 dB    |
|                   |                | Set default thresholds | Read 🕞 |         |
|                   |                |                        |        |         |

sc\_adjustment\_level\_supervision, 1, --\_--]

Figure 3-165 Threshold setting for the Tx level supervision

It is recommended that the current values are read when the link is in **normal operation**. The supervisory is activated with the button **<Set default thresholds**>.



#### NOTE

The supervision is switched off, when the min. values are set to "0"!

#### S/N Threshold

With this adjustment the threshold for the S/N supervision of the system pilot is set. The range is between -40 (most sensitive value) and 0 dB. The setting is only possible for analog services. In case of using Data Pump only, this setting is not activated, because the Data Pump has its own S/N supervision.

# 3.20 Receive Level Adjustment

### 3.20.1 General Information

The receive level of the PowerLink is adjusted by setting the DIL switches in the Receive Filter module (RXF-XB). The adjustment procedure is supported by the program PLPAStraps (version 1.4 or higher) with the menu: ... / RXF / Level Correction. The subsequent chapters describe the procedure in detail.



#### NOTE

For setting the target value of the RX level, the weather conditions have to be taken into account. In case of bad weather conditions (e.g. heavy rain, snow, ice) during commissioning of PowerLink the line attenuation is higher than during good weather conditions (e.g. summertime, sunny weather). That means, that the target value of the RX Level can vary between 50% and 75%.



### NOTE

The input level of the equipment depends on the transmit power of the remote PowerLink, the line attenuation, the settings of input attenuation and gain inside the RXF-XB.



### NOTE

After changing of any value in PLPAStraps, do not forget to save your PLPAStraps configuration in a file for easy reuse of this values.

#### **RX** level reduction

Reducing the RX level from PowerLink is possible by adjusting the input attenuation and the gain on RXF-XB module.

#### Input attenuation

The input attenuation prevents the RXF-XB from intermodulation. In case of bad Data Pump SNR a higher input attenuation may be helpful, on the other hand the SNR will drop if the input attenuation is too high. The input attenuator is selected between 3 dB and 18 dB and set by means of the switch S101. The corresponding switch positions are displayed when selecting <**RXF** / Level correction>.

#### **Basic Gain**

The RXF-XB basic gain has to be set according the desired AGC range for increasing input level. An AGC position of 75% provides a control range for increasing input level of approximately 12 dB. If the AGC value is too high or clipping of the CSPi input analog - to - digital converter (ADC) occurs, a lower RXF-XB gain is necessary (e.g. -20 dB instead of -10 dB).

The selected basic gain of the RXF-XB is set between 0 dB and -30 dB by means of the switch S401 (S401.1 to S401.4). The corresponding switch positions are displayed when selecting **<RXF / Level correction**>. Remark: A change of 1% of AGC position correlates to a change of approximately 0.5 dB of the level.

### 3.20.2 Basic Level Setting

The basic level setting has to be done first.

Run the program PLPAStraps and fill in the configuration (menu **<Configuration**>) of the equipment, or open the file that contains this information.

By switching to PLPAStraps menu <**Straps settings / RXF / Level Correction**> the default values for the configuration are calculated according the frequency and bandwidth. With selection of ,<**Straps settings / RXF / Level Correction**> the following menu appears:

| Level Se                | etting:      |            |  |  |  |
|-------------------------|--------------|------------|--|--|--|
| - Input Atter           | nuation      | Basic Gain |  |  |  |
| O 0 dB                  | 💿 0 dB       |            |  |  |  |
| C 3 dB C 15 dB C -10 dB |              |            |  |  |  |
| O 6 dB O 18 dB O -20 dB |              |            |  |  |  |
| 💿 9 dB                  | 🔿 21 dB      | C -30 dB   |  |  |  |
| Default Atter           | nuator: 9 dB | ]          |  |  |  |

[scrxflst-180913-01.tif, 1, --\_

Figure 3-166 PLPAStraps Setting options for RXF level setting



#### NOTE

Values have to be added! The result has to be marked as Input attenuation.

Example shows: 9 dB + 0 dB If the result of the addition is more than the highest possible input attenuation adjustment, select the highest possible input attenuation.

In addition to the calculation of PLPAStraps, it is necessary to correct the adjustment of the input attenuation according to the used configuration as shown in the table below.

| Tx-Rx-bands | Service        | max. line attenuation<br>**) | default input attenu-<br>ation plus *) | Basic Gain |
|-------------|----------------|------------------------------|----------------------------------------|------------|
| NADJ        | analog         | 5 dB                         | 9 dB                                   | 0 dB       |
|             | analog         | 15 dB                        | 6 dB                                   | 0 dB       |
|             | analog         | 25 dB                        | 3 dB                                   | 0 dB       |
|             | analog         | > 25 dB                      | 0 dB                                   | 0 dB       |
|             | DP / DP+analog | 5 dB                         | 9 dB                                   | 0 dB       |
|             | DP / DP+analog | 15 dB                        | 6 dB                                   | 0 dB       |
|             | DP / DP+analog | 25 dB                        | 3 dB                                   | 0 dB       |
|             | DP / DP+analog | > 25 dB                      | 0 dB                                   | 0 dB       |
| ADJ         | analog         | 5 dB                         | 9 dB                                   | 0 dB       |
|             | analog         | 15 dB                        | 9 dB                                   | 0 dB       |
|             | analog         | 25 dB                        | 6 dB                                   | 0 dB       |
|             | analog         | > 25 dB                      | 3 dB                                   | 0 dB       |
|             | DP / DP+analog | 5 dB                         | 9 dB                                   | 0 dB       |
|             | DP / DP+analog | 15 dB                        | 9 dB                                   | 0 dB       |
|             | DP / DP+analog | 25 dB                        | 6 dB                                   | 0 dB       |

Table 3-100 RXF-XB level setting

NADJ Non adjacent

ADJ adjacent

\*) select the result as input attenuator of RXF if possible, otherwise select the highest possible input attenuation

\*\*) complete transmission path from Tx output to Rx input

After marking the calculated value for input attenuation the actual setting for DIL-switch **S101** is calculated and shown on the screen.

Switch off PowerLink, remove the RXF module from PowerLink and readjust the DIL-switch **S101** of the RXF module. After the adjustment insert the RXF module into PowerLink and switch on the equipment.

### 3.20.3 All Operations except Single Purpose

For all PowerLink configurations except of the Single Purpose Operation of an (i)SWT 3000 the Automatic Gain Control (AGC) is active. The adjustment of the working point is done by the AGC. The input gain actuator is fixed to the position Max. The position of the input gain actuator can not be changed by the user. In case of overflow is indicated check the **ADC** settings in *Rules for adjustment of the ADC*.

| RX leveling          Overflow       Overflow         RX level       58 | Tx leveling | RX leveling | Level<br>supervision |            |     |
|------------------------------------------------------------------------|-------------|-------------|----------------------|------------|-----|
| Overflow Overflow RX level 58                                          |             |             |                      |            |     |
| RX level 58                                                            | RX leveling |             |                      |            |     |
|                                                                        |             |             |                      | Overflow   | 0   |
|                                                                        |             |             |                      | RX level   | 58  |
|                                                                        |             |             |                      | Input gain | 100 |



Figure 3-167 The PowerSys Adjustment – RX-Leveling

The RX Level is adjusted by the AGC. The actual value of the AGC is indicated by the RX Level bar chart. The RX Level indication should be approximately in the position 75. (The exact value of the AGC position is shown in **<Diagnostics - Measurement point>**)

In case the position of the RX Level is higher than the target value (approximately 75, depending on the weather conditions), it is necessary to reduce the receive level in the RXF-XB module to avoid overload of the receive path.



#### NOTE

The input level of the equipment depends on the transmit power of the transmitter, the line attenuation and the settings of input attenuation and gain inside the RXF-XB.

#### **RX** Leveling

In case the actual RX Level is not within the target range, the working point for the AGC has to be adjusted in the following way:

#### Actual RX Level higher than target value

If the actual value is within  $\pm 4$  % of the target value the leveling of the equipment is done.

Otherwise run the program PLPAStraps and fill in the configuration (menu **<Configuration**>) of the equipment, or open the file that contains this information.

Change to the menu <Straps settings / RXF / Level Correction>

Decrease the actual setting of Basic Gain by -10 dB (e.g. change from 0 dB to -10 dB).

#### Level Setting:

| Input Atter | nuation | Basic Gain |
|-------------|---------|------------|
| O 0 dB      | 🔘 12 dB | O 0 dB     |
| O 3 dB      | 🔘 15 dB | • -10 dB   |
| O 6 dB      | 🔘 18 dB | ○ -20 dB   |
| ⊙ 9dB       | O 21 dB | O -30 dB   |

Default Attenuator: 9 dB

#### Level Adjustment

| Actual AGC(%):<br>Target AGC(%): 75 |         |
|-------------------------------------|---------|
| Adjust                              | Restore |

[scrxflvl-120813-01.tif, 1, --\_--

Figure 3-168 PLPAStraps Setting options for RXF leveling

After marking the new value for Basic Gain the actual setting for DIL-switch S401 is calculated and shown on the screen.

Switch off PowerLink and readjust the DIL-switch **S401** of the RXF module. Then insert the RXF module into PowerLink, switch on the equipment and check the actual value of "RX Level" with PowerSys. Continue with RX Leveling.



#### NOTE

If the actual value of RX Level is still higher than the target value while Basic Gain is in the position -30 dB,

- \* the input attenuator of RXF can be increased (e.g. 12 dB instead of 9 dB)
- \*or the transmit level of the remote PowerLink can be reduced

(ref. to TX level fine adjustment). to decrease the input level of PowerLink.

#### Actual RX Level lower than target value

If the actual value is within  $\pm 4$  % of the target value the leveling of the equipment is done.

Otherwise run the program PLPAStraps and fill in the configuration (menu **<Configuration**> of the equipment, or open the file that contains this information.

Change to the menu <Straps settings / RXF / Level Correction>

Fill in the input parameters

- actual value of AGC
- target value of AGC
- push the Adjust button

| Level Setting:<br>Input Attenuation<br>0 0 dB 0 12 dB<br>0 3 dB 0 15 dB<br>0 6 dB 0 18 dB | Basic Gain<br>C 0 dB<br>C -10 dB<br>C -20 dB |
|-------------------------------------------------------------------------------------------|----------------------------------------------|
| C 9 dB C 21 dB                                                                            | 🔿 -30 dB                                     |
| Default Attenuator: 9 dB                                                                  |                                              |
|                                                                                           |                                              |
| Level Adjustment                                                                          |                                              |
| Actual AGC(%): 60                                                                         |                                              |
| Target AGC(%): 75                                                                         |                                              |
| - Margin to overload will be                                                              | 12 dB                                        |
| Please adjust positions of ju<br>to the highlighted ones                                  |                                              |
| Adjust                                                                                    | Restore                                      |

[scrxflv2-120813-01.tif, 1, --\_-

Figure 3-169 PLPAStraps Setting options for RXF leveling

Depending on this information the program PLPAStraps calculates the necessary output amplification of the RXF module and shows the actual setting for DIL-switch **S501** on the screen. In addition the program shows the information about the margin to overload depending on the target setting.

Switch off PowerLink and readjust the DIL-switch **S501** of the RXF module. Then insert the RXF module into PowerLink, switch on the equipment and check the actual value of "RX Level" with PowerSys. Now the actual RX Level should be close to the chosen target value.

If the actual value of the RX Level is indicated correctly, switch of PowerLink remove the RXF module and mount the housing of the RXF module. Now the RXF module is ready for working.

Pushing the Restore button all switches will be displayed in blue.

### 3.20.4 Single Purpose Operation

When PowerLink is working in Single Purpose Operation the Automatic Gain Control (AGC) is switched off. Thus the receive level of the PowerLink has to be adjusted to a fix working point. The adjustment of the RX level working point is executed in two steps

- 1. Adjustment of Basic Gain, Receive Level attenuation and RXF output amplifier in the Receive Filter module RXF-XB and
- 2. Adjustment of the "Input gain" controller in the menu < PowerLink Adjustments RX-Leveling>.

#### NOTE

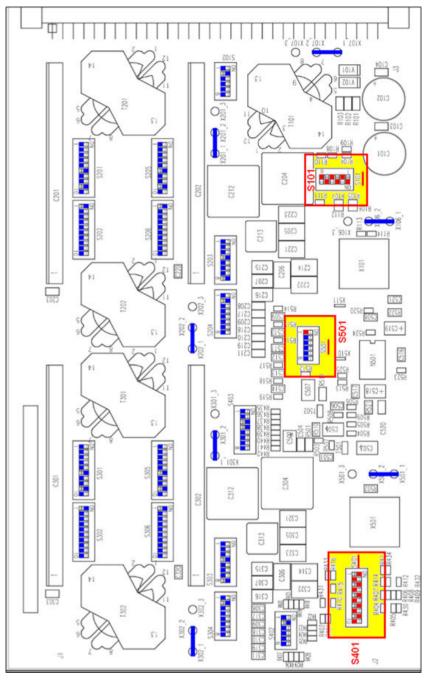
For setting the target value of the RX level, the weather conditions have to be taken into account. In case of bad weather conditions (e.g. heavy rain, snow, ice) during commissioning of PowerLink the line attenuation is higher than during good weather conditions (e.g. summertime, sunny weather). That means, that the target value of the RX Level can vary between 50% and 75%.



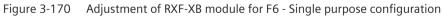
### NOTE

The input level of the equipment depends on the transmit power of the remote PowerLink, the line attenuation, the settings of input attenuation and gain inside the RXF-XB.




### NOTE

After changing of any value in PLPAStraps, do not forget to save your PLPAStraps configuration in a file for easy reuse of this values.


#### Adjustment of the RXF-XB module

In order to prevent an intermodulation of the TX signal to the RX signal and an ADC overflow ("Clipping") the RX filter module has to be adjusted with a **maximum attenuation**.

Switch off PowerLink and remove the RXF-XB module for the adjustment. Refer to the figure and tables below for adjustment of the switches S101, S401 and S501 to the proposed settings.





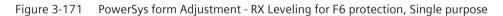


- S101 RXF Input Attenuator
- S401 RXF Output Attenuator (Basic Gain)
- S501 RXF Output Amplifier

#### Table 3-101 Adjustment of RXF-XB module for F6 - Single purpose configuration

|                 | S101                 | S401                                  | S501                 |
|-----------------|----------------------|---------------------------------------|----------------------|
| Switch position | RXF Input Attenuator | RXF Output Attenuator<br>(Basic Gain) | RXF Output Amplifier |
| .1              | On                   | On                                    | Off                  |

3.20 Receive Level Adjustment


|     | S101 | S401 | S501 |  |
|-----|------|------|------|--|
| .2  | Off  | Off  | Off  |  |
| .3  | On   | On   | Off  |  |
| .4  | Off  | Off  | Off  |  |
| .5  | On   | On   | Off  |  |
| .6  | Off  | Off  | Off  |  |
| .7  | -    | On   | -    |  |
| .8  | -    | Off  | -    |  |
| .9  | -    | On   | -    |  |
| .10 | -    | Off  | -    |  |

#### **RX Leveling with PowerSys**

After adjustment of the RXF-XB module the fine adjustment of the working point of the input signal is made by the input gain actuator in PowerSys menu <**Adjustment - RX Leveling**> adjustable for the Single Purpose (SP) operation.

Adjust the <**Input Gain**> to a level position of **approximately 80 %**, where the displayed <**RX Level**> reaches a value of approximately 20 %. The exact value can also be checked in the menu <**Information – System**>.

| Tx leveling | RX leveling | Level<br>supervision |
|-------------|-------------|----------------------|
|             |             |                      |
| RX leveling |             |                      |
|             |             |                      |
|             |             |                      |
|             |             |                      |
|             |             |                      |
|             |             |                      |
|             |             |                      |



Hints for the adjustment of the <Input Gain> actuator:

- The RX level shows the level in percent, whereas the adjustment range of the <**Input Gain**> is logarithmic in dB. Minor adjustment changes therefore result in higher changes of the level position in the RX level it requires a sensitive flair by the operator.
- The above given adjustment proposal of approximately 20 % RX level indication is given as a rule of thumb for a PLPA 50 Watt and an average line attenuation of approximately
  - 15 dB with adjacent TX / RX bands resp.
  - 20 dB with non adjacent TX / RX bands

Lower line attenuation will result in a higher RX level indication. For a higher line attenuation the displayed RX level is accordingly lower.

The input level of the equipment depends on the transmit power of the remote transmitter, the line attenuation and the settings of input attenuation and gain inside the RXF-XB. For setting the target value of the RX level, the weather conditions have to be taken into account. In case of bad weather conditions (e.g. heavy rain, snow, ice) during commissioning of PowerLink the line attenuation is higher than during good weather conditions (e.g. summertime, sunny weather). That means, the target value of the RX Level can vary between 50% and 75%.

In case of an ADC overflow check first the ADC settings according to Chapter 3.8.1 ADC Adjustments. If the ADC still overflows afterwards, make sure the switches in RX filter module are correctly set to the maximum

attenuation. Readjust the <**Input Gain**> actuator to a lower level. If the input level is still to high the transmit level of the remote transmitter has to be reduced.

In case the receive level is too low it may be required to readjust the RXF-XB module to a lower attenuation. If the actual value of the RX Level is indicated correctly, switch off PowerLink remove the RXF-XB module and mount the housing of the Receive Filter module. Now the RXF-XB module is ready for working.



In case the PowerLink works in Single Purpose Operation with an (i)SWT 3000 exclusively the Automatic Crosstalk Cancellation (AXC) function has to be deactivated by all means. For details, refer to Chapter *HF Configuration*.

### 3.20.5 RX LED Indication



Figure 3-172 CSPi LED

| State               | Reasons                                                                                                                                                                                             |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off                 | a) power off or b) system failure!                                                                                                                                                                  |
| green               | Receiver ok. Pilot alarm is off. AGC alarm is off, Signal to noise alarm is off                                                                                                                     |
| green slow blinking | Overload in receive path – input level to high).                                                                                                                                                    |
|                     | (AGC reached 100%)                                                                                                                                                                                  |
| green fast blinking | Signal to noise alarm                                                                                                                                                                               |
| red                 | MODDSP error                                                                                                                                                                                        |
| red slow blinking   | Level alarm! Pilot alarm is on                                                                                                                                                                      |
| red fast blinking   | ADC overflow, see also display overflow in the form <b><adjustments b="" rx<="" –=""><br/><b>leveling</b>&gt;. For further adjustment from the ADC ref. to <i>ADC Adjustments</i></adjustments></b> |

Telecommunication Products, PowerLink 100 and PowerLink 50, Equipment Manual C53000-G6040-C614-5, Edition 09.2023

# 3.21 Futher Configuration Settings and Adjustment Options

### 3.21.1 Configuration of Automatic Channel Equalization ACE

The PowerLink system contains an automatic channel equalizer (ACE) which equalizes attenuation distortions occurring during transmission via the high-voltage line. Equalization takes place in the receiver of the Power-Link channel, separately for voice (F2) and data (F3) services. The protection channel (F6) is not equalized. The ACE interrupts transmission of the corresponding service.

| Service 1  |                    |
|------------|--------------------|
| Start code | 1                  |
| Туре       | F2 E&M             |
| Control    | bidirectional      |
| Interval   | 0 min              |
| ACE status | in progress (0x90) |
| Equalize   | +=                 |

[sc\_ace\_ser1, 1, --\_--]

Figure 3-173 Setting of the ACE for a voice channel

| Service 2  |                    |
|------------|--------------------|
| Start code | 5                  |
| Туре       | F3 data            |
| Control    | bidirectional 🗸    |
| Interval   | 0 min              |
| ACE status | in progress (0x90) |
| Equalize   | +=                 |
|            |                    |

[sc\_ace\_ser2, 1, --\_--]

Figure 3-174 Setting of the ACE for a voice channel

| Selection                     | Setting Options    | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start code                    | 1-10               | To prohibit collision in a transit station with<br>a neighboring link, 2 corresponding terminals<br>of a link must be programmed with the <b>same</b><br>start code which is different for the next link.                                                                                                                                                                                                                             |
| Control                       | Off, bidirectional | off: ACE is off<br>bidirectional: ACE is on.<br>Both directions are equalized.<br>For F2 service, it is fixed to bidirectional.<br>For F3 service, it is configurable. It is set to<br>"bidirectional" by default if F3 bandwidth is<br>greater than or equal to 600 Hz. If the line<br>condition is not good, it can be set to "off" for a<br>better data transmission quality.<br>ACE must be set to "off" if the bandwidth is less |
| Interval (voice channel only) | 0                  | than 600 Hz.<br>If set to "0" autom. channel equali-zation has to<br>be started manually.                                                                                                                                                                                                                                                                                                                                             |
|                               | 1 to 60 min.       | If set between "1 to 60min", autom. channel<br>equalization is started at the programmed<br>intervals when no voice signal is transmitted.                                                                                                                                                                                                                                                                                            |
| Equalize                      |                    | starting the ACE                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACE status                    |                    | Display of the ACE status for the corresponding service: in progress resp. enabled                                                                                                                                                                                                                                                                                                                                                    |

#### Table 3-103 Setting options for the ACE

### 3.21.2 Adjustment Option ACE Bypass

With the menu **Adjustment – Service option**> an ACE bypass can be set for the service 1 up to 4 (depending on the system configuration). The ACE function is only available for speech and data bands.

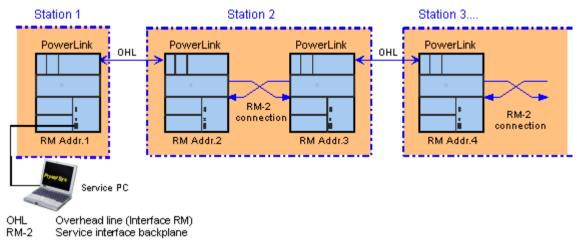
| ACE bypass |            |                  |
|------------|------------|------------------|
|            | ACE bypass | ✓                |
|            | Send       | $\triangleright$ |
|            |            |                  |

The bypass is activated with pat the corresponding service and operating the "Send" button! With the activation of the bypass the corresponding service is working without equalization.



### NOTE

The activated bypass is only available for test purposes and **causes General Alarm** because it interrupts the normal operation mode of the system.


Figure 3-175 ACE Bypass setting

### 3.21.3 Remote Monitoring / Remote Configuration RM

With the optional service "Remote Monitoring" (RM), configuration data can be transmitted between the devices of 1 or more PowerLink routes (refer also to chapter *System Description*.

Via an additional interface (RM-2) up to 5 transmission routes can be coupled. It is possible to mix PowerLink transmission links with SWT 3000 links in arbitrary sequence.

The interface RM-2 ist not available for PowerLink 50.



(dwrcprmf-120813-01 tif 1 en US)

Figure 3-176 Example of a route coupling with the RM function

| Table 3-104 | Options for the RM channel | configuration |
|-------------|----------------------------|---------------|
|             |                            |               |

| Service                           | RM Transmission                                                                                                        |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Voice (F2) only                   | The RM channel must be defined with a separate service. The number of serv-<br>ices is in this case reduced!           |
| Data (F3) only                    | The system pilot is used for the RM channel                                                                            |
| Voice and data                    | A separate RM channel is necessary which can be activated in the service configuration for data (no separate service). |
| Integrated protection F6<br>SP/MP | The guard tone of the iSWT 3000 is used for the RM transmission                                                        |
| External F6                       | The RM channel must be defined with a separate service. The number of serv-<br>ices is reduced in this case!           |
| Data Pump                         | The RM channel is transmitted with 300 Bd in the overhead of the Data Pump.                                            |

The user has an option to allow a configuration of the device via RM service. For this an additional check box is available in the **RM configuration** form (refer to *Figure 3-177*).



#### NOTE

Also with enabled RM configuration it is still **not permitted** to change the HF resp. System configuration via RM!

After the RM service has been activated in the service configuration the device address, and the RM mode has to be defined in the form PowerLink - Configuration – RM.

#### Installation and Commissioning

3.21 Futher Configuration Settings and Adjustment Options

| RM      |                              |          |   |
|---------|------------------------------|----------|---|
|         | Device address               |          | 1 |
|         | RM mode                      | Master   | • |
|         | Config via inband RM-channel |          |   |
|         |                              |          |   |
| RM-2    |                              |          |   |
|         | RM-2 mode                    | Slave    | • |
|         | RM-2 baudrate                | 19200 Bd | • |
|         |                              |          |   |
|         |                              |          |   |
| Timeout |                              |          |   |
|         | RM-1 timeout                 |          | 4 |
|         |                              |          |   |

#### [sc\_configuration\_rm, 1, --\_--]

Figure 3-177 Configuration of the RM function

| Table 3-105 | Setting | options | for the | RM | configuration |
|-------------|---------|---------|---------|----|---------------|
|             |         |         |         |    |               |

| Selection                                | Setting Options | Remarks                                                                                                            |
|------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------|
| RM device address                        | 0 to 249        |                                                                                                                    |
| RM Mode                                  | Master          | Set the <b>remote</b> station as a slave                                                                           |
|                                          | Slave           | Set the <b>remote</b> station as a master                                                                          |
| Config. via inband RM-Channel:<br>yes/no |                 | Configuration of the device via RM<br><b>permitted</b> (except HF and System<br>config)                            |
|                                          |                 | Configuration of the device via RM prohibited                                                                      |
| RM-2 Mode                                | Master          | Set the <b>corresponding</b> RM-2 interface as a slave                                                             |
|                                          | Slave           | Set the <b>corresponding</b> RM-2 interface as a master                                                            |
| RM-2 Baud rate                           | 9600 Bd         | If there is a route connection to an SWT 3000 adjust <b>9600 Bd</b>                                                |
|                                          | 19 200 Bd       | For PowerLink connection                                                                                           |
| RM-1 Timeout                             | 4 – 60 s        | Check also the timeout for the serial interface in the menu <b><options-< b=""><br/>Connection&gt;</options-<></b> |

### 3.21.4 PowerLink Alarm Configuration - ALR Module

The ALR module is required for the output of alarms to the Alarm Interface connector and for the signal processing of the IRIG-B clock synchronization input. For more details of IRIG-B settings refer to Chapter Setting options for the local clock synchronization of the iSWT 3000.

3.21 Futher Configuration Settings and Adjustment Options

#### Alarm Configuration in PowerLink

In the PowerLink100 max. 2 ALR alarm modules can be integrated.

In the PowerLink50 1 ALR alarm module can be integrated.

They have to be defined in the PowerLink system configuration.

The allocation of the system alarms to the relays of the ALR modules is user selectable. The default settings for the alarms are shown in the figure below

|               | ALR1-1 | ALR1-2 | ALR1-3       | ALR2-1      | ALR2-2 | ALR2-3 |     |
|---------------|--------|--------|--------------|-------------|--------|--------|-----|
| GENALR        |        |        |              |             |        |        |     |
| TXALR         |        |        |              |             |        |        |     |
| RXALR         |        |        | $\checkmark$ |             |        |        |     |
| SNALR         |        |        |              |             |        |        |     |
| NUALR         |        |        |              |             |        |        |     |
| REMALR        |        |        |              |             |        |        |     |
| F6SV-Service1 |        |        |              |             |        |        |     |
| F6SV-Service2 |        |        |              |             |        |        |     |
| F6SV-Service3 |        |        |              |             |        |        |     |
| F6SV-Service4 |        |        |              |             |        |        |     |
| DPALR         |        |        |              |             |        |        |     |
| FSK1ALR       |        |        |              |             |        |        |     |
| FSK2ALR       |        |        |              |             |        |        |     |
| FSK3ALR       |        |        |              |             |        |        |     |
| FSK4ALR       |        |        |              |             |        |        |     |
| RXALR-iSWT-1  |        |        |              |             |        |        |     |
| Alarm delay   |        |        |              |             |        |        |     |
| . turn doidy  |        |        |              |             |        |        |     |
|               |        |        |              | Alarm delay |        |        | 5 s |
|               |        |        |              |             |        |        |     |

[sc\_configuration\_alr, 1, --\_-

Figure 3-178 Default settings of the system alarms for 2 ALR modules

ALR1-1 up to ALR1-3 = ALR module 1 alarm output 1 up to 3 ALR2-1 up to ALR2-3 = ALR module 2 alarm output 1 up to 3

#### Adjustment of the ALR1-3 resp. ALR2-3

The output ALR1-3 can be allocated to the RXALR (former EALR) output of the iSWT1. The output ALR2-3 can be allocated to the RXALR output of the iSWT2 (see figure below). In this case **no additional alarm allocation** to these outputs is possible.

3.21 Futher Configuration Settings and Adjustment Options

|               | ALR1-1 | ALR1-2 | ALR1-3 | ALR2-1      | ALR2-2 | ALR2-3 |  |
|---------------|--------|--------|--------|-------------|--------|--------|--|
| GENALR        |        |        |        |             |        |        |  |
| TXALR         |        |        |        |             |        |        |  |
| RXALR         |        |        |        |             |        |        |  |
| SNALR         |        |        |        |             |        |        |  |
| NUALR         |        |        |        |             |        |        |  |
| REMALR        |        |        |        |             |        |        |  |
| F6SV-Service1 |        |        |        |             |        |        |  |
| F6SV-Service2 |        |        |        |             |        |        |  |
| F6SV-Service3 |        |        |        |             |        |        |  |
| F6SV-Service4 |        |        |        |             |        |        |  |
| DPALR         |        |        |        |             |        |        |  |
| FSK1ALR       |        |        |        |             |        |        |  |
| FSK2ALR       |        |        |        |             |        |        |  |
| FSK3ALR       |        |        |        |             |        |        |  |
| FSK4ALR       |        |        |        |             |        |        |  |
| RXALR-iSWT-1  |        |        |        |             |        |        |  |
| RXALR-iSWT-2  |        |        |        |             |        |        |  |
| Alarm delay   |        |        |        |             |        |        |  |
|               |        |        |        | Alarm delay | ,      |        |  |
|               |        |        |        | Alami uelay |        |        |  |

Figure 3-179 Allocation of the RXALR output from the iSWT 3000 to an alarm contact

It is possible to rank the alarm output RXALR of the integrated protection signaling device SWT 3000 to the receive alarm, unblocking impulse or to the input limitation alarm (refer to 3.18.5 Timer Setting Options for the iSWT 3000).

#### F6SV Service 1 to 4 Alarm

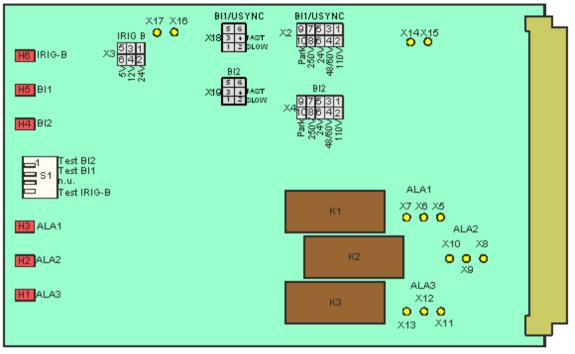
The F6SV alarm (F6 Supervision alarm) is a supervision of the iSWT 3000 transmit level if it is working in the alternate multi purpose (AMP) operation mode with service 1 to 4. The alarm is activated if the level of the F6 transmit signal given from an external or iSWT 3000 is lower than allowed.

The supervisory is necessary, because during normal working conditions of a PLC link, the protection signal is only available inside the iSWT 3000 transmitter and not given to the far end.

In case of an iSWT 3000 this alarm can't be tested. Only in case of a transmitter problem the alarm is given. In case of an external SWT 3000 the F6SV alarm can be tested by reducing the transmit level of the external SWT 3000 equipment.

Any F6SV alarm indicates a problem in the (i)SWT transmitter!

#### **Additional Adjustments**


Additional a common delay time for all relays can be adjusted in the range from 1 up to 15 sec.

#### **Binary Inputs**

The module ALR provides 2 electrically isolated inputs BI1 and BI2 with selectable input voltage levels. As the circuits for the binary inputs comprise rectification, differential DC input signals of either polarity can be connected. The output signals of the circuits have TTL level. Binary input BI1 is alternatively configurable as an input for entering IRIG-B signals.

#### **Relay Outputs**

The alarm module comprises as well 3 alarm outputs, switched by relay (K1 - K3). The 3 relays provide change over contacts. In the standard setup the break contacts (NC) are used.



[tddsteam-120813-01.tif, 1, en\_U!

Figure 3-180 Display and setting elements on the ALR module

#### **Visual Indication**

The module ALR provides a LED for visual indication of the state for each binary input and for each alarm output. They are visible after removal of the front panel. The significations are shown in the table below:

| LED | Indication               |
|-----|--------------------------|
| H6  | IRIG-B Input energized   |
| H5  | Binary Input 1 energized |
| H4  | Binary input 2 energized |
| Н3  | Alarm output 1 activated |
| H2  | Alarm output 2 activated |
| H1  | Alarm output 3 activated |

#### Table 3-106 ALR Indication

#### **Test Switch S1**

For test purposes the module ALR provides a switch for each of the binary input circuits and for the IRIG-B circuit. Closing a switch sets the output of the assigned circuit to the active state.

| Switch | Function            |
|--------|---------------------|
| S1.1   | Binary Input 2 test |
| S1.2   | Binary input 1 test |
| S1.3   | n.u.                |
| S1.4   | IRIG-B test         |

#### ALR Jumper Settings

The function of the ALR jumpers is shown in the table below.

#### Table 3-107 ALR Jumper Settings

| Jumpe          | ers                |                                 |                     |              |              |
|----------------|--------------------|---------------------------------|---------------------|--------------|--------------|
|                | X2                 | Х3                              | X4                  | X5 – X13     | X14 – X17    |
| Binary         | / Input 1 – used   | with Sync Pulse                 | ł                   | 1            |              |
| 250 V          | X2 – 7/8 *)        | open                            |                     |              | X14 – X15 *) |
| 110 V          | X2 – 1/2           | open                            |                     |              | X14 – X15    |
| 48 V /<br>60 V | X2 – 3/4           | open                            |                     |              | X14 – X15    |
| 24 V           | X2 – 5/6           | open                            |                     |              | X14 – X15    |
| Debou          | ince time          | ≈ 0.6 ms<br>≈ 1.0 ms            | X18 – 3/4 X18 – 1/2 |              |              |
| 24 V           | open               | X3 – 1/2                        |                     |              | X16 – X17    |
| 12 V           | open               | X3 – 3/4                        |                     |              | X16 – X17    |
| 5 V            | open               | X3 – 5/6                        |                     |              | X16 – X17    |
| Binary         | / Input 2 – for fu | ture application                |                     | ł            |              |
| 250 V          |                    |                                 | X4 – 7/8 *)         |              |              |
| 110 V          |                    |                                 | X4 – 1/2            |              |              |
| 48 V /<br>60 V |                    |                                 | X4 - 3/4            |              |              |
| 24 V           |                    |                                 | X4 – 5/6            |              |              |
| Debou          | ince time          | ≈ 0.6 ms ≈ 1.0<br>msX4 – 7/8 *) | X19 – 3/4 X19 – 1/2 |              |              |
| Alarm          | Output 1 Relay     | К1                              | L                   | •            |              |
| NC             |                    |                                 |                     | X5 – X6 *)   |              |
| NO             |                    |                                 |                     | X6 – X7      |              |
| Alarm          | Output 2 Relay     | К2                              |                     |              |              |
| NC             |                    |                                 |                     | X8 – X9 *)   |              |
| NO             |                    |                                 |                     | X9 – X10     |              |
| Alarm          | Output 3 Relay     | К3                              |                     |              |              |
| NC             |                    |                                 |                     | X11 – X12 *) |              |
| NO             |                    |                                 |                     | X12 – X13    |              |

NC Break contact

NO Make contact

\*) Default setting

For the pin assignment of the Alarm Interface connector on the CFS-2 connector panel refer to the Chapter *Installation*.

### 3.21.5 Adjustment Options: F6 Supervision and compander

The form <**Adjustment – Service option**> offers the activation of the F6 supervision (only in case of alternate multi purpose operation with the corresponding service), the inverting of the S6 resp. S2 control wire and the activation of the compander.

| Service 1 | Service 2 | Service 3 | Service 4 |                |         |
|-----------|-----------|-----------|-----------|----------------|---------|
|           |           |           |           |                |         |
| Service 1 |           |           |           |                |         |
|           |           |           |           |                |         |
|           |           |           |           | Туре           | F2 E&M  |
|           |           |           |           |                | -       |
|           |           |           |           | F6 supervision |         |
|           |           |           |           |                | _       |
|           |           |           |           | Invert S6      |         |
|           |           |           |           | Invert C2      |         |
|           |           |           |           | Invert S2      |         |
|           |           |           |           | Compander      | off 🛛 🛨 |
|           |           |           |           | compandor      | •       |
|           |           |           |           |                |         |



#### Compander

The name is a combined word of compressing and expanding. The electronic circuit that does this is called a compander and works by compressing or expanding the dynamic range of an analog voice signal.

The objective is to raise low speech levels, which would make the transmission system most sensitive to noise disturbances, in the compressor of the transmitter so that these low speech signals are transmitted at an increased level over the line.

The dynamic expander in the receiving equipment serves to reduce the level raised in the compressor and, with it, the level of the noise signals picked up along the transmission route.

### 3.21.6 Command Blocking

Each command can be blocked independently for maintenance purpose. The control will be managed manually via software configuration (on / off) or any unused binary IFC input. Command input block is to cut off command transmission to remote side and command output block is to cut off command output on local side. The non-blocked commands are in normal operation.

If the command is activated during blocking on, the command will not be transmitted. If the command is already in transmission before blocking on, the transmitting command will not be blocked.

Block control is configurable for all protection mode under PowerSys > Adjustment > Maintenance mode. The changes are online parameter without device reset.

3.21 Futher Configuration Settings and Adjustment Options

| Command | Input        | Output | Blocking    |
|---------|--------------|--------|-------------|
| (1)     |              |        | On 🔻        |
| (2)     |              |        | On 🗸        |
| (3)     |              |        | On 🔻        |
| (4)     | $\checkmark$ |        | IFC-1/IN1 🗸 |
| (5)     |              |        | IFC-1/IN2 🗸 |
| (6)     |              |        | IFC-1/IN3 🗸 |
| (7)     |              |        | Off 🛛 🔻     |
| (8)     |              |        | Off 🛛 🔻     |

[sc\_command\_blocking, 1, --\_--]

Figure 3-182 Command Blocking

| Command | Blocking                                                                                              |
|---------|-------------------------------------------------------------------------------------------------------|
| (1)     | Command input is blocked (On = blocked)                                                               |
| (2)     | Command output is blocked                                                                             |
| (3)     | Command input and output are blocked                                                                  |
| (4)     | Command input is blocked by binary input IFC-1/IN 1<br>state<br>(BI on = blocked, BI off = unblocked) |
| (5)     | Command output is blocked by binary input IFC-1/IN 2 state                                            |
| (6)     | Command input and output are blocked by binary input IFC-1/IN 3 state                                 |
| (7)(24) | Remaining commands are in normal operation without blocking. (Off = unblocked)                        |

Command block state is indicated by:

- PU4 LED\_OK slow blinking (At least one command is blocking)
- Event log entry (command input/output block on/off for maintenance [xxx]) Internal message for command during blocking.

# 4 PowerSys and Auxiliary Software Tools

| 4.1  | Overview                                | 346 |
|------|-----------------------------------------|-----|
| 4.2  | PowerSys Installation                   | 347 |
| 4.3  | PowerSys Connection via TCP/IP          | 356 |
| 4.4  | PowerSys Online Connection              | 360 |
| 4.5  | MemTool for Firmware Upgrade Tool       | 367 |
| 4.6  | Programming of CSPi Flash Memory        | 374 |
| 4.7  | Programming of vMUX Flash Memory        | 383 |
| 4.8  | Programming of PU4 Flash Memory         | 389 |
| 4.9  | PLPAStraps for Jumper Settings          | 397 |
| 4.10 | SWTStraps for Jumper Settings           | 400 |
| 4.11 | MergeTool for IEC61850 with (i)SWT 3000 | 404 |
| 4.12 | Measurement Tool                        | 415 |
|      |                                         |     |

### 4.1 Overview

The service program PowerSys is required for commissioning, maintenance, and diagnostics of the PowerLink or SWT 3000 units. This chapter gives a description of this program including the following points:

- System requirements of the service PC
- Installation of the service program
- Starting the service program
- Menu options and functions of the PowerSys buttons
- Description of the event recorder of the SWT 3000
- Firmware download or upgrade
- The program UDE MemTool
- Programming the PowerLink (CSPi and vMUX) resp. iSWT 3000 with MemTool
- Installation of the program PLPAStraps
- Description of the **PLPAStraps** program for PLPA adjustments

All **forms for system configuration and adjustments** are described with corresponding examples in the chapter *Commissioning* and **not** included in this chapter.

## 4.2 PowerSys Installation

### 4.2.1 Installation

The service program PowerSys is delivered as a zip file on our SIOS Internet platform for download. Run the setup.exe for the installation. The program leads you through the installation.



Figure 4-1 Setup Splash Screen of the Service Program PowerSys

| 👆 Siemens PowerSys V3. x                                    | ×<br>PowerSys                                                                                                                                   |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Installing Components                                       | Installing Siemens PowerSys V3.x                                                                                                                |
| <ul> <li>Prerequisites</li> <li>Siemens PowerSys</li> </ul> | Please wait while the Setup Wizard installs Siemens PowerSys V3.x. This may take<br>several minutes.<br>Status: Updating component registration |
|                                                             | < <u>B</u> ack <u>N</u> ext > <b>Cancel</b>                                                                                                     |

Figure 4-2 Installation of the Service Program PowerSys

New installed software PowerSys, MeasurementTool and MergeTool are located at Windows Startup Menu > Siemens Telecommunication Products.

4.2 PowerSys Installation

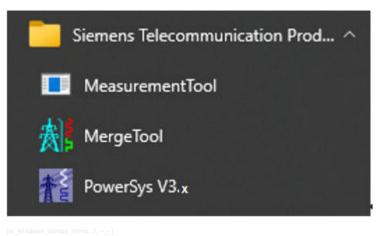
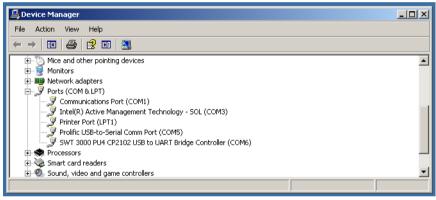




Figure 4-3 Windows Startup Menu

With the installation setup of the PowerSys software a hardware PU4 USB driver is installed automatically. The driver is required for the connection of the service PC to the USB interface of the SWT 3000 on PU4 module. The installation and activation of the driver is managed automatically by the Windows hardware installation wizard for Plug-and-Play devices with first connection of the PC to the SWT 3000. The COM-port number is assigned automatically to the next free serial port.



[scdeport-260313-01.tif, 1,

Figure 4-4 SWT 3000 PU4 USB to UART Bridge Controller

### 4.2.2 User Management

#### **User Management**

For access to device, 3 different user levels are available, each with an individual password. PowerSys does not require a password for operation. The offline configuration of a device is possible without a password.

Control

The configuration and settings of device can only be read. Changing of settings is not possible.

• Expert

The user level Expert is allowed to configure the device. A reset of the device via the service PC is possible. Password change is not permitted.

• Admin

The user level Admin enables full access to the device including password change and firmware update.

The device is delivered by factory without passwords. You can set a password for each user for the connection optionally.

To assign an initial password for the first time, leave the field current password blank and select one of the 3 different users. Each user can be assigned with an individual password.

If a password protects the device, perform the following instructions to change the password:

- Enter the current password.
- Enter the new password.
- Confirm the new password in the field Confirm password.

The password is requested from the device before the connection between the service PC and the device is established. Without entering the correct password, a connection to the device is not possible. PowerSys does not require a password for offline configuration.

If the password is lost, send the CSPi or the PU4 module to the factory for resetting it to the default values. Admin user can change all user passwords in menu user management.

| User mana | gement  |         |  |
|-----------|---------|---------|--|
| •         |         |         |  |
| User name | Roles   | Enabled |  |
| Control   | Control |         |  |
| Expert    | Expert  |         |  |
| Admin     | Admin   |         |  |

\_user\_management, 1, --\_--]

Figure 4-5 User management

Each user can change their own password in the change password dialog. You must click "Program device" toolbar button after changing the password. Otherwise, the password is lost after the reset of device.

4.2 PowerSys Installation



[sc\_change\_password, 1, --\_-]

Figure 4-6 Change password dialog

#### Logon

If the password is set for the user, the logon dialog is prompted when connecting to the device. Enter the right username and password before logon to the device.

| Log on to device             |  |
|------------------------------|--|
| Enter user name and password |  |
|                              |  |
| User name Admin 🔨            |  |
| Password                     |  |
|                              |  |
|                              |  |

Figure 4-7 Log on to device dialog

#### **Password complexity**

Password complexity is not enforced by PowerSys. It is possible to access the device without password or with an unsecure password. When setting the new password, the password complexity indication (low / middle / high) is shown near the password entry field.

It is recommended to set the password according to the highest password complexity (high). Password complexity and rules for indication check:

- a) Minimum password length of 8 characters (max. length 20 characters)
- b) At least one upper case letter
- c) At least one lower case letter
- d) At least one digit
- e) At least one special character (e.g. !@#\$)

| Password complexity indication | Comments                                       |
|--------------------------------|------------------------------------------------|
| Low                            | 2 or less of these rules matched               |
| Medium                         | 3 rules matched with mandatory rule a)         |
| High                           | 4 or more rules matched with mandatory rule a) |

Device is delivered by factory without passwords. Optionally you can set a password for each user level for the connection. For assigning of an initial password for the first time, leave the field current password blank and select one of the 3 different user levels. Each user level can be assigned with an individual password.

If a password protects the device, perform the following instructions to change the password:

- Enter the current password.
- Enter the new password.
- Confirm the new password in the field Retype Password.

The password is requested from the device before the connection between the service PC and the device is established. Without entering the correct password, a connection to the device is not possible. If the password is lost, send the CSPi or the PU4 module to the factory for resetting to the standard values.

### 4.2.3 Firmware Overview

With the device information view, you can check if the firmware release of the device (Actual) corresponds with the firmware release of the connected service program PowerSys (Target).

When the firmware release of the device (Actual) or one of its firmware components does not correspond with the firmware release of the service program PowerSys (Target), the shown version is marked yellow and shows a target version in tooltips. That means, the firmware release of the device (Actual) has a newer or older version than the Target of the service program PowerSys (For example a firmware hotfix is programmed to the device.)

Device overview information shows three version numbers:

- PowerSys version
- Device parameter database (DDB) version (306 means V3.6)
- Firmware version

Verify the PowerSys current and new release and upgrade the device firmware to the matching version.

| PowerSys         V3.7.23         DDB         306         Firmware         V3.7.23 | Overview |                   |     |     |          |         |
|-----------------------------------------------------------------------------------|----------|-------------------|-----|-----|----------|---------|
|                                                                                   | PowerSy  | <b>/s</b> V3.7.23 | DDB | 306 | Firmware | V3.7.23 |

[sc\_device\_general\_overview, 2, --\_-

Figure 4-8 Device > General > Overview

| ponent          | Targ     | et version: 01.11.01 |          |            |          |
|-----------------|----------|----------------------|----------|------------|----------|
| PU4 CON         | 01.10.09 | PU4 BOOT             | 01.04.01 | PU4 HW     | 00.00.01 |
| PU4 MON         | 01.04.00 | DLE HW               | 00.00.02 | DLE Type   | D        |
| DLE FPGA        | 00.01.81 | PU4 FPGA             | 02.00.17 | PU4 DSP    |          |
| PU4 DSP Variant | Not used | EN100                | 00.00.00 | EN100 Type |          |
| IFC-1 FW        | 00.00.00 | IFC-1 HW             | 01.00.06 | IFC-1 Type | IFC-D/P  |
| IFC-2 FW        | 00.00.00 | IFC-2 HW             | 01.00.06 | IFC-2 Type | IFC-D/P  |
| IFC-3 FW        | 00.00.00 | IFC-3 HW             | 01.00.06 | IFC-3 Type | JFC-D/P  |
| IFC-4 FW        | 00.00.00 | IFC-4 HW             | 01.00.06 | IFC-4 Type | IFC-D/P  |
| FOM-1 FW        | -        | FOM-1 HW             |          | FOM-1 Type |          |
| FOM-2 FW        | 00.00.02 | FOM-2 HW             | 00.00.00 | FOM-2 Type | FOM      |

Figure 4-9

SWT 3000 or iSWT > Device > General > Component

| Component          |          |            |          |
|--------------------|----------|------------|----------|
| CSPI-HW-Release    | 2        | MODDSP     | 00.02.00 |
| CSPCON-Boot        | 00.00.10 | DPDSP      | 00.00.32 |
| CSPCON-Monitor     | 00.00.34 | FSKDSP     | 00.10.00 |
| CSPCON-Application | 00.06.03 | RFFPGA     | 00.04.17 |
| CIFPLD             | 2        | SMUXFPGA   | 00.03.03 |
| VEXCON             | 00.02.00 | iMUXFPGA   | 00.01.05 |
| IPCON-Bootloader   | 00.02.02 | MUXIECFPGA | 00.01.04 |
| IPCON-Kernel       | 00.03.02 | EMUXFPGA   | 00.02.01 |
| IPCON-Kernel-HW    | 00.01.04 | VMUXFPGA   | 00.01.12 |
| IPCON-Application  | 00.06.02 |            |          |
|                    |          |            |          |



Figure 4-10 PowerLink > Device > General > Component

| VMUX-HW-Release         | 1        | MUXDSP      | 00.14.01 |
|-------------------------|----------|-------------|----------|
| VMUXCON-Boot            | 4        | CODDSP      | 00 13 00 |
| VMUXCON-Monitor         | 00.01.01 | VMUX-IOFPGA | 00.02.02 |
| VMUXCON-<br>Application | 00.45.01 |             |          |
|                         |          |             |          |

[sc\_pl\_vmux\_general, 1, --\_-

Figure 4-11 PowerLink > vMUX > General

#### 4.2.4 Parameter Compatibility

With the service program PowerSys versions V3.6 and higher, multiple installation is not possible. Older versions shall be uninstalled via Start > Control Panel > Add or Remove Programs. Versions less than V3.6 (e.g., P3.5.188) can be installed in parallel.

One PowerSys supports full read only access to all P3.5.xxx firmware release and full read / write access since P3.5.185 firmware.

The device firmware is located under PowerSys installation path: ...\PowerSys\Firmware

| File name                  | Description                                                          |
|----------------------------|----------------------------------------------------------------------|
| AllInOne_PU4_Vx.y.z.jnk    | All in one firmware image for SWT 3000 / PU4 board.                  |
| AllInOne_CSPi_Vx.y.z.jnk   | All in one firmware image for PowerLink / CSPi board.                |
| AllInOne_VMUX_Vx.y.zzz.jnk | All in one firmware image for PowerLink / vMUX board.                |
| Package\*.*                | Firmware image for individual firmware component, e.g. DLE, SWT_TPOP |

In normal case, the version number of PowerSys, firmware and parameter database shall be matching. If want to upgrade firmware release (e.g. V3.6), you need to follow these steps:

4.2 PowerSys Installation

- Install PowerSys V3.6 on your PC (Setup.exe)
- Upgrade device firmware V3.6 (AllInOne\_\*.jnk) using Memtool
- Upgrade parameter database release

When creating a device parameter database file, the latest version is used by default. But it is possible to select a previous release.

PowerSys will check parameter compatibility as following procedure when sending offline configuration to device or online change the device configurations:

Check if programmed DDB file is matched with actual device parameter database release. In case of mismatch DDB version, a message dialog will prompt. Click "Yes" will update device parameter database to matched version.

PowerSys does not match with device parameter database V3.5.xxx. Do you want to update device parameter database to V3.7.xxx?

Please check if device firmware is already updated to same version as PowerSys. If do not want to update parameter database version, you must use matched PowerSys release.

Check if PowerSys supports actual device parameter database release. In case of connecting to an unsupported old firmware release. A message dialog will prompt to switch to read-only access. Click "Yes" button disable all the configurations for editing.

PowerSys does not support the configuration of device parameter database V3.5.xxx. Do you want to continue with read-only access?

Check if configured parameters are supported in actual device firmware. PowerSys will check if the configurated parameters for new features are supported in actual device firmware. A message dialog will prompt in case of mismatch. Clicking "Yes" button will discard these unsupported parameters.

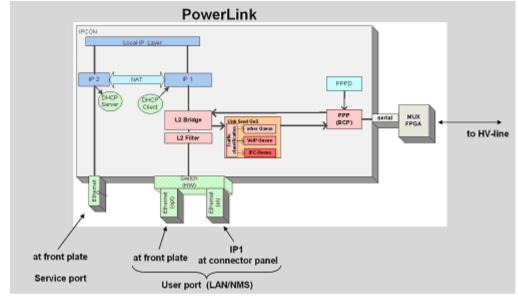
Some configured parameters do not support in actual device firmware V3.6.xxx. Do you want to ignore these parameters and continue the configuration?

### 4.2.5 Release Upgrade Check

After updating the firmware of the device with MemTool, connect the PowerSys to the PowerLink RM-1 interface or SWT 3000 USB interface.

If the firmware release is mismatched with device parameter database, PowerSys will activate the release update message dialog:

Firmware V3.7.xxx does not match with device parameter database V3.6.111. Do you want to update device parameter database to V3.7.xxx?


Verify the current firmware version and device parameter database release, click Yes for updating the release information in the device.

### 4.2.6 Multiple Language Support

From PowerSys main menu, you can select your preferred language. Currently supported languages: English / German / Russian / Spanish. The UI text and event log in PowerSys is displayed in the selected language immediately.



# 4.3 PowerSys Connection via TCP/IP



### 4.3.1 Ethernet-Interface of PowerLink – Block Diagram

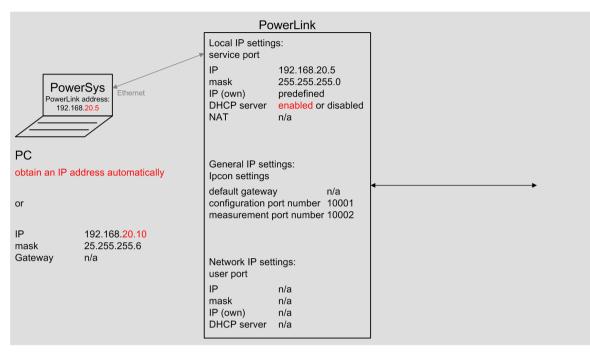
[scethint-120813-01.tif, 1, --\_-

Figure 4-12 Ethernet Interface Block Diagram

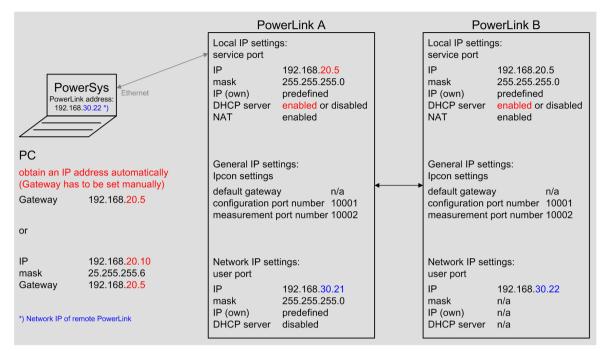
PowerLink default settings:

| Service interface of PowerLink:    | 192.168.20.5  |
|------------------------------------|---------------|
| DHCP Server IP-Address Pool begin: | 192.168.20.10 |

### 4.3.2 Settings for Access to Local PowerLink via Service Port







Figure 4-13 Local Access with PowerSys to PowerLink via Service Port

The PC is directly connected to the service port of the local PowerLink. The PC can obtain an IP address automatically from PowerLink, if the PowerLink DHCP server is enabled.

Also it is possible to apply the IP address to the PC manually. In this case the IP address settings in PowerLink and in the PC have to fit together.

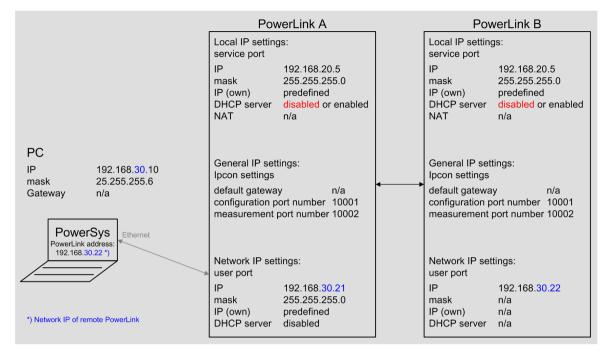
To get access to the local PowerLink the IP address 192.168.20.5 has to be adjusted in the program PowerSys (Menu: Options – Connection)

### 4.3.3 Settings for Access to remote PowerLink via Service Port



[dwaccpsy-120813-01.tif, 1, -\_\_-]

Figure 4-14 Access with PowerSys via Service Port to the Remote Equipment (B)


The PC is directly connected to the service port of the local PowerLink (PowerLink A). The PC can obtain an IP address automatically from PowerLink, if the PowerLink DHCP server is enabled.

Also it is possible to apply the IP address to the PC manually. In this case the IP address settings in PowerLink and in the PC have to fit together.

To get access with PowerSys to the remote PowerLink (PowerLink B), the IP- address setting in PowerSys has to be the network IP address of the remote PowerLink (PowerLink B). This is shown in the example above, where the IP address 192.168.30.22 (network IP address of PowerLink B) has to be given in PowerSys for getting connection to PowerLink B.

Also the Gateway in the local PowerLink has to be set correctly. In the example above, the Gateway is the IP address of the local PowerLink A, that means 192.168.20.5.

### 4.3.4 Settings for Access to any PowerLink via User Port



[dwaccps2-120813-01.tif, 1, --\_--]

Figure 4-15 Access with PowerSys to PowerLink B via User Port

The PC is connected to the user port. The IP address has to be applied manually to the PC. The IP address settings of the network and of the PC have to fit together. This is shown in the example above, where the IP address 192.168.30.22 (network IP address of PowerLink B) has to be given in PowerSys to get in connection with PowerLink B.

To get access with PowerSys to the remote PowerLink (PowerLink B), the IP- address setting in PowerSys has to be the network IP address of the remote PowerLink (PowerLink B).

A special Gateway setting is not necessary for this connection, because the PC and the PowerLink B are in the same IP address range.

# 4.4 PowerSys Online Connection

### 4.4.1 The PowerLink Event Log

#### **General Information**

Alarms of the PowerLink (without iSWT alarms; iSWT alarms are recorded in the iSWT event memory) are provided with time and date and a registration number before they are entered in the event log. The following events are entered:

- Detected alarms
- Program restart
- Changing date and/or time
- Changing the configuration

Up to 4000 entries with a time resolution of 1 ms are possible. They are read out by the service PC and this is also possible from the remote station with Remote Monitoring. In case of an overflow the oldest entry in the event memory is overwritten.

To read the event log, press the button "Start event reading". The PowerSys program has to be connected to the device.

| Event log                           |            |              |             |                                                         |  |
|-------------------------------------|------------|--------------|-------------|---------------------------------------------------------|--|
| O (1) (1) 368 of 2007 events loaded |            |              |             |                                                         |  |
| No.                                 | Date       | Time         | Group-Event | Description                                             |  |
|                                     | 2021-07-19 | 13:23:32.331 | 3/1         | Last system startup after powerup or reset.             |  |
|                                     | 2021-07-19 | 13:23:49.751 | 3/18        | AXC adjustment started                                  |  |
|                                     | 2017-05-08 | 10:20:21.311 | 3/20        | ACE adjustment started                                  |  |
|                                     | 2021-08-04 | 12:20:27.861 | 3/15        | AGC alarm changed from on→off                           |  |
|                                     | 2021-08-04 | 12:32:55.371 | 4/5         | INFO: Datapump synchronized                             |  |
|                                     | 2021-08-04 | 12:13:56.451 | 4/6         | INFO: Datapump Blockerror(s)                            |  |
| 2000                                | 2021-08-04 | 12:33:49.317 | 2/148       | ALA: NDALR received from remote device: [on> off]       |  |
| 1999                                | 2021-08-04 | 12:33:01.140 | 2/162       | ALA: vMUX non urgent alarm: [on> off]                   |  |
| 1998                                | 2021-08-04 | 12:33:00.49  | 2/148       | ALA: NDALR received from remote device: [off> on]       |  |
| 1997                                | 2021-08-04 | 12:32:56.377 | 2/40        | ALA: RXALA=NDALR when a service F6 is active: [on> off] |  |
| 1996                                | 2021-08-04 | 12:32:56.340 | 2/35        | ALA: xMUX link is not synchronized: [on> off]           |  |
| 1995                                | 2021-08-04 | 12:32:55.380 | 2/32        | ALA: Datapump is not synchronized: [on> off]            |  |
| 1994                                | 2021-08-04 | 12:32:55.379 | 4/5         | INFO: Datapump synchronized                             |  |
| 1993                                | 2021-08-04 | 12:32:46.969 | 2/128       | ALA: PLE-1/PLPA-1 transmitter alarm: [on> off]          |  |
| 1992                                | 2021-08-04 | 12:32:46.896 | 4/14        | INFO: Datapump started                                  |  |
| 1991                                | 2021-08-04 | 12:32:46.847 | 2/8         | ALA: Automatic Gain Control (AGC) alarm: [on> off]      |  |
| 1990                                | 2021-08-04 | 12:32:45.796 | 2/9         | ALA: System Pilot Level (SYSPIL) alarm: [on> off]       |  |
| 1989                                | 2021-08-04 | 12:32:45.618 | 2/114       | ALA: iSWT-1 receiver alarm: [on> off]                   |  |
| 1988                                | 2021-08-04 | 12:32:45.618 | 2/115       | ALA: iSWT-1 non-urgent alarm: [on> off]                 |  |
| 1987                                | 2021-08-04 | 12:32:45.617 | 2/113       | ALA: iSWT-1 general alarm: [on> off]                    |  |

[sc\_event\_log, 1, --\_

Figure 4-16 The PowerLink event log in the PowerSys service program

### Display of the Entries in the Event Log

For better understanding of the event recorder entries, time and date on the PowerLink RTC should be set with PowerSys before starting operation! During power off, time and date is saved on the CSPi for at least 5 hours. The information of the event log are saved in a non-volatile memory without limitation.

### Table 4-1 Event log entries

| Grp  | Explanation                                                                              |
|------|------------------------------------------------------------------------------------------|
| No   | Event number                                                                             |
|      | Entered from the PU module from 0 to 9999. After 9999 the event-counter restarts with 0! |
| Date | year-month-day                                                                           |
| Time | hour:minute:second.msecond                                                               |

4.4 PowerSys Online Connection

| Grp         | Explanation                        |
|-------------|------------------------------------|
| Group-Event | group identifier, event identifier |
| Description |                                    |

In the first lines (up to 7, depending on the configuration of the PowerLink) are **fixed records** and displayed **without** event number:

### Table 4-2Fixed entries in the event log

|   | Grp | Evt | Explanation                         |
|---|-----|-----|-------------------------------------|
| 1 | 3   | 1   | Last system start-up                |
| 2 | 3   | 18  | Last AXC sequence started           |
| 3 | 3   | 20  | Last ACE sequence started           |
| 4 | 3   | 15  | Last AGC alarm on/off               |
| 5 | 4   | 5   | Last Data Pump synchronization      |
| 6 | 4   | 6   | Last Data Pump block error(s)       |
| 7 | 5   | 1   | Last successful RTC synchronization |

### Table 4-3Group numbers

| Grp | Explanation |
|-----|-------------|
| 1   | Errors      |
| 2   | Alarm       |
| 3   | System      |
| 4   | Datapump    |
| 5   | RTC         |
| 6   | RM          |
| 7   | PowerSys    |

## 4.4.2 The iSWT 3000 Event Recorder

### **General Information**

Protection commands and alarms of the iSWT are provided with time and date and a registration number before they are entered in the event memory. The following events are entered:

- Incoming protection commands from IFC-D/P
- Outgoing protection commands to the IFC-D/P
- Detected alarms
- Program restart
- Changing date and/or time
- Changing the configuration

Up to 8192 non volatile event entries with a time resolution of 1 ms are possible. The service PC reads out the entries. The readout is also possible from the remote station with remote monitoring. If there is an overflow, the oldest entry in the event memory is overwritten.

To read the event log, press the button "Start event reading". The PowerSys program has to be connected to the device. It is available in **<iSWT-x / Event log**>.

| Allev | vents 🔻    | 24           |             | 28 of 8184 events loaded                            |
|-------|------------|--------------|-------------|-----------------------------------------------------|
| No.   | Date       | Time         | Group-Event | Description                                         |
|       | 2022-01-13 | 11:49:38.0   | 1/1         | program started                                     |
|       | 2021-08-18 | 12:55:32.141 | 3/20        | clock synchronisation (local or remote) successfull |
|       | 2022-01-13 | 11:49:36.671 | 3/25        | device configuration programmed in FLASH            |
|       | 2022-01-13 | 11:49:40.71  | 3/91        | active line from now on is LID1                     |
| 8120  | 2022-01-14 | 11:35:04.543 | 3/36        | PowerSys connected                                  |
| 8119  | 2022-01-14 | 11:33:50.573 | 3/37        | PowerSys disconnected                               |
| 8118  | 2022-01-14 | 11:32:40.590 | 3/36        | PowerSys connected                                  |
| 8117  | 2022-01-14 | 10:46:39.855 | 3/37        | PowerSys disconnected                               |
| 8116  | 2022-01-14 | 10:24:20.528 | 3/36        | PowerSys connected                                  |
| 8115  | 2022-01-13 | 15:10:30.11  | 3/37        | PowerSys disconnected                               |
| 8114  | 2022-01-13 | 14:55:12.433 | 3/36        | PowerSys connected                                  |
| 8113  | 2022-01-13 | 14:55:07.458 | 2/25        | IED X POTT RX (command output 1 OFF)                |
| 8112  | 2022-01-13 | 14:55:07.443 | 2/17        | IED X POTT TX (command input 1 OFF)                 |
| 8111  | 2022-01-13 | 14:55:07.443 | 3/37        | PowerSys disconnected                               |

:\_event\_log, 2, --\_--]

Figure 4-17 Event log

|            | Function                                                                                            |
|------------|-----------------------------------------------------------------------------------------------------|
| All events | Event log type filter for all events, command only or alarm only. Only supported for SWT event log. |
| 24         | Select how many entries of event log you want to read out, default number is 24.                    |
| 0          | Start or reload event log.                                                                          |
|            | Stop event log reading.                                                                             |
| Þ          | Export loaded event log as offline PDF.                                                             |
|            | Confirm and delete all entries in the event log.                                                    |

### Display of the Entries in the Event Recorder

For a better understanding of the event-recorder entries, set the time and date on the PU4 with PowerSys before starting operation. During power off, time and date are saved on the PU4 for about 96 hours. The recorded event entries are non volatile.

| Tuble I I Eventing entities | Table 4-4 | Event log entries |
|-----------------------------|-----------|-------------------|
|-----------------------------|-----------|-------------------|

| Grp  | Explanation                                                                              |
|------|------------------------------------------------------------------------------------------|
| No   | Event number                                                                             |
|      | Entered from the PU module from 0 to 9999. After 9999 the event-counter restarts with 0! |
| Date | year-month-day                                                                           |

4.4 PowerSys Online Connection

| Grp         | Explanation                        |
|-------------|------------------------------------|
| Time        | hour:minute:second.msecond         |
| Group-Event | group identifier, event identifier |
| Description |                                    |

In the first four lines, the fixed records are displayed without record number:

### Table 4-5 Fixed entries in the event recorder

| No. | Grp | Evt | Description                                               |
|-----|-----|-----|-----------------------------------------------------------|
| 1   | 1   | 1   | Last start-up of the PU4 firmware                         |
| 2   | 3   | 20  | Last successful clock synchronization (if activated)      |
| 3   | 3   | 25  | Last change of the device data (not date or time change!) |
|     |     | 90  | Last change of the line selection to LIA                  |
| 4   | 3   | 91  | Last change of the line selection to LID1                 |
|     |     | 92  | Last change of the line selection to LID2                 |

### Table 4-6 Group numbers

| Grp       | Description              |
|-----------|--------------------------|
| 1         | System control           |
| 2         | Tele protection commands |
| 3         | Alarms                   |
| 4         | Alarms                   |
| 128 - 255 | Internal system messages |

### NOTE

The displayed comments have the same signification than the combination of group and event identifier. In case of the comment : **Internal system message** contact the Siemens Customer Support!

## 4.4.3 Configuration of the PowerLink Ethernet Interface

The Ethernet interfaces of the PowerLink and their setting options are configured by the PowerLink (CSPi) Web interface. The Service PC is connected with the device via the Ethernet service interface on the CSPi module. There are only a few Ethernet parameters configured in the PowerSys service program. The following tables and figures describe those Ethernet parameters, which are directly configured in PowerSys.

### **IP Service port**

The IP Service port in PowerSys menu **<Configuration – Ethernet>** contains the read-only information for major parameters of the IP- Service port as configured by the web interface. The following parameters are directly configured in PowerSys.

| Table 4-7         Menu < Configuration - Ethernet - IP Service port | t> |
|---------------------------------------------------------------------|----|
|---------------------------------------------------------------------|----|

| Selection                                      | Setting Option | Comment                                                                                                                                                                              |
|------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HTTP Connection                                | Disabled       | HTTP and HTTPS are disabled (default option)                                                                                                                                         |
|                                                | HTTP           | HTTP is enabled. You can access the web interface via HTTP protocol (e.g. http://192.168.20.5)                                                                                       |
|                                                | HTTPS          | HTTPS is enabled. You can access the<br>web interface via HTTPS protocol (e.g. https://<br>192.168.20.5) The installation of security<br>certificates on the Service PC is required. |
| PowerSys TCP/IP Connection > SSL<br>Encryption |                | SSL Encryption for PowerSys connection to device disabled (default setting)                                                                                                          |
|                                                |                | SSL Encryption for PowerSys access enabled in<br>PowerLink. The setting requires a SSL encrypted<br>PowerSys connection: Select SSL Encryption in<br>PowerSys > Options > Connection |

| IP (service port)          |                          |
|----------------------------|--------------------------|
| Re-read IPCON              | 0                        |
| IP-Address resolution mode | O DHCP O Predefined      |
| IP address                 | 192. 168. 20. 5          |
| Subnet mask                | 255. 255. 255. 0         |
| Gateway address            | 192. 168. 20. 2          |
| Local port (tunneling)     | 10001 (10000-10100)      |
| Measuring port             | 10002 (10000-10100)      |
| HTTP connection            | O Disabled   HTTP  HTTPS |
| PowerSys TCP/IP connection | SSL encryption           |
| Header compression         |                          |
| IPCON FW update            |                          |
|                            |                          |

[sc\_ip\_service\_port, 1, -\_-]

Figure 4-18 Configuration - Ethernet - IP Service port

### IP User port

The IP User port in PowerSys menu **<Configuration – Ethernet>** contains the information for major parameters of the IP- User port as configured by the web interface. All parameters are read-only.

4.4 PowerSys Online Connection

| IP (user port)              |                  |
|-----------------------------|------------------|
| DHCP                        |                  |
| IP address                  | 192. 168. 30. 5  |
| Subnet mask                 | 255. 255. 255. 0 |
| Gateway address             | 192. 168. 20. 2  |
| HW address                  | b4:b1:5a:1:aa:a7 |
| NAT routing to service port |                  |
| SNMP agent                  |                  |
| LAN filter                  |                  |
|                             |                  |

[sc\_ip\_user\_port, 1, -\_\_-

Figure 4-19 Configuration - Ethernet - User port

### SNMP

The SNMP settings are configured via the Webinterface. The device access via SNMP v1/2 resp. SNMP v3 has to be enabled in PowerSys via the Ethernet configuration menu.

Table 4-8 Menu < PowerLink – Configuration – Ethernet>, Tab < SNMP agent>

| Selection | Setting Option   | Comment                                |
|-----------|------------------|----------------------------------------|
| SNMP      | Disabled         | SNMP access disabled (default setting) |
|           | SNMP Version 1/2 | SNMP access enabled, SNMP v1/2         |
|           | SNMP Version 3   | SNMP access enabled, SNMP v3           |

For details, refer to Chapter Simple Network Management Protocol Version 3 (SNMPv3).

| SNMP |      |            |                  |                  |
|------|------|------------|------------------|------------------|
|      | SNMP | O Disabled | SNMP version 1/2 | O SNMP version 3 |
|      |      |            |                  |                  |

Figure 4-20 Configuration - Ethernet - SNMP

### NTP

The NTP settings are configured via the web interface. The clock synchronization mode "NTP sync" or "NTP sync & USYNC output" has to be configured in PowerSys via **<Configuration – Clock synchronization**> to become enabled.

## 4.5 MemTool for Firmware Upgrade Tool

## 4.5.1 General Information

This description is the upgrade instruction for the controller cards of PowerLink and SWT 3000. For firmware download of PowerLink and SWT 3000, a dedicated Flash PROM programming tool can be used. The MemTool flash programming software is provided with the PowerSys software package and ensures easy and quick product upgrade if required.

The document describes the upgrade of PowerLink CSPi, PowerLink vMUX and SWT 3000 PU4 units. Target files are delivered as AllInOne\*.jnk. Typically the files are part of the PowerSys software package. After the prerequisite installation of the service program PowerSys, the files are saved in the folder **Hard disk\Program Files\PowerSys\Px.y.z\Firmware**.

The firmware files of the CSPi-IPCon are not included in the AllInOne\*.jnk file. The CSPi-IPCon firmware has to be upgraded seperately from the MemTool programming with a dedicated upgrade script.

### System Requirements

To run MemTool at least the following minimum system configuration is required.

|                            | IBM compatible                                          |
|----------------------------|---------------------------------------------------------|
| Operating system           | MS Windows 10 or higher / x64 version                   |
| Processor                  | i5 or better (or processor with equivalent performance) |
| Clock                      | min. 1 GHz                                              |
| System memory              | 1 GB                                                    |
| Ethernet interface         | 10/100Base-T                                            |
| Serial interface           | RS 232 and USB                                          |
| Printer interface          | LPTx (optional)                                         |
| Additional needed Software | Microsoft .NET Framework                                |

Table 4-9System Requirements

### Version of MemTool

MemTool release V3.0 or higher.

## 4.5.2 Installation of MemTool



### NOTE

It is necessary to install MemTool under administrator rights. Furthermore, it is required to remove previous MemTool versions before installation.

In order to install MemTool, change to the PowerSys package \ MemTool directory and observe the following instructions:

- Start setup.exe from PowerSys\MemTool.
- Click **Next** to continue the installing process or click **Cancel** to abort.

| UDE FLASH Programming Too | 3.0 - InstallShield Wizard                                                                                                                                                                         | × |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                           | Welcome to the InstallShield Wizard for UDE<br>FLASH Programming Tool 3.0<br>The InstallShield Wizard will install UDE FLASH<br>Programming Tool 3.0 on your computer. To continue,<br>click Next. |   |
|                           | < Back Next > Cancel                                                                                                                                                                               |   |

[scmemtin-201113-01.tif, 1, en\_l

Figure 4-21 Starting the MemTool Installation

- Accept the terms of license agreement and click **Next** and once again **Next**.
- Select the destination folder via **Browse**. Select an empty or new directory for the MemTool software.
- Click Next.
- Select the program folder and click **Next** to continue.
- Click Install to begin the installation.
- Click **Finish** to continue and end the installation process.

### 4.5.3 Basic Settings

### Starting MemTool

For launching MemTool as a stand-alone tool, execute Memtool.exe via the Windows Main menu Start - Programs – UDE Memtool.

|   |             | ext FLASH (not ready) |       |     |      | ext FLASH (not ready) |           |  | 🔽 Enable |
|---|-------------|-----------------------|-------|-----|------|-----------------------|-----------|--|----------|
|   | Open File   | Index                 | Start | End | Size | Remove All            | Erase     |  |          |
|   | Select All  |                       |       |     |      | Remove Sel.           | Program   |  |          |
|   | Add Sel. >> |                       |       |     |      |                       | Verify    |  |          |
|   | Save As     |                       |       |     |      | SW Protect            | HW Protec |  |          |
|   | Read        |                       |       |     |      |                       | State     |  |          |
|   | Edit        |                       |       |     |      | Info                  | Setup     |  |          |
| ~ | - Tool      |                       |       |     |      |                       |           |  |          |

Figure 4-22 Starting the MemTool program

### **MemTool Settings**

When starting MemTool for the first time, the **Select Target Configuration** dialog is displayed. Otherwise, this dialog can be reached via the menu

### Target – Change.

The installation of MemTool provides target files for selection of Siemens CSP, CSPi, vMUX (PowerLink), as well as PU3 and PU4 (SWT 3000) systems.

Select Siemens PowerLink - CSPi (v0.2 - serial, 115200 baud) and click OK.

| Select Target Configuration                                                              |
|------------------------------------------------------------------------------------------|
| Last Used Browse                                                                         |
| Folder to browse :                                                                       |
| C:\Program Files\pls\UDE Memtool\Targets\                                                |
| Files in folder : 🔽 Show descriptions                                                    |
| Siemens PowerLink - CSP (v2.0)                                                           |
| Siemens PowerLink - CSPi (v0.2 - serial, 115200 baud)<br>Siemens PowerLink - VMUX (v2.0) |
| Siemens SWT 3000 - PU3 (v2.0)<br>Siemens SWT 3000 - PU4 (v1.1 - serial, 115200 baud)     |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
| Default New Copy Edit Remove                                                             |
| OK Abbrechen Hilfe                                                                       |



Figure 4-23 Target selection

Select **File > Setup** in the menu bar and enable the **Create Verify Protocol File** check box. Afterwards, click **OK**.

### PowerSys and Auxiliary Software Tools

4.5 MemTool for Firmware Upgrade Tool

| UDE Memtool General Settings                                | x       |
|-------------------------------------------------------------|---------|
| Connect Target on Program Start                             | ОК      |
| 🔲 Open last File on Program Start                           | Cancel  |
| Diagnostic Logging :                                        |         |
| Log Level : Minimal                                         | Help    |
| 🗖 Show Diagnostic Log Window                                |         |
| 🔲 Write to Log File                                         |         |
| Create Verify Protocol File                                 |         |
| verify.txt                                                  |         |
| Allow overlapping sections in loaded hex files              |         |
| 👘 🔲 Ignore errors in hex files (bad checksum, no end record | ł)      |
| 🗌 🗖 Look for other communication devices when checking      | license |
| Ignore errors while reading target memory contents          |         |

Figure 4-24 MemTool general settings

Select **Target > Setup > General** in the menu bar and set the COM-Port of the Access Device. For CSPi and vMUX it is usually **Serial Port COM1**. For target PU4 (connected via USB cable) select the COM-Port of the "SWT 3000 PU4 CP2102 USB to UART Bridge Controller" in the list box (for example **COM6**) in the **General** tab.

| Minimonitor Target Interface Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| General Monitor Init Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Access Device :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| COM1: Communications Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Remember device name (e.g. COM1)     Remember port / target description     Refresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| RTS/DTR Handling :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Connect:       Image: Second se |   |
| <ul> <li>Reset on Connect</li> <li>Time to Wait after Reset (ms, 0 5000) : 500</li> <li>Target is in external start mode (PLL is already running)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| OK Abbrechen Hilfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |

[scmtinsu-250813-01.tif, 1, en\_

Figure 4-25 MemTool Target Interface Setup

Settings in the Target > Setup > Monitor and Setup > Init tabs are defaults and remain unchanged. Click OK.



### NOTE

The baud rate in **Setup > Monitor** is set automatically according to the selected Target file (115 200 for CSPi, 57 600 for vMUX and CSP, and 115 200 for PU4).

### Manual changes are saved by clicking OK.

Select **Device > Setup > Mapping** and verify settings as shown.

| Setup FLASH/OTP Device                         | ×                  |
|------------------------------------------------|--------------------|
| Mapping Driver Program Verify Protection / BMI |                    |
| Remap first 32 KBytes to Segment 1             |                    |
| Use different Start Address :                  |                    |
| Use Advanced Remap Settings                    |                    |
| ☑ Also Remap Read Accesses                     |                    |
| Allow overwriting of buffered Data             |                    |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                | OK Abbrechen Hilfe |

[scpngsum-201113-02.tif, 1, en\_US]

Figure 4-26 MemTool Device > Setup > Mapping

Select **Device > Setup > Program** and click **Automatic Sector Erase before Program** and **Automatic Verify after Program**.

Settings in the **Device > Setup > Driver** and **Setup > Protection** tabs are defaults and remain unchanged.

| Setup FLASH/OTP Device                         | ×                  |
|------------------------------------------------|--------------------|
| Mapping Driver Program Verify Protection / BMI |                    |
| Skip unchanged Sectors                         |                    |
| Automatic Chip Erase before Program            |                    |
| Automatic Sector Erase before Program          |                    |
| Simulate Random Access Mode                    |                    |
| Automatic Verify after Program                 |                    |
| Install global Protection after Program        |                    |
| 🗖 Safe ABM Header Handling                     |                    |
| Header 1 File :                                | def                |
| Header 2 File :                                | def                |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                |                    |
|                                                | OK Abbrechen Hilfe |
|                                                |                    |

Figure 4-27 MemTool Device > Setup > Program

Select Setup > Verify and click Try to use Checksum Calculation for Verify if not enabled.

4.5 MemTool for Firmware Upgrade Tool

| up FLASH/OTP Device                        |          |  |
|--------------------------------------------|----------|--|
| apping Driver Program Verify Protection    |          |  |
| Try to use Checksum Calculation for Verify |          |  |
| Margin Control :                           | <u>×</u> |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |
|                                            |          |  |

Figure 4-28 MemTool Device > Setup > Verify

Save all manual changes by clicking OK.

#### 4.5.4 **Getting Started**

To perform the upgrade verify if necessary firmware type and version for upgrade are available. One or all of the following files shall be existing:

- AllInOne\_CSPi\_Px.y.z.jnk •
- Required for PowerLink upgrade (module CSPi)
- AllInOne VMUX Px.y.z.jnk •
- AllInOne\_PU4\_Px.y.z.jnk
- Required for PowerLink upgrade (module vMUX) Required for SWT 3000 upgrade (module PU4)
- The Firmware package (AllInOne\*.jnk-file) is stored
- as a part of the PowerSys software package)
- on the PC with PowerSys already upgraded to the new version (default destination folder C:\Program • Files\PowerSys\Px.y.z\Firmware) or on a
- folder of own choice while receiving the upgrade version by email or download. ۰



### NOTE

The term Px.y.z is the PowerSys release version.

#### 4.5.5 **Trouble Shooting**

If the connection to the target is not established, click **View** and verify the connection failed report. Reset the device with S1 on the PU4 or S4 on the CSPi.

Check if the USB cable (PU4) or RS232 cable (CSPi) is plugged in and if the serial port is selected correctly. Press Retry for the connection to the device.

| Can't establish Connection to Target                                                                                                                                                                                                                                                                                                       |                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Error Messages :<br>Message from component 'UDEMemtool' :<br>Can't connect to Target<br>Message from component 'Mm16xTargIntf' :<br>Can't connect target !<br>Message from component 'Mm16xTargIntf' :<br>Bootstrap loader not responding !<br>Please check:<br>- Target power supply<br>- Communication cable<br>- Communication settings | Egit                                                                                                              |
| <u>C</u> hange Target Interface Setup<br><u>V</u> iew Connection Failed Report                                                                                                                                                                                                                                                             | <ul> <li>Message Beep on Connection failed</li> <li>Periodical Retry every</li> <li>2</li> <li>Seconds</li> </ul> |

[scnoconn-271011-01.tif, 1, en\_US]

Figure 4-29 Dialog of No Connection to the Target Device



### NOTE

MemTool always **starts with the last used target selection**. If the upgrade fails, **check that the target** (in menu bar Target > Change) and the file selection (in menu bar File > Open) **correspond to the device physically connected**.. For **SWT 3000** is the target **SWT 3000-PU4** and the file **AllInOne\_PU4\_Px.y.z.jnk**. Select the target and file of the devices as follows:

- For PowerLink is the target PowerLink-CSPi and the file AllInOne\_CSPi\_Px.y.z.jnk.
- For PowerLink-vMUX is the target PowerLink-vMUX and the file AllInOne\_VMUX\_Px.y.z.jnk.
- For SWT 3000 is the target SWT 3000-PU4 and the file AllInOne\_PU4\_Px.y.z.jnk.

If there is a wrong combination, **repeat** the download after correcting the selection.

#### **Programming of CSPi Flash Memory** 4.6

#### 4.6.1 **Connecting the PC**

For programming the CSPi module, the RM1 connector is used. The connection to the PC is established with the serial PC connection cable which is also used for the access to the PowerLink device with service program PowerSys.. To enable the programming with "MemTool" the switch S5/1 on CSPi must be in "ON" position.

- Switch OFF the device with S1
- To enable the programming with MemTool switch S5/1 on CSPi board to ON position •
- Switch ON the device
- Press the Reset button S4 on CSPi to proceed the upgrade •

For PowerLink 100, the RM1 connector is placed on the on the CFS-2 connector panel.

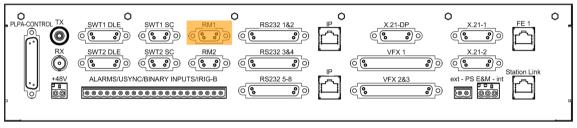



Figure 4-30 The CFS-2 connector panel

For PowerLink 50, the RM1 connector is placed on the rear side of the device.



## CAUTION

During the update operations with MemTool the PowerLink device will be out of regular service. ∻

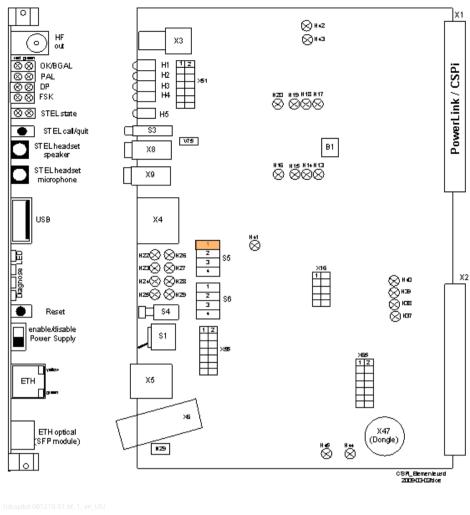



Figure 4-31 The CSPi board

## NOTE

To enable the programming with MemTool switch S5/1 set to ON position.

## 4.6.2 Starting MemTool

For launching MemTool as a stand-alone tool, execute Memtool.exe via the Windows Main menu Start - Programs -UDE MemTool.

4.6 Programming of CSPi Flash Memory

| <u>I</u> |             | ext FLASH (not rea | dy) |      | •           | 🔽 Enable |
|----------|-------------|--------------------|-----|------|-------------|----------|
|          | Open File   | Index Start        | End | Size | Remove All  | Erase.   |
|          | Select All  |                    |     |      | Remove Sel  | Program  |
|          | Add Sel. >> |                    |     |      |             | Verify   |
|          | Save As     |                    |     |      | SW/ Protect | HW/Prote |
|          | Read        |                    |     |      |             | State .  |
|          | Edit        |                    |     |      | Info        | Setup.   |

[scmtpltg-091210-01.tif, 1, en\_US

Figure 4-32 MemTool with the PowerLink CSPi target

When starting MemTool for the first time, the **Select Target Configuration** dialog is displayed. Otherwise, this dialog can be reached via menu Target – Change.

Select Siemens PowerLink-CSPi and click OK.

| Select Target Configuration                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Last Used Browse                                                                                                                                                                                                  |
| Folder to browse :                                                                                                                                                                                                |
| C:\Program Files\pls\UDE Memtool\Targets\                                                                                                                                                                         |
| Files in folder : 🔽 Show descriptions                                                                                                                                                                             |
| Siemens PowerLink - CSP (v2.0)<br>Siemens PowerLink - CSP (v0.2 - serial, 115200 baud)<br>Siemens PowerLink - VMUX (v2.0)<br>Siemens SWT 3000 - PU3 (v2.0)<br>Siemens SWT 3000 - PU4 (v1.1 - serial, 115200 baud) |
| Default New Copy Edit Remove                                                                                                                                                                                      |
| OK Abbrechen Hilfe                                                                                                                                                                                                |

[sctgtsel-250813-01.tif, 1, en\_US]

Figure 4-33 Selecting the CSPi target

# i

### NOTE

Wrong target selection will result in unsuccessful flash programming. Verify that the **target selected** is the **device physically connected**.

## 4.6.3 Connection to the PowerLink Target

For external FLASH modules the sector table is created on connect after determining the actual type of the FLASH. The Sector list box is empty at this time.

Click the **Connect** button to establish a connection to the target PowerLink system. Now the sector list box contains the sector table of the selected FLASH module and the connect button changes to disconnect. If the connection fails, check the selected interface and the position of S5/1, reset the CSPi module and try again. For more detailed information, refer to chapter 4.5.5 Trouble Shooting.

| Open File  | #0: 0x00000000 - 0x00003FFF (16K)     #1: 0x00004000 - 0x00005FFF (8K)     ■     Bemove All | Erase     |
|------------|---------------------------------------------------------------------------------------------|-----------|
| Select All | #2: 0x00006000 - 0x00007FFF (8K)<br>#3: 0x00008000 - 0x0000FFFF (32K) Remove Sel.           | Program   |
| Add Set >> | #4: 0x00010000 - 0x0001FFFF (64K)     #5: 0x00020000 - 0x0002FFFF (64K)                     | Verify    |
| Course day | H6: 0x00030000 - 0x0003FFF (64K)<br>H7: 0x00040000 - 0x0004FFFF (64K)                       |           |
| Save As    | #8: 0x00050000 - 0x0005FFFF (64K)<br>#9: 0x00060000 - 0x0006FFFF (64K)                      | Protect . |
| Read       | H10: 0x00070000 - 0x0007FFFF (64K)<br>H11: 0x00080000 - 0x0008FFFF (64K)                    | State     |
| Edit       |                                                                                             | Setup     |
|            |                                                                                             |           |

scdspcnp-091210-01.tif, 1, en

Figure 4-34 Display after the connection to the PowerLink has been established

# i

NOTE

Make sure that the external FLASH is selected as FLASH memory device.



## CAUTION

Erasing or programming of the 384 KB on-chip FLASH may result in the deletion of the CSPi boot sector and disabling of the CSPi module.

The connection to the PowerLink target will not work.

♦ Do not delete the on-chip FLASH.xxx

## 4.6.4 Programming the Application into the Flash Memory

Click the **Open File** button and select the AllInOne\_CSPi\_Px.y.z.jnk (**on the first time you may have to select File type All Files or jnk Files and to navigate to the source folder according to** *4.5.4 Getting Started*). Click **Open**. After loading this file, in the left part of the MemTool window the file name and a list of sections of the application are displayed.

4.6 Programming of CSPi Flash Memory

| Open Hex File          |                                                 |                   |   |       | ? ×       |
|------------------------|-------------------------------------------------|-------------------|---|-------|-----------|
| Suchen in:             | 🔁 Firmware                                      |                   | • | + 🗈 💣 | Ħ         |
| <b>Final</b><br>Recent | AllInOne_CSPi,<br>AllInOne_PU4_<br>AllInOne_VMU | P3.5.121.jnk      |   |       |           |
| Desktop                |                                                 |                   |   |       |           |
| 🤌<br>Eigene Dateien    |                                                 |                   |   |       |           |
| Arbeitsplatz           |                                                 |                   |   |       |           |
| <b>S</b>               | I                                               |                   |   |       |           |
| Netzwerkumgeb          | Dateiname:                                      |                   |   | •     | Öffnen    |
| ung                    | Dateityp:                                       | jnk-Files (*.jnk) |   | •     | Abbrechen |

[scslaiof-260813-01.tif, 1, en\_US

### Figure 4-35 Example for selection of the AllInOne files

Click Select All and then on Add Selection. The sections of the application are displayed (according to the sectors they belong to) in the list box on the right-hand side.

| C:\Program Files\pls\UDE Memtool\T                                            | argets\AllInOne_CS | external FLASH                                                                                  | •           | 🔽 Enable |
|-------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|-------------|----------|
| 0x00000000 - 0x00000756                                                       | Open File          | #0: 0x00000000 - 0x00003FFF (16K)<br>0x00000000 - 0x0000756                                     | Remove All  | Erase .  |
| 0x00001000 - 0x00001560<br>0x00001562 - 0x000030F3                            | Unselect All       | 0x00000758 - 0x00000891<br>0x00001000 - 0x00001560                                              | Remove Sel. | Program  |
| 0x00010200 - 0x0001DFFF<br>0x0001F000 - 0x0001F02F<br>0x00020000 - 0x000387E9 | Add SeL >>         | 0x00001562 · 0x000030F3<br>#1: 0x00004000 · 0x00005FFF (8K)<br>#2: 0x00006000 · 0x00007FFF (8K) |             | Verify   |
| 0x00040200 - 0x0004DFFF<br>0x0004F000 - 0x0004F02F                            | Save As            | #3: 0x00008000 - 0x0000FFFF (32Ќ)<br>#4: 0x00010000 - 0x0001FFFF (64K)                          |             | Protect  |
| 0x00050000 - 0x0008F5D1<br>0x000C0000 - 0x000D2468<br>0x00100000 - 0x0010E757 | Read               | 0x00010200 - 0x0001DFFF<br>0x0001F000 - 0x0001F02F<br>#5 : 0x00020000 - 0x0002FFFF (64K)        |             | State .  |
| 0x00120000 - 0x0012E757                                                       | Edt                | 0x00020000 - 0x0002FFFF                                                                         | ▼ Info      | Setup    |
|                                                                               | Edt                | Ox00020000 - 0x0002FFFF * Sector is protected                                                   | Info        | Set      |
|                                                                               | Tool               | Ready for Memtool Command                                                                       | _           |          |



Figure 4-36 Display of the sections in the list box after the Add Select has been executed



### NOTE

Wrong file selection will result in unsuccessful flash programming. Verify that the **file selected matches to the target** and device physically connected.

Click **Program** to start the programming cycle. The **Execute MemTool Command** dialog appears and shows the programming progress. The upgrade starts with programming and verification.

| Execute Memtool Command                          | × |
|--------------------------------------------------|---|
| Current FLASH/OTP Device :                       |   |
| external FLASH                                   | 1 |
| Operation :<br>Programming 00058000h - 000583FFh | 1 |
|                                                  |   |
| Progress :                                       |   |
|                                                  | ] |
| Start Cancel Help                                |   |

[scstprpr-081210-01.tif, 1, en\_US]

Figure 4-37 Starting of the programming process

| Execute Memtool Command    | × |
|----------------------------|---|
| Current FLASH/OTP Device : |   |
| external FLASH             | - |
| Operation :                |   |
| success                    |   |
| Progress :                 |   |
|                            |   |
| Start Exit Help            |   |

cdspasp-081210-01.tif, 1, en\_

Figure 4-38 Display after a successful programming

After successful upgrade **Exit** the command dialog, click **Disconnect** and **Exit** to close the MemTool in the main view.



## NOTE

Switch OFF the Power on the CSPi module. Move S5/2 on the CSPi and S2/1 on the vMUX back to the OFF position.

In case SWT 3000 is integrated, continue with SWT 3000 flash programming otherwise **switch Power ON** (CSPi-Reset).

## 4.6.5 Programming IPCON via Web UI

### 4.6.5.1 Overview

The CSPi-IPCON firmware components are not included in the All-In-One firmware file of the CSPi (AllnOne\_CSPi\_P3.5.xyz.jnk) and cannot be upgraded via MemTool Flash programming. The required firmware files for programming are included in the corresponding firmware package file Package\_xyz.cab stored in \Firmware folder of the installed PowerSys version. After extracting Package\_xyz.cab file using an Unzip tool (e.g. 7Zip), the following CSPi-IPCON firmware components can be found in \Firmware\Package\_xyz:

- CspilpconKernel\_vxx\_yy\_zz.bin IPCON-Kernel image
- CspilpconFw\_vxx.yy.zz.bin IPCON-Application image

Firmware version requirements to update CSPi-IPCON firmware via web access:

| Component         | Version             |
|-------------------|---------------------|
| IPCON-Kernel      | V00.02.00 or higher |
| IPCON-Application | V00.05.00 or higher |

You can check the current firmware version in PowerSys: PowerLink > Firmware overview If the current firmware version is lower than the required version, you have to update firmware using script tool as described in application notes "SI\_PowerLink\_CSPi-IPCON\_Upgrade\_v1\_3.pdf"

### 4.6.5.2 Enable IPCON Firmware Update

By default the IPCON firmware update via web access is disabled. It can be enabled in PowerSys: PowerLink > Configuration > Ethernet.

| IP (service port)          |                          |
|----------------------------|--------------------------|
| Re-read IPCON              | 0                        |
| IP-Address resolution mode | O DHCP   Predefined      |
| IP address                 | 192. 168. 20. 5          |
| Subnet mask                | 255. 255. 255. 0         |
| Gateway address            | 192. 168. 20. 2          |
| Local port (tunneling)     | 10001 (10000-10100)      |
| Measuring port             | 10002 (10000-10100)      |
| HTTP connection            | O Disabled   HTTP  HTTPS |
| PowerSys TCP/IP connection | SSL encryption           |
| Header compression         |                          |
| IPCON FW update            | $\checkmark$             |
|                            |                          |

[sc\_enable\_IPCON\_FW\_update, 1, --\_--]

Enable IPCON firmware update

### 4.6.5.3 Firmware Update

After entering the actual IP address of the connected PowerLink in the web browser, the following page is displayed. Default IP Address / password: 192.168.20.5 / cspiwrite

| C () ( http://192.168.20.5 | ₽ + → 🏉 P     | owerLink CSPi × | - □ <b>- ×</b>            |
|----------------------------|---------------|-----------------|---------------------------|
|                            |               |                 | SIEMENS<br>PowerLink CSPi |
| Logi                       | 1             |                 |                           |
| Pa                         | ssword: ••••• |                 |                           |
|                            | ОК            |                 |                           |

[sc\_PowerLink Login, 1, --\_--]

Navigate to "Firmware update" menu, select the IPCON firmware image you want to update:

- For update IPCON-Kernel image, select image file "CspilpconKernel\_vxx\_yy\_zz.bin"
- For updating IPCON-Application image, select image file "CspilpconFw\_vxx.yy.zz.bin"

Do not power off the device or disconnect Ethernet cable while the firmware update is in progress.

|                                | Aa 🖈                                                           |                     |                    | SIEMEN            | s<br>Power | link CS |
|--------------------------------|----------------------------------------------------------------|---------------------|--------------------|-------------------|------------|---------|
| Version Information            | Firmware update ► Update IF                                    | CON-Applicatio      | on image           |                   | rower      |         |
| Service Interface Settings     |                                                                |                     |                    |                   |            |         |
| User Interface Settings        | Stage                                                          | Status              | -                  |                   |            |         |
| Ipcon Settings                 | Upload Application Image File<br>Verify Application Image File | 1.11                |                    |                   |            |         |
| SNMP V2 Trap-Destination Table | Store Application Image File                                   |                     |                    |                   |            |         |
| NTP Summer Time Settings       |                                                                |                     |                    |                   |            |         |
| L2-Filter Settings             | File to upload<br>n Files (x86)\PowerSys\P3.5.17               | n\Firmware\Pack     | age 170\Cspilpcon  | Ew. v00.05.00 bin | Browse     |         |
| L2-Filter Table                |                                                                | o p ministro p dele | age_rro (capitpeon |                   | biotidem   |         |
| QoS Settings                   | Send Rese                                                      | et                  |                    |                   |            |         |
| Firmware update                |                                                                |                     |                    |                   |            |         |
| Undete IRCON Kernel incere     |                                                                |                     |                    |                   |            |         |
| Update IPCON-Kernel image      |                                                                |                     |                    |                   |            |         |
| Update IPCON-Application image |                                                                |                     |                    |                   |            |         |

Refresh current update status via clicking "Query Status" button, wait until the store image file status is OK.

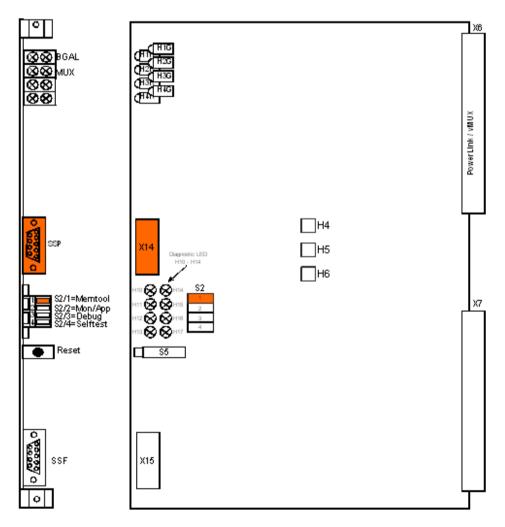
4.6 Programming of CSPi Flash Memory

| → Attp://192.168.20.5/cgi-     | bin/snmp_form.cg 🎗 🕶 🖒 🏉               | PowerLink CS | iPi ×     |         | <u>□</u> □<br>A ★ |
|--------------------------------|----------------------------------------|--------------|-----------|---------|-------------------|
|                                | Aa 🙏                                   |              |           | SIEMENS | PowerLink CS      |
| Version Information            | Firmware update ► Update IP            | CON-Applicat | ion image |         |                   |
| Service Interface Settings     |                                        |              |           |         |                   |
| User Interface Settings        | Stage<br>Upload Application Image File | Status       |           |         |                   |
| Ipcon Settings                 | Verify Application Image File          |              | - OK      |         |                   |
| SNMP V2 Trap-Destination Table |                                        | 7%           |           |         |                   |
| NTP Summer Time Settings       |                                        |              | ОК        |         |                   |
| L2-Filter Settings             | Query Status                           |              |           |         |                   |
| L2-Filter Table                |                                        |              |           |         |                   |
| QoS Settings                   |                                        |              |           |         |                   |
| Firmware update                |                                        |              |           |         |                   |
| Update IPCON-Kernel image      |                                        |              |           |         |                   |
| Update IPCON-Application image |                                        |              |           |         |                   |
| Access Password                |                                        |              |           |         |                   |
| Activation of Settings         |                                        |              |           |         |                   |

After both, IPCON-Application image and IPCON-Kernel image, are updated, restart device via clicking "Send" button.

| < 🔿 🎒 🏉 http://192.168.20.5/cgi-b | in/snmp_form.cg 🔎 👻 🖉 PowerLink CSPi                    | ×       | ĥ★ ☆           |
|-----------------------------------|---------------------------------------------------------|---------|----------------|
|                                   | Aa <b>∦</b>                                             | SIEMENS | PowerLink CSPi |
| Version Information               | Activation of Settings                                  |         |                |
| Service Interface Settings        |                                                         |         |                |
| User Interface Settings           | <ul> <li>Store settings to flash and restart</li> </ul> |         |                |
| Ipcon Settings                    | Send Reset                                              |         |                |
| SNMP V2 Trap-Destination Table    |                                                         |         |                |
| NTP Summer Time Settings          |                                                         |         |                |
| L2-Filter Settings                |                                                         |         |                |
| L2-Filter Table                   |                                                         |         |                |
| QoS Settings                      |                                                         |         |                |
| Firmware update                   |                                                         |         |                |
| Update IPCON-Kernel image         |                                                         |         |                |
| Update IPCON-Application image    |                                                         |         |                |
| Access Password                   |                                                         |         |                |
| Activation of Settings            |                                                         |         |                |

[sc\_PowerLink Activation of Settings, 1, --\_--]


Re-connect PowerSys to the device and check the current firmware version in PowerSys: PowerLink > Firmware overview. The latest firmware versions shall be displayed correctly.

#### 4.7 Programming of vMUX Flash Memory

#### Connecting the PC 4.7.1

For programming the vMUX module the SSP connector (X14) has to be used. The connection to the PC is established with the normal PC connection cable which is used for the PowerSys service program. To enable the programming with "MemTool" the switch S2/1 on the vMUX and switch S5/2 on the CSPi module must be in "ON" position.

- Switch OFF the device with S1 on the CSPi
- To enable the programming with MemTool switch S2/1 on the vMUX and switch S5/2 on the CSPi to • **ON** position
- Switch ON the device
- Press Reset **S5** to proceed the upgrade



The vMUX board

### Figure 4-39



♦ During the update operations with MemTool the PowerLink device will be out of regular service.

## 4.7.2 Starting MemTool

For launching MemTool as a stand-alone tool, execute Memtool.exe via the Windows Main menu Start - Programs -UDE MemTool.

| Select Target Configuration                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------|
| Last Used Browse                                                                                                        |
| Folder to browse :                                                                                                      |
| C:\Program Files\pls\UDE Memtool\Targets\                                                                               |
| Files in folder : 🔽 Show descriptions                                                                                   |
| Siemens PowerLink - CSP (v2.0)<br>Siemens PowerLink - CSPi (v0.2 - serial, 115200 baud)                                 |
| Siemens PowerLink - VMUX (v2.0)<br>Siemens SWT 3000 - PU3 (v2.0)<br>Siemens SWT 3000 - PU4 (v1.1 - serial, 115200 baud) |
| Default New Copy Edit Remove                                                                                            |
| OK Abbrechen Hilfe                                                                                                      |

Figure 4-40 MemTool with the vMUX target

When starting MemTool for the first time, the **Select Target Configuration** dialog is displayed. Otherwise, this dialog can be reached via menu **Target – Change**. Select **Siemens PowerLink-vMUX** and click **OK**.

| ast Used Browse<br>Folder to browse :                    | ·]                             |                |      |        |                |
|----------------------------------------------------------|--------------------------------|----------------|------|--------|----------------|
| D:\Prg_WIN\pls\                                          | UDE Memtool_                   | V2_4_13a\Targe | ts∖  |        | •              |
| Files in folder :                                        |                                |                |      | 🔽 Sho  | w descriptions |
| Siemens PowerLin<br>Siemens PowerLin<br>Siemens PowerLin | k - CSPi (v0.2                 | - wiggler)     | aud) |        |                |
| Siemens SWT 30                                           | 00 - PU3 (v2.0)                |                |      |        |                |
|                                                          | 00 - PU3 (v2.0)<br><u>N</u> ew | Сору           | Edit | Remove |                |

scslspvt-091210-01.tif, 1, en\_US

Figure 4-41 Selecting the Siemens PowerLink-vMUX target



### NOTE

Wrong target selection will result in unsuccessful flash programming. Verify that the **target selected** is the **device physically connected**.

## 4.7.3 Connection to the vMUX Target

For external FLASH modules the sector table is created on connect after determining the actual type of the FLASH. The Sector list box is empty at this time.

Click the **Connect** button to establish connection to the target vMUX system. Now the sector list box contains the sector table of the selected FLASH module and the connect button changes to disconnect.

If the connection fails, check the selected interface and the position of the DIL switches, reset the **CSPi** module and try again. For more detailed information, refer to *Trouble Shooting*.

|       |             | external FLASH                                                                                                 | 💽 🔽 Enab         |
|-------|-------------|----------------------------------------------------------------------------------------------------------------|------------------|
|       | Open File   | #0: 0x00000000 - 0x00003FFF (16K) ▲<br>#1: 0x00004000 - 0x00005FFF (8K)                                        | Remove All Erase |
|       | Select All  | #2 : 0x00005000 - 0x00007FFF (8K)<br>#3 : 0x00008000 - 0x00007FFF (8K)                                         | Remove Sel. Prog |
|       | Add Sel. >> | #4: 0x00010000 - 0x0001FFFF (64K)<br>#5: 0x00020000 - 0x0002FFFF (64K)                                         | Ven              |
|       | Save As     | #6: 0x00030000 - 0x0003FFFF (64K)<br>#7: 0x00040000 - 0x0004FFFF (64K)                                         | Protec           |
|       |             | #8: 0x00050000 - 0x0005FFFF (64K)<br>#9: 0x00060000 - 0x0006FFFF (64K)<br>#10: 0x00070000 - 0x0007FFFF (64K)   |                  |
|       | Read        | #10: 0x00070000 - 0x0007FFFF (64K)<br>#11: 0x00080000 - 0x0008FFFF (64K)<br>#12: 0x00090000 - 0x0009FFFF (64K) | State            |
|       | Edt         | * Sector is protected                                                                                          | Info Set         |
| - 1 - | - Tool-     |                                                                                                                |                  |

[scdsavce-091210-01.tif, 1, en\_US]

Figure 4-42 Display after the connection to the vMUX has been established

## 4.7.4 Programming the Application into the Flash Memory

Click the **Open File** button and select the AllInOne\_VMUX\_Px.y.z.jnk (**on the first time you may have to select File type All Files or jnk Files and to navigate to the source folder according to** *4.5.4 Getting Started*). Click **Open**. After loading this file, in the left part of the MemTool window the file name and a list of sections of the application are displayed.

| Open Hex File        |                                                                                                                       |           | ? ×       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| Suchen in:           | 🔁 Firmware                                                                                                            | 🗢 🗈 💣 🎟 • |           |
| <b>100</b><br>Recent | <ul> <li>AllInOne_CSPi_P3.5.121.jnk</li> <li>AllInOne_PU4_P3.5.121.jnk</li> <li>AllInOne_VMUX_P3.5.121.jnk</li> </ul> |           |           |
| Desktop              |                                                                                                                       |           |           |
| 6<br>Eigene Dateien  |                                                                                                                       |           |           |
| Arbeitsplatz         |                                                                                                                       |           |           |
| <b>S</b>             |                                                                                                                       |           |           |
| Netzwerkumgeb        | Dateiname:                                                                                                            | •         | Öffnen    |
| ung                  | Dateityp: jnk-Files (*.jnk)                                                                                           | •         | Abbrechen |

[scslaiof-260813-01.tif, 1, en\_]

Figure 4-43 Example for selection of the AllInOne files

Click Select All and then on Add Selection. The sections of the application are displayed (according to the sectors they belong to) in the list box on the right-hand side.

| C:\Program Files\pls\UDE Memtool\Tar                                                                                                                           | gets\AllInOne_CS               | external FLASH                                                                                                                                                                                                                                                                                                                                                                                 |               | •                         | 🔽 Enable          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|-------------------|
| 0x00000000 - 0x00000756<br>0x00000758 - 0x00000891<br>0x00001000 - 0x00001550<br>0x0001562 - 0x000030F3<br>0x00010200 - 0x0001DFFF                             | Open File<br>Unselect All      | #0: 0x0000000 - 0x00003FFF (16)<br>0x00000000 - 0x0000756<br>0x00000756 - 0x00000756<br>0x00001000 - 0x00001560<br>0x00001562 - 0x000030F3                                                                                                                                                                                                                                                     |               | Remove All<br>Remove Sel. | Erase<br>Program  |
| 0x0001F000 - 0x0001F02F<br>0x00020000 - 0x000387E9<br>0x00040200 - 0x00040FFF<br>0x0004F000 - 0x0004F02F<br>0x00050000 - 0x0008F501<br>0x00050000 - 0x0008F501 | Add SeL >>><br>Save As<br>Read | #1:         0x00004000         0x00005FFF         (8).           #2:         0x00005000         0x00007FFF         (3).           #3:         0x00010000         0x00001FFF         (3).           #4:         0x00010000         0x00001FFF         (64).           0x00011200         0x0001FFF         (64).         (6).           0x00011200         0x0001F02F         (6).         (6). | (<br>()<br>() |                           | Verify<br>Protect |
| 0x00100000 - 0x0010E757<br>0x00120000 - 0x0012E757<br>0x00140000 - 0x0017FFF7 🗾                                                                                | Edt                            | #5 : 0x00020000 - 0x0002FFFF (64)<br>0x00020000 - 0x0002FFFF<br>* Sector is protected                                                                                                                                                                                                                                                                                                          |               | Info                      | Setup             |
|                                                                                                                                                                | Tool                           |                                                                                                                                                                                                                                                                                                                                                                                                |               |                           |                   |

[scdssase-091210-01.tif, 1, en\_US

Figure 4-44 Display of the sections in the list box after the Add Select has been executed



### NOTE

Wrong file selection will result in unsuccessful flash programming. Verify that the **file selected matches to the target** and device physically connected.

Click **Program** to start the programming cycle. The **Execute MemTool Command** dialog appears and shows the programming progress. The upgrade starts with programming and verification.

| Execute Memtool Command           | × |
|-----------------------------------|---|
| Current FLASH/OTP Device :        |   |
| external FLASH                    |   |
| Operation :                       |   |
| Programming 00058000h - 000583FFh |   |
| Progress :                        |   |
|                                   |   |
| Start Cancel Help                 |   |

cstprpr-081210-01.tif, 1

Figure 4-45 Starting of the programming process

| Execute Memtool Command    | × |
|----------------------------|---|
| Current FLASH/OTP Device : |   |
| external FLASH             |   |
| Operation :                |   |
| success                    |   |
| Progress :                 |   |
|                            |   |
| Start Exit Help            |   |

#### [scdspasp-081210-01.tif, 1, en\_]

Figure 4-46 Display after a successful programming

After successful upgrade **Exit** the command dialog, click **Disconnect** and **Exit** to close the MemTool in the main view.



### NOTE

Switch OFF the Power on the CSPi module. Move S5/2 on the CSPi and S2/1 on the vMUX back to the OFF position.

4.7 Programming of vMUX Flash Memory

In case SWT 3000 is integrated, continue with SWT 3000 flash programming otherwise **switch Power ON** (CSPi-Reset).

## 4.8 Programming of PU4 Flash Memory

## 4.8.1 Connecting the PC

In order to program the PU4 module of SWT 3000, use the **USB connector of the PU4 module**. The connection to the service PC is established with with the USB connecting cable supplied with the device. The SWT 3000 PU4 CP2102 USB to UART Bridge Controller must have been installed with installation of the service program PowerSys on the PC (refer to chapter *4.2 PowerSys Installation*).

In order to program the PU4 module, perform the following instructions:

- Turn off the device with the **S2** switch on the PU4 module.
- To enable the programming with MemTool, set the S3.1 of S3 DIL switch on the PU4 module to ON position.
- Turn on the device with the S2 switch on the PU4 module.
- Press the **S1** reset button on the PU4 to proceed the upgrade.

### NOTE

If SWT 3000 is integrated into PowerLink (as iSWT), perform the following instructions:

- Turn off the device with the **S1** switch on the CSPi module.
- To enable the programming with MemTool, set the S5.2 on the CSPi module to ON position.
- To enable the programming with MemTool, set the S3.1 of S3 DIL switch on the PU4 module to ON position.
- Turn on the device with the S1 switch on the CSPi module.
- Press the **S1** reset button on the PU4 to proceed the upgrade.



## CAUTION

♦ During the update operations with MemTool the device (SWT 3000 or PowerLink with iSWT) will be out of regular service.

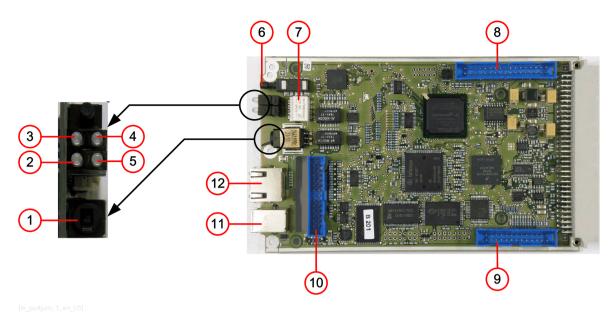



Figure 4-47 Position of Jumpers, Input and Signaling Elements on the PU4 Module

| 1  | S2: Power ON/OFF              |
|----|-------------------------------|
| 2  | LED OK/GBAL                   |
| 3  | LED Status Interface LID-2    |
| 4  | LED Status Interface LID-1    |
| 5  | LED Status Interface LIA      |
| 6  | S1: Reset button              |
| 7  | S3 (3.1 to 3.4)               |
| 8  | Connection on DLE             |
| 9  | Connection on DLE             |
| 10 | Connection of the IFC Modules |
| 11 | LCT: Service Interface (USB)  |
|    |                               |

12 NMS: Ethernet Interface

## N

NOTE

The Digital line equipment DLE is available only for PowerLink 100.

## 4.8.2 Starting MemTool

In order to launch MemTool as a stand-alone tool, execute Memtool.exe via the Windows main menu **Start > Programs > UDE MemTool**.

| UDE - Memtool on Siemens SWT 30<br>File Target Device Log Help | 00 - PU4 (v1.1 - seria | al, 115200 baud)                                        | _ 🗆 X              |
|----------------------------------------------------------------|------------------------|---------------------------------------------------------|--------------------|
| File Target Device Log Help                                    |                        | FLASH/DTP - Memory Device<br>external FLASH (not ready) | ▼ ▼ Enable         |
|                                                                | Open File              | Index Start End Size Ren                                | move All Erase     |
|                                                                | Select All             | Ren                                                     | nove Sel. Program  |
|                                                                | Add Sel. >>            |                                                         | Verify             |
|                                                                | Save As                | SW                                                      | Protect HW Protect |
|                                                                | Read                   |                                                         | State              |
|                                                                | E dit                  |                                                         | nfo Setup          |
| universal debug engine                                         | Connect                | Target not connected                                    | Help Exit          |

Figure 4-48 MemTool with the PU4 Target

When starting MemTool for the first time, the **Select Target Configuration** dialog is displayed. Otherwise, you can reach this dialog via the menu bar **Target > Change**.

| Select Target Configuration                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Last Used Browse                                                                                                                                                                                                   |
| Folder to browse :                                                                                                                                                                                                 |
| C:\Program Files\pls\UDE Memtool 3.0\Targets\                                                                                                                                                                      |
| Files in folder :                                                                                                                                                                                                  |
| Siemens PowerLink - CSP (v2.0)<br>Siemens PowerLink - CSPi (v0.2 - serial, 115200 baud)<br>Siemens PowerLink - VMUX (v2.0)<br>Siemens SWT 3000 - PU3 (v2.0)<br>Siemens SWT 3000 - PU4 (v1.1 - serial, 115200 baud) |
| Default New Copy Edit Remove                                                                                                                                                                                       |
| OK Abbrechen Hilfe                                                                                                                                                                                                 |

sctarget-020413-01.tif, 1, en\_US

Figure 4-49 Selecting the Siemens SWT 3000 - PU4 (v0.1 - serial, 115200 baud)

Select Siemens SWT 3000 - PU4 (v1.1 - serial, 115200 baud) and click OK.

### NOTE

Wrong target selection results in unsuccessful flash programming. Verify that the **selected target** is the **physically connected device**.

Refer to Chapter 4.5.3 Basic Settings, MemTool Settings to get more detailed information.

## 4.8.3 Connection to the SWT 3000 Target

The PU4 memory consists of an internal FLASH (on-chip flash) and an external FLASH module. Both are programmed sequential with the same procedure.

For **764 KByte on-chip Program FLASH** module, the sector table is created after determining the actual type of the FLASH and clicking **Connect**.

Select **764 KByte on-chip Program FLASH (not ready)** in the **Flash/OTP - Memory Device** list box. Click **Connect** to establish a connection to the target SWT 3000 system. The sector list box contains now the sector table of the selected FLASH module. The **Connect** button changes to **Disconnect**.

If the connection fails, reset the PU4 module and try again. For more detailed information, refer to 4.5.5 Trouble Shooting.

| File Target Device Log Help |                                                                   |                                                                     | ITP - Memory Dev<br>ite on-chip Progra                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                   |   | •                                       | 🔽 Enable                                                   |
|-----------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---|-----------------------------------------|------------------------------------------------------------|
|                             | Open File<br>Select All<br>Add Sel. >><br>Save As<br>Read<br>Edit | Index<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | Start           0x00C00000           0x00C02000           0x00C20000           0x00C20000           0x00C20000           0x00C20000           0x00C20000           0x00C40000           0x00C40000 | End<br>0x00C00FFF<br>0x00C02FFF<br>0x00C02FFF<br>0x00C02FFF<br>0x00C08FFF<br>0x00C0EFFF<br>0x00C0EFFFF<br>0x00C2FFFF<br>0x00C2FFFF<br>0x00C3FFFF<br>0x00C40FFF | Size<br>4K<br>4K<br>4K<br>16K<br>16K<br>16K<br>16K<br>16K<br>64K<br>64K<br>64K<br>64K<br>4K<br>4K |   | Remove All<br>Remove Sel.<br>SW Protect | Erase<br>Program<br>Verify<br>HW Protect<br>State<br>Setup |
| universal debug engine      | Tool<br>Disconnect                                                | Ready for                                                           | Memtool Commar                                                                                                                                                                                                                                                                                                                                                                                  | ıd                                                                                                                                                             |                                                                                                   | _ | Help                                    | Exit                                                       |

(scdicosw-171011-01.tif, 1, en\_US

Figure 4-50 Dialog of the Connection to SWT 3000 for 764 KByte On-Chip Program FLASH

### 4.8.4 Programming the Application into the Flash Memory

Click **Open File** and select the AllInOne\_PU4\_Px.y.z.jnk.

| Open Hex File        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?×           |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Look jn:             | 🗁 Firmware 💌 🗢 🗈 📸 📰 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| 📁<br>Recent          | Image: Contract of the second seco |              |
| Desktop              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| My Documents         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| My Computer          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| <b>S</b>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| My Network<br>Places | File name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>O</u> pen |
| 1 10003              | Files of type: jnk-Files (*.jnk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cancel       |

[scsealli-171011-01.tif, 1, en\_US]

```
Figure 4-51 Selection of the AllInOne_PU4_Px.y.z.jnk File
```



### NOTE

For the first time, it can be possible that you have to select **All Files** or **jnk Files** in the **Files of type** list box and navigate to the source folder. For more detailed information, refer to 4.5.4 Getting Started.

### Click Open.

After loading this file in the left part of the MemTool main dialog, the file name and a list of sectors of the application are displayed.

| Dx00300000 · 0x00307FFF         Open File         Ind           0x0030F000 · 0x0030F02F         Select All         0           0x00310000 · 0x0032051         Select All         0           0x00300000 · 0x003CPE89         Add Sel.>>         0           0x0030000 · 0x003CP543         Add Sel.>>         0 | 0 0x00C00000<br>1 0x00C01000                                                                 | End<br>0x00C00FFF<br>0x00C01FFF                                                                                                          | Size 🔨<br>4K                                                          | Remove All             | Erase                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                 | 3 0x00C03000<br>4 0x00C04000<br>5 0x00C08000<br>6 0x00C0C000<br>7 0x00C10000<br>8 0x00C20000 | 0x00C02FFF<br>0x00C03FFF<br>0x00C03FFF<br>0x00C08FFF<br>0x00C08FFF<br>0x00C2FFFF<br>0x00C2FFFF<br>0x00C2FFFF<br>0x00C3FFFF<br>0x00C41FFF | 4K<br>4K<br>16K<br>16K<br>16K<br>12K<br>64K<br>64K<br>64K<br>4K<br>4K | Remove Sel. SW Protect | Program<br>Verify<br>HW Protec<br>State<br>Setup |

[scfilena-171011-01.tif, 1, en\_

Figure 4-52 After Selection of the AllInOne\_PU4\_Px.y.z.jnk File

Click **Select All** and then **Add Sel.** >>. The sectors of the application are displayed (according to the sectors they belong to) in the list box on the right-hand side.

| 🗱 UDE - Memtool on Siemens SWT3000R3.5 - PU4 (v                                                                                                                                                                                                                                                                          | 0.1 - serial, 115200 baud)                                                                                                                                           |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| File Target Device Log Help                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                       |
| File :<br>C:\Program Files\PowerSys\P3.5.9\Firmware\AllInOne_PU                                                                                                                                                                                                                                                          | FLASH/DTP - Memory Device<br>764 KByte on-chip Program FLASH                                                                                                         | ▼ ▼ Enable            |
| 0x00300000 - 0x00307FFF 🛛 🔥 Open File                                                                                                                                                                                                                                                                                    | Index Start End Size 🔨 Remov                                                                                                                                         | ve All Erase          |
| 0x0030F000 - 0x0030F02F<br>0x00310000 - 0x00332051<br>0x003C0000 - 0x003CF89<br>0x00300000 - 0x003CF89<br>0x00300000 - 0x003CF077 ≅<br>0x003E0000 - 0x003E0543                                                                                                                                                           | 0 0x00C00000 0x00C00FFF 4K 0<br>0x00C00000 0x00C0022A<br>0x00C0022C 0x00C00FFF<br>1 0x00C01000 0x00C01FFF 4K<br>0x00C01000 0x00C01FFF 4K                             | e Sel. Program Verify |
| 0x003F0000         0x003F025D         Save As           0x00400000         0x0043379B         Save As           0x00000000         0x000002A         Read           0x00000022         0x00000384         Read           0x00003384         0x00000388         Read           0x00003384         0x00000388         Read | 2 0x00CC1000 0x00C02FFF 4K<br>0x00CC02000 0x00C02FFF 4K<br>0x00CC03000 0x00C02FFF 4K<br>0x00CC03000 0x00C037FF 4K<br>0x00CC03000 0x00C03382<br>0x00CC03384 0x00C0330 | HW Protect            |
| 0x00C0431C + 0x00C0431E<br>0x00C04320 + 0x00C05198                                                                                                                                                                                                                                                                       |                                                                                                                                                                      | Setup                 |
| universal debug engine                                                                                                                                                                                                                                                                                                   | Ready for Memtool Command He                                                                                                                                         | lp Exit               |

[scaddsel-171011-01.tif, 1, en\_US]

Figure 4-53 Dialog of the Sectors in the List Box After clicking Add Selection

# i

### NOTE

Wrong file selection results in unsuccessful flash programming. Verify that the **selected file matches to the target**, the correct FLASH memory device is selected and enabled and the device is physically connected.

Click **Program** to start the programming cycle. The **Execute MemTool Command** dialog appears and shows the programming progress. The upgrade starts with programming and verification.

| Execute Memtool Command           | × |
|-----------------------------------|---|
| Current FLASH/OTP Device :        |   |
| 764 KByte on-chip Program FLASH   | _ |
| Operation :                       |   |
| Programming 00C30800h - 00C30FFFh |   |
| Progress :                        |   |
|                                   |   |
| Start Cancel Help                 |   |

[scstprog-250711-01.tif, 1, en\_U

Figure 4-54 Starting of the Programming Process

| Execute Memtool Command         |
|---------------------------------|
| Current FLASH/0TP Device :      |
| 764 KByte on-chip Program FLASH |
| ,<br>Operation :                |
| success                         |
|                                 |
| Progress :                      |
|                                 |
| Start Exit Help                 |
|                                 |

### sucpro-250711-01.tif, 1, er

Figure 4-55 Dialog After a Successful Programming

After successful upgrade, click Exit.

For **external FLASH** module, the sector table is created after determining the actual type of the FLASH. Select **ext FLASH** in the **Flash/OTP** - **Memory Device** list box.

**If the connection fails**, reset the PU4 module and try again. For more detailed information, refer to 4.5.5 *Trouble Shooting*.

| File Target Device Log Help |                                                                    | FLASH/0                                                             | ITP - Memory De<br>6H                                                                                                                                                    | vice                                                                                                                                                          |                                                             |                                                    | 🔽 Enable                                                   |
|-----------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
|                             | Open File<br>Select All<br>Add Sel. >><br>Save As<br>Read<br>E dit | Index<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | Start<br>0x0030000<br>0x0031000<br>0x0032000<br>0x0030000<br>0x0036000<br>0x00350000<br>0x00350000<br>0x00370000<br>0x00380000<br>0x00380000<br>0x00380000<br>0x00380000 | End<br>0x0030FFFF<br>0x0032FFFF<br>0x0032FFFF<br>0x0033FFFF<br>0x0035FFFF<br>0x0036FFFF<br>0x0036FFFF<br>0x0037FFFF<br>0x0037FFFF<br>0x0038FFFF<br>0x0038FFFF | 64K<br>64K<br>64K<br>64K<br>64K<br>64K<br>64K<br>64K<br>64K | Remove All     Remove Sel     SW Protect      Info | Erase<br>Program<br>Verify<br>HW Protect<br>State<br>Setup |
| universal debug engine      | Tool<br>Disconnect                                                 | Ready for                                                           | Memtool Comma                                                                                                                                                            | nd                                                                                                                                                            |                                                             | Help                                               | Exit                                                       |

Click Erase ... to erase the external FLASH.

[scdicose-150911-01.tif, 1, en\_US]

Figure 4-56 Dialog of the Connection to SWT 3000 for External FLASH

Click **Program** to start the programming cycle. The **Execute MemTool Command** dialog appears and shows the programming progress. The upgrade starts with programming and verification.

After successful upgrade, click Exit.

Click **Disconnect** and then **Exit** to close the MemTool main dialog.



## NOTE

Turn off the device with the **S2** switch on the PU4 module. Set the **S3.1 of S3 DIL switch on the PU4 module to OFF position**. Turn on the device with the **S2** switch on the PU4 module (PU4-Reset).



## NOTE

If SWT 3000 is integrated into PowerLink (as iSWT), perform the following instructions:

- Turn off the device with the **S1** switch on the CSPi module.
- Set the S3.1 of S3 DIL switch on the PU4 module to OFF position.
- Set the S5.2 on the CSPi module to OFF position.
- Turn on the device with the **S1** switch on the CSPi module (CSPi-Reset).

## 4.9 PLPAStraps for Jumper Settings

## 4.9.1 Overview

This program is part of the PowerSys software package. Copy the program on your computer hard disk and run the <**PLPAStraps Setup**> file.

The program PLPAStraps calculates the necessary jumper settings for all modules in the PLPA section of the PowerLink

## 4.9.2 Installation

If older PLPAStraps program versions are installed on the PC, all program parts of the former versions need to be uninstalled prior to installation of the new PLPAStraps version.

Open the **Control Panel > Add / Remove software programs** and select the following software programs for uninstallation:

- PLPAStraps (e.g. PLPAStraps CSPi v1.4)
- MATLAB Component Runtime

After uninstallation and Restart of the PC the new PLPAStraps version (e.g. v01.50.00) can be installed by execution of the **PLPAStraps\_Setup.exe** from folder **\PLPAStraps**.

The Setup Wizard leads you through the installation process which is divided in 2 parts:

- 1. Setup of the PLPAStraps program
- 2. Installation of the MATLAB Compiler Runtime 8.0 (MCR)

The MCR is mandatory part of the installation, otherwise PLPAStraps will not work. Older MATLAB Runtime versions may be incompatible with new PLPAStraps versions. It's strongly recommended always to execute both installation steps. In case the MCR is not automatically installed automatically with the PLPAStraps\_Setup.exe execute the **MCRInstaller.exe** separately from folder **\PLPAStraps\MCRInstaller**.

## 4.9.3 Input of PLPA configuration

After start of the program PLPAStraps the **<Configuration**> form is opened. Here the configuration parameters of the PLPA amplifier can be selected.

Fill the required parameters and activate the checkbox **Visualize > Zoom to fit**. The option enables the automatic zoom of the forms in the Straps settings submenus to the actual window size.

| 🚸 PLPAStraps                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File A</u> bout                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Configuration<br>Configuration<br>PLPA Backpane<br>AMP50 (both)<br>Full TX-power<br>TXF (both)<br>Adjustment mode<br>Operation mode<br>RXF<br>Level Setting<br>Adjustment step 1<br>Adjustment step 2<br>Adjustment step 3<br>Operation mode<br>LT100<br>Adjustment TXF-1<br>Adjustment TXF-2<br>Operation mode<br>Measuring mode | General:       Amplifier         © 5 kHz       © Up to 1 x 25 W       © Up to 2 x 25 W         © 8 kHz       © Up to 1 x 50 W       © Up to 2 x 50 W         © 12 kHz       © output Impedance       Frequency Input         © 24 kHz       © 75       © Center         © 32 kHz       © 150       © Center         Factory Number:       Image: Start       © Center         Factory Number:       Image: Start       © Center         Band:       240       to       248         Center frequency:       244       Image: Start       Image: Start         Genter frequency:       60       to       68         Center frequency:       64       Image: Start       Image: Start |
|                                                                                                                                                                                                                                                                                                                                   | Visualize:         The complete module is visible on the screen when activated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

[scplpacf-081210-01.tif, 1, en US]

Figure 4-57 The PLPA configuration form

First enter the general settings like bandwidth of the PowerLink the amplifier power and the output impedance. The frequency input is possible for the start frequency of the Transmitter resp. Receiver band or for the center frequency.

### **Strap Settings**

By selecting the **<Strap settings>** submenus the program calculates the required settings for the PLPA modules.

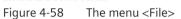
When selecting **<Strap settings – TXF – Operation mode>** the necessary strap settings for the TXF in the normal operation mode are calculated from the program and displayed subsequently. For the filter adjustment a slightly different strap setting is necessary. It is displayed with click on **<TXF – Adjustment mode>**. In case of using a 100 W power amplifier two AMP50 and two TXF modules are necessary. The strap settings are the same in both modules.

The strap settings for the receiver module RXF in the normal mode is calculated when selecting **<Strap Settings – RXF – Operation mode**>. For the filter adjustment a slightly different setting is necessary. It is displayed with click on **<RXF – Adjustment step 1 to 3**>. Additional RX level setting is possible.

The strap setting for the LT 100 module in the normal mode is calculated when selecting Straps Settings - **<LT100 – Operation mode>**. For tuning the TXF in position 1 resp. 2 a slightly different setting is necessary. It is displayed with click **<LT100 – Adjustment TXF-1>**resp. **TXF-2**.



### NOTE


For further information about filter adjustment refer to chapter Commissioning.

Configuration settings and the corresponding straps settings can be saved by the option Save Inputs in the menu <**File**>.

## 4.9.4 The Menu <File>

After the program has been started an existing file can be opened **<Open>**. Further the saving of the entries **<Save>** or print-out of an existing file **<Print>** is carried out. With **<Exit>** the program is aborted.

| File |                       |
|------|-----------------------|
|      | Open Inputs           |
|      | Save Inputs           |
|      | Save Inputs As        |
|      | Print Straps Settings |
|      | Print Preview         |
|      | Print To File         |
|      | Exit                  |



## 4.9.5 Selecting an Existing File

| Open                                             |                                                                                                                                                       |                           |   |         | <u>?×</u>      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|---------|----------------|
| Look in:                                         | C PLPA Straps                                                                                                                                         |                           | • | 3 🕫 🖻 🗄 |                |
| Recent<br>Desktop<br>My Documents<br>My Computer | bitmaps<br>bmppos<br>mdata<br>RXF_mcr<br>TXF_mcr<br>PLPA Straps<br>rxf.ctf<br>rxf.dll<br>SSTN_A<br>test_1<br>test_1<br>txf.ctf<br>txf.dll<br>unins000 |                           |   |         |                |
| My Network<br>Places                             | File name:<br>Files of type:                                                                                                                          | SSTN_A<br>All files (*.*) |   | •       | Open<br>Cancel |

[scselexf-091210-01.tif, 1, en\_US]

Figure 4-59 Selection of an existing file

## 4.10 SWTStraps for Jumper Settings

### 4.10.1 Overview

The program SWTStraps can be used as a graphical utility to find the correct jumper settings for the SWT 3000 modules. The program is supplied with the PowerSys package in folder \Utilities. The program has to be installed on the PC by execution of the setup file in folder : \Utilities\SWTStraps. The Setup Wizard leads you through the installation process. With installation of the SWTStraps program a shortcut in the Programs folder and a desktop icon are created.

## 4.10.2 SWTStraps Input Form

With program start the SWTStraps Start Window is opened. You can either chose to load a new Input Form by click on <**New Configuration**> or to open a earlier saved configuration by <**Load Configuration**>.



<sup>[</sup>scstrasw-010813-01.tif, 1, en\_US]

Figure 4-60 The SWTStraps start window

With selection of **<New Configuration**> a blank Input Form is opened. Earlier saved configuration inputs can be uploaded via the **<Load Configuration**> button.

With the blank input form the standard modules of an (i)SWT 3000 are displayed with their configurable parameters for the straps settings: IFC, PU4/DLE and ALR. Fill all parameters for the modules according to the requirements of your SWT 3000 system.



#### NOTE

Unsupported features or hardware of PowerLink 50 are not blocked in SWTStraps.

| IFC                  | PU                                             | /DLE               | ALR                                                                                                                      | CLE FOM |  |
|----------------------|------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|---------|--|
| ominal Input Voltage | LID1                                           | LID2               | Input Voltage                                                                                                            |         |  |
| C                    |                                                | G 11 21            | O BI1 O IRIG-B                                                                                                           |         |  |
| C 250 V<br>C 110 V   | C X.21                                         | C X.21<br>C G703.1 |                                                                                                                          |         |  |
| C 48/60 V            | C G703.6 sym                                   | C G703.6 sym       |                                                                                                                          |         |  |
| C 24V                | C G703.6 asym                                  | C G703.6 asym      | Binary Input 2                                                                                                           |         |  |
|                      | C 9703.6 Input Amplifier<br>C 12 dB<br>C 43 dB | C 12 dB            | C 24V C 48V/ 60V<br>C 110V C 250V<br>C fast C slow<br>Alarm Relais<br>Alarm K1<br>C N.C C N.0<br>Alarm K2<br>C N.C C N.0 |         |  |
|                      |                                                |                    | Alarm K3<br>O N.C O N.O                                                                                                  |         |  |

[scstripb-010813-01.tif, 1, er

Figure 4-61 SWTStraps Input Form

When selecting the checkboxes of the optional SWT 3000 modules CLE and FOM the corresponding input forms become visible. Optionally then the parameters for CLE **or** FOM-1 can be entered. The inputs for an (optional) second FOM module can be made separately.

For exercise you can open a sample configuration by click on the button **<Sample/Default>**.

| IFC                   | PU /                                                          | DLE                                                           | A                                | LR                                       | CLE          | □ FOM      | 🗵 FO                                                                                                                                | N                         |
|-----------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------------|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Nominal Input Voltage | LID1                                                          | LID2                                                          |                                  | Voltage<br>RIG-B                         | Input Im     | pedance    | Connectio                                                                                                                           | n<br>1                    |
|                       | C X.21                                                        | © X.21                                                        | © BI1                            | C IRIG-8                                 | 600 Ohm      | C >= 5k0hm | Direct Connection     O FOBox                                                                                                       | C 64 kBit/s<br>C 2 MBit/s |
| C 110V                | C G703.1                                                      | C G703.1                                                      | C 110V                           | • 250V                                   | Output li    | npedance   | Digital Interf                                                                                                                      | ace                       |
| ○ 48/60∨              | G703.6 sym                                                    | C G703.6 sym                                                  | fast                             | O slow                                   | • 600 Ohm    | ◯ >= 5k0hm | O X.21                                                                                                                              |                           |
| C 24V                 | C G703.6 asym<br>G703.6 Input Amplifier<br>C 12 dB<br>C 43 dB | C G703.6 asym<br>G703.6 Input Amplifier<br>C 12 dB<br>C 43 dB |                                  | C 49V/ 60V<br>© 250V<br>C slow<br>Relais | Receiver Amp |            | G703.1<br>G703.6 sym<br>G703.6 asym<br>G703.6 lnput Amplifi<br>G703.6 lnput Amplifi<br>G703.8 lnput Amplifi<br>G703.8 lnput Amplifi | er                        |
|                       |                                                               |                                                               | Alarm K1<br>N.C<br>Alarm K2      | O N.0                                    |              |            |                                                                                                                                     |                           |
|                       |                                                               |                                                               | N.C     Alarm K3     N.C     N.C | © N.0                                    |              |            |                                                                                                                                     |                           |
|                       | Clear                                                         |                                                               |                                  |                                          |              |            | <b></b>                                                                                                                             |                           |

[scstrips-010813-01.tif, 1, e

Figure 4-62 SWTStraps Input Form (Sample)



### NOTE

For an iSWT 3000 integrated in PowerLink it is sufficient to enter the inputs for IFC, PU4/DLE and ALR module.

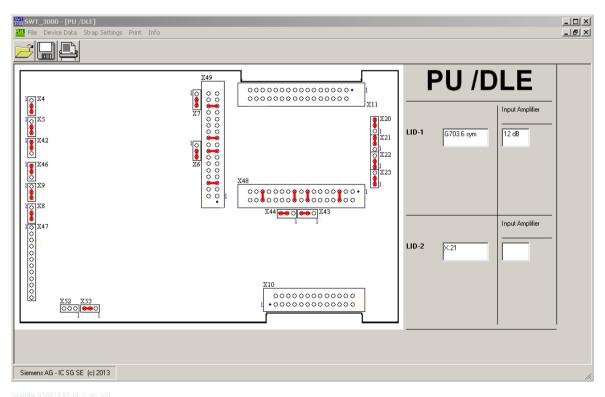
If the configuration of the device data is completed, click the **<OK**> button.

In the SWTStraps menu **>File** resp. **>Print** (or by click on the icons) you can **Save** or **Print** the device data inputs. From the **>File** menu it is also possible to **Open** saved input datafiles or to **Clear** the recent configuration.

You can edit the device data inputs of the recent configuration anytime via >Device Data > Edit.



Figure 4-63 The SWTStraps main menu


### 4.10.3 The Straps Settings windows

The straps setting windows for the configured (i)SWT 3000 modules can be selected via the main menu **>Straps Settings**. From here you can open the displays with the required straps settings for the modules IFC(-P/D/S), PU4/DLE, ALR and (if configured) CLE, FOBox-1 or -2. The following figures show examples.

| SWT_3000 - [IFC]        Image File Device Data Strap Settings Print Info                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                    |  |
| IFC Adr<br>PU3 4 5 0 0 BI 4 IFC<br>Nominal Imput Voltage 250 V                                                                                                     |  |
| On off         On off         On off         IFC-1           52*)         \$\$\$ 0         \$\$\$ 0         \$\$\$\$ 10                                            |  |
| x41<br>x41<br>x55 x43                                                                                                                                              |  |
| BI 2<br>S O<br>S O<br>S O<br>BI 2<br>IFC-3<br>IFC-3<br>IFC-4<br>IFC-4<br>IFC-4                                                                                     |  |
| *) Set S2 according IFC assembling position 1-4     XSS X4S     BI 1       or for use with PU3     *     •       Bi setting 1-4 not available on IFC-S     *     • |  |
| IFC (PU3)                                                                                                                                                          |  |
| Siemens AG - IC SG SE (c) 2013                                                                                                                                     |  |

#### [scstrifc-010813-01.tif, 1, en\_L





### Figure 4-65 Straps Settings for the DLE (example)

You can print the straps settings of the configured (i)SWT 3000 modules to paper-print via menu **>Print** or the printer icon.

## 4.11 MergeTool for IEC61850 with (i)SWT 3000

## 4.11.1 Overview

The IEC 61850 Intelligent Electronic Device (IED) configuration philosophy of SWT 3000 is to have a separate static IED Capability Description (ICD) file for each possible SWT 3000 I/O configuration. These ICD files are imported in the IEC 61850 system configurator (DIGSI®) for substation configuration.

When the substation configuration is finished, the **MergeTool<sup>3</sup>** reads the Station Configuration Description (SCD) file (of the substation configuration) and generates the following 2 files:

- EN100 parameter file (BIN file)
- PowerSys preconfiguration file (CFG file)

PowerSys imports these 2 files into PU4 board.

MergeTool is installed together with the PowerSys installation, it can be started from Windows Startup menu.

| <b>-</b> s | iemens Telecommunication Prod | ^ |
|------------|-------------------------------|---|
|            | MeasurementTool               |   |
| 嶻          | MergeTool                     |   |
| 1 s        | PowerSys V3.x                 |   |

Figure 4-66 MergeTool in Windows Startup menu

The MergeTool dialog contains the Parameter Generator and EN100 Settings buttons.

## 4.11.2 Parameter Generator

Select the **Parameter Generator** button in the **MergeTool** dialog. The following **MergeTool > [Parameter Generator]** dialog appears:

<sup>[</sup>sc\_windows\_startup\_menu, 2, --

<sup>&</sup>lt;sup>3</sup> MergeTool covers the offline configuration of the IEC 61850 related settings for SWT 3000.

| 👫 Parameter generator and Merge T       | ool ¥1.0.6 - [Parameter Ger | nerator]           |                       |
|-----------------------------------------|-----------------------------|--------------------|-----------------------|
| Real Parameter Generator EN100 Settings |                             |                    | _ 8 ×                 |
| Input files:                            |                             | Output files:      | ]                     |
| SWT ICD File:                           |                             | BIN File:          |                       |
| SCD File:                               |                             | CFG File:          |                       |
| EN100 Interface<br>Settings File:       |                             |                    |                       |
|                                         | Load                        |                    | Generate              |
| Choose SWT Device:                      |                             |                    |                       |
|                                         |                             |                    |                       |
|                                         |                             |                    |                       |
|                                         |                             |                    |                       |
| Id Source Device                        | Source Parameter            | Destination Device | Destination Parameter |
|                                         |                             |                    |                       |

scpargen-141011-01.tif, 1, en\_US

Figure 4-67 MergeTool > [Parameter Generator] Dialog

Table 4-10Parameter Generator Settings

| Parameter                                         | Description                                                                                                                                                                                                                                                                                                                                                                                   | Selection                                                                                                                                                                                                                            |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input files ><br>SWT ICD File                     | The <b>SWT ICD File</b> (a mapping of the device in a standard compliant file) is the precondition for work in the system configurator (DIGSI), which is based on these files. The ICD files describe the communication properties of the device according to IEC 61850. The ICD file of the SWT 3000 device is used for station configuration.                                               | One of maximum 9 different<br>available ICD files.<br>Each file describes maximum<br>amount of transmittable and<br>receivable commands.                                                                                             |
| Input files ><br>SCD File                         | Several devices form a complete station. They can also<br>include a master unit. These components have various<br>communication connections between them that must be<br>parameterized. The description of all devices, their settings,<br>and interrelations are grouped together in the SCD file. The<br>SCD file itself is created and processed using the system<br>configurator (DIGSI). | SCD file of the station                                                                                                                                                                                                              |
| Input files ><br>EN100 Interface Settings<br>File | The <b>EN100 Interface Settings File (IFD file)</b> contains the interface settings for the EN100 module.                                                                                                                                                                                                                                                                                     | IFD file for the EN100<br>module<br>A default IFD file for<br>the selection of input<br>file is presented to<br>the MergeTool user in<br>the PowerSys installation<br>folder <b>\Px.y.zzz\Util\Merge-</b><br><b>Tool\v01.00.11</b> . |
| Choose SWT Device                                 | The present SWT 3000 devices appear in this window. For<br>the generation of output files, select one of the SWT 3000<br>devices. After selecting the desired SWT 3000 device, the<br>source device, source parameter, destination device, and<br>destination parameter are listed in the option table.                                                                                       | One of the SWT 3000 devices                                                                                                                                                                                                          |
| Output files ><br>BIN File                        | The configuration for the EN100 module is provided via<br>EN100 parameter file (binary parameter file, <b>BIN file</b> )<br>EN100par.bin.                                                                                                                                                                                                                                                     | Select a folder for storage of the BIN file.                                                                                                                                                                                         |
| Output files ><br>CFG File                        | The configuration for PowerSys is provided via PowerSys preconfiguration file ( <b>CFG file</b> ).                                                                                                                                                                                                                                                                                            | Select a folder for storage of the CFG file.                                                                                                                                                                                         |



### NOTE

There are maximum 9 different ICD files available. Each file describes maximum amount of transmittable and receivable commands. The ICD files are available in the PowerSys installation folder \Px.y.zz\Util\MergeTool\v01.00.11 and on the PowerSys package in folder \IEC61850\Config\_files.

| Table 4-11 | Selection of | of different | ICD Files  |
|------------|--------------|--------------|------------|
|            | Sciectionic  |              | ICD I IICS |

| Selection             | Comment                                                   |
|-----------------------|-----------------------------------------------------------|
| SWT3000_c1_ed1/2.icd  | Maximum 1 GGIO command is transmittable and receivable    |
| SWT3000_c2_ed1/2.icd  | Maximum 2 GGIO commands are transmittable and receivable  |
| SWT3000_c3_ed1/2.icd  | Maximum 3 GGIO commands are transmittable and receivable  |
| SWT3000_c4_ed1/2.icd  | Maximum 4 GGIO commands are transmittable and receivable  |
| SWT3000_c5_ed1/2.icd  | Maximum 5 GGIO commands are transmittable and receivable  |
| SWT3000_c6_ed1/2.icd  | Maximum 6 GGIO commands are transmittable and receivable  |
| SWT3000_c7_ed1/2.icd  | Maximum 7 GGIO commands are transmittable and receivable  |
| SWT3000_c8_ed1/2.icd  | Maximum 8 GGIO commands are transmittable and receivable  |
| SWT3000_c16_ed1/2.icd | Maximum 16 GGIO commands are transmittable and receivable |

Select the files in the Input files area in the following order:

- Click the SWT ICD File button.
  - The following dialog appears:

| rganize 🔻 👘 New fol | der                 |                  |          |      |                  | ▼ 11 |
|---------------------|---------------------|------------------|----------|------|------------------|------|
| A Quick access      | Name                | Date modified    | Туре     | Size |                  |      |
|                     | swt3000_c1_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 24 KB            |      |
| Desktop 🖈           | swt3000_c2_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 24 KB            |      |
| 🗄 Documents 🖈       | swt3000_c3_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 15 KB            |      |
|                     | swt3000_c4_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 25 KB            |      |
|                     | swt3000_c5_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | .6 KB            |      |
|                     | swt3000_c6_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 6 KB             |      |
|                     | swt3000_c7_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 27 KB            |      |
|                     | swt3000_c8_ed2.icd  | 23.03.2016 00:10 | ICD File | 2    | 27 KB            |      |
|                     | swt3000_c16_ed2.icd | 30.08.2018 22:34 | ICD File | 3    | 13 KB            |      |
| This PC             |                     |                  |          |      |                  |      |
| Ť                   |                     |                  |          |      |                  |      |
| File                | name:               |                  |          | ~    | ICD file (*.icd) |      |

[sc\_ICD\_Fileselection, 1,

Figure 4-68 ICD File Selection of SWT 3000

Select the proper **SWT ICD File**, which was used in station configuration. After selection of the **SWT ICD File**, click **Open**.  $\times$ 

• Click the **SCD File** button. The following dialog appears:

| <mark>,</mark> ≸ Open                |                                      |                                   |                  |                | ;                             |
|--------------------------------------|--------------------------------------|-----------------------------------|------------------|----------------|-------------------------------|
| ← → • ↑ 📙 « IEC                      | 61850 > Config_files > Example_confi | gs_for_EN100 > 4_command          |                  | Q 5 V          | Search 4_command              |
| Organize 🔻 New folde                 |                                      |                                   |                  |                | III 🔹 🔟 (                     |
| A Quick access ■ Desktop ■ Documents | Name                                 | Date modified<br>25.04.2017 08:45 | Type<br>SCD File | Size<br>331 KI |                               |
| This PC                              |                                      |                                   |                  |                |                               |
| File na                              | ime:                                 |                                   |                  | ∽ SCD          | file (*.scd) v<br>Open Cancel |
|                                      |                                      |                                   |                  |                |                               |

Figure 4-69 SCD File Selection of the Station

Select the proper **SCD File** of the station. After selection of the **SCD File**, click **Open**.

• In the third step, click the EN100 Interface Settings File (IFD file) button. The following dialog appears:

| ganize 🔻 🛛 New fold | der                                             |                  |             | E= ▼ III           |
|---------------------|-------------------------------------------------|------------------|-------------|--------------------|
| A Quick access      | Name                                            | Date modified    | Туре        | Size               |
|                     | de de                                           | 28.04.2020 08:54 | File folder |                    |
| Desktop 🖈           | ICD_IEC61850-Edition-1                          | 28.04.2020 08:54 | File folder |                    |
| 🗎 Documents 🖈       | ICD_IEC61850-Edition-2                          | 28.04.2020 08:54 | File folder |                    |
|                     | 📙 ru                                            | 28.04.2020 08:54 | File folder |                    |
|                     | swt3000_en100_settings_HSR_SnmpON_HttpON.ifd    | 30.08.2018 22:34 | IFD File    | 2 KB               |
|                     | swt3000_en100_settings_LINE_SnmpOFF_HttpOFF.ifd | 31.07.2019 23:19 | IFD File    | 2 KB               |
|                     | swt3000_en100_settings_LINE_SnmpON_HttpON.ifd   | 21.06.2011 02:39 | IFD File    | 2 KB               |
|                     | swt3000_en100_settings_PRP_SnmpON_HttpON.ifd    | 30.08.2018 22:34 | IFD File    | 2 KB               |
|                     | swt3000_en100_settings_RSTP_SnmpON_HttpON.ifd   | 30.08.2018 22:34 | IFD File    | 2 KB               |
|                     |                                                 |                  |             |                    |
|                     |                                                 |                  |             |                    |
| This PC             |                                                 |                  |             |                    |
|                     | name:                                           |                  |             | / IFD-File (*.ifd) |

Figure 4-70 IFD File Selection of the EN100 Module

Explanation for the default IFD files:xxx\_SnmpOFF\_HttpOFF.ifd:EN100 SNMP and HTTP services are enabledxxx\_SnmpOn\_HttpON.ifd:EN100 SNMP and HTTP services are disabled

Select the proper **IFD file** of the EN100 module. After selection of the **IFD file**, click **Open**.



### NOTE

A default IFD file for the selection of input file is presented to the MergeTool user in the PowerSys installation folder **\Px.y.zz**\**Util\MergeTool**.

After selecting the **Input files**, click the **Load** button. If multiple matching SWT 3000 devices are found in the local station, they are listed in the **Choose SWT Device** area.

| Reparameter generator and Merge Tool V1.0.6 - [Parameter Gen                                                                                                                                                                               | erator] 📃 🗖 🔀                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Real Parameter Generator EN100 Settings                                                                                                                                                                                                    | _ @ X                                      |
| Input files:<br>SWT ICD File: swt3000_c8.icd<br>SCD File: JEC61850-Station_InputsFullProvided.scd<br>EN100 Interface<br>Settings File: swt3000_en100_settings_LINE_SnmpON_HttpON.itd<br>Load<br>Choose SWT Device:<br>swt_c8_2<br>swt_c8_1 | Output files: BIN File: CFG File: Generate |
| Id Source Device Source Parameter                                                                                                                                                                                                          | Destination Device Destination Parameter   |

[scmtswtd-141011-01.tif, 1, en\_US]

Figure 4-71 [Parameter Generator] Dialog with Choose SWT Device area

With clicking the desired device, the **Source Device**, **Source Parameter**, **Destination Device**, and **Destination Parameter** are listed in the option table.

| 💱 Par | ameter generator and Merg                 |                          |                            |                       |
|-------|-------------------------------------------|--------------------------|----------------------------|-----------------------|
| n 🛃   | arameter Generator EN100 Setti            | ngs                      |                            | - @ X                 |
| Sw/T  | files:<br>ICD File: swt3000_c8.icd        | _                        | Output files:<br>BIN File: |                       |
| SCD   | File: IEC61850-Station_Inp                | utsFullProvided.scd      | CFG File:                  |                       |
|       | 0 Interface [swt3000_en100_settings File: | gs_LINE_SnmpON_HttpON.id |                            |                       |
|       |                                           | Load                     |                            | Generate              |
| swt_c |                                           |                          |                            |                       |
| Id    | Source Device                             | Source Parameter         | Destination Device         | Destination Parameter |
| 0     | IED_000d/beGGI01/SPCS01                   | stVal                    | TELE/TXC_GGI01/            | CO/SPCS01/ctVal       |
| 1     | IED_0008/beGGI01/SPCS03                   | st∨al                    | TELE/TXC_GGI01/            | C0/SPCS03/ctVal       |
| 2     | IED_0009/beGGI01/SPCS03                   | stVal                    | TELE/TXC_GGI01/            | C0/SPCS04/ctVal       |
| 3     | IED_000a/beGGI01/SPCS03                   | stVal                    | TELE/TXC_GGI01/            | C0/SPCS05/ctVal       |
| 4     | IED_000b/beGGI01/SPCS03                   | st∨al                    | TELE/TXC_GGI01/            | C0/SPCS06/ctVal       |
| 5     | IED_000c/beGGI01/SPCS03                   | stVal                    | TELE/TXC_GGI01/            | C0/SPCS07/ctVal       |
| 6     | IED_000d/beGGI01/SPCS03                   | stVal                    | TELE/TXC_GGI01/            | C0/SPCS08/ctMal       |

[scmtopta-141011-01.tif, 1, e

Figure 4-72 [Parameter Generator] Dialog with Option Table area



## NOTE

If the SCD file does not contain the intAddr and daName tags for the inputs sections (so the substation configurator does not provide this information), manual selection of the source and destination parameters in the option table is necessary. Click the **Source Parameter** or **Destination Parameter** list box and select the specific parameters.

When using the EN100 module, it is necessary to generate the EN100 parameter file (BIN file) and PowerSys preconfiguration file (CFG file) and save them in a proper folder. The mentioned files can be uploaded to PowerSys in the SWT 3000 > Configuration > System-2 submenu. Store the content of the BIN file then in PU4 Flash. With each startup of SWT 3000, the BIN file is transferred to volatile memory of the EN100 module. In order to generate the desired **Output files**, define the name and place of storage of the **Output files** area as follows:

• Click the **BIN File** button.

The following dialog appears:

| Save As              |                    |                   |   |          | ? 🔀          |
|----------------------|--------------------|-------------------|---|----------|--------------|
| Savejn:              | C MergeTool        |                   | • | ← 🗈 💣 📰• |              |
| 📁<br>Recent          | i de<br>ru         |                   |   |          |              |
| Desktop              |                    |                   |   |          |              |
| ()<br>My Documents   |                    |                   |   |          |              |
| My Computer          |                    |                   |   |          |              |
| <b>S</b>             |                    |                   |   |          |              |
| My Network<br>Places | File <u>n</u> ame: |                   |   | •        | <u>S</u> ave |
|                      | Save as type:      | En100 binary file |   | •        | Cancel       |

[scbinsel-080911-01.tif, 1, en\_US]

Figure 4-73 Selection of Name and Place of the BIN File

Define the name and place of storage of the BIN file. Afterwards, click **Save**. 4.11 MergeTool for IEC61850 with (i)SWT 3000

• Click the **CFG File** button.

The following dialog appears:

| Save As              |                       |                     |   |          | ? 🔀          |
|----------------------|-----------------------|---------------------|---|----------|--------------|
| Save in:             | C MergeTool           |                     | • | ← 🗈 💣 📰• |              |
| 📁<br>Recent          | 🛅 de<br>🍋 ru          |                     |   |          |              |
| Desktop              |                       |                     |   |          |              |
| (<br>My Documents    |                       |                     |   |          |              |
| My Computer          |                       |                     |   |          |              |
| <b>S</b>             |                       |                     |   |          |              |
| My Network<br>Places | File <u>n</u> ame:    | I                   |   | •        | <u>S</u> ave |
| 1 10000              | Save as <u>t</u> ype: | PowerSys pre-config |   | •        | Cancel       |

Figure 4-74 Selection of Name and Place of the CFG File

Define the name and place of storage of the CFG file. Afterwards, click **Save**.

In order to generate the EN100 parameter file (BIN file) and PowerSys preconfiguration file (CFG file), click the **Generate** button.



### NOTE

If SWT 3000 is equipped with an EN100 module, the BIN file and CFG file are configured in **PowerSys >** SWT 3000 > Configuration > System-2 > EN100 area.

## 4.11.3 EN100 Settings

When using the EN100 module, there are some additional (none IEC 61850) configuration settings for the EN100 module. These settings have to be put in the parameter file downloaded to the EN100 module at startup.

Therefore, the MergeTool provides a Graphical User Interface (GUI) for the configuration of EN100 settings and stores these settings in a separate file. This option provides the implementation of the GUI elements processing the user interaction for the EN100 settings file manipulation.



### NOTE

It is not necessary to create an EN100 settings file (IFD file). A default IFD file for the selection of the input file is presented to the MergeTool user.

If there is a new IFD file needed, proceed like described in the following.

Select the **EN100 Settings** button in the **MergeTool** dialog. The following **MergeTool** > **[EN100 Interface Settings]** dialog appears:

<sup>[</sup>sccfgsel-080911-01.tif, 1, en\_US]

| 🎋 Parameter generato  | r and Merge Tool V | 1.0.8 - [EN100 In                           | iterface Settings]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
|-----------------------|--------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 💀 Parameter Generator | EN100 Settings     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ & ×                                        |
|                       | EN100 Settings     | 1.0.8 - [EN100 In<br>1.0.8 - [EN100 In<br>1 | Time zone and summer time:<br>Time zone and summer time:<br>Time zone offset to GMT:<br>Summer time switchover<br>Cenabled C disabled<br>Summer timer offset to GMT:<br>Start of summer time:<br>Time zone offset to GMT:<br>Time zone offset to GMT:<br>Time zone offset to GMT:<br>Start of summer time:<br>Time zone offset to GMT:<br>Start of summer time:<br>Time zone offset to GMT:<br>Time zone offset | hh:mm<br>hh:mm<br>at vo'clock<br>at vo'clock |
|                       | Cost Style:        | 200000                                      | Module homepage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |



Figure 4-75 MergeTool > [EN100 Interface Settings] Dialog

Copy the presented default IFD file into a desired folder.

Rename this IFD file for creation of a new IFD file and save this file in the desired folder of database.

In order to select the new created IFD file, click the button in the **EN100 Settings File** area. Select the newly created IFD file from the folder in database. You can edit now the IFD file settings.

### 4.11 MergeTool for IEC61850 with (i)SWT 3000

| <mark>≜</mark> Parameter generator an<br>■ Parameter Generator         | d Merge Tool V1.0.<br>EN100 Settings                                                                                      | 11 - [EN100 In      | erface So | ettings]                                                                                                          | _ @ × |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-------------------------------------------------------------------------------------------------------------------|-------|
| EN100 Settings File:<br>D:\Prog\PowerSys\P3.5.1                        | 21\Util\MergeTool\vC                                                                                                      | )1.00.11\swt3000    | _en100    |                                                                                                                   |       |
| Operating mode:<br>© Line © Switch<br>Redundancy type:<br>© RSTP © OSM | - RSTP parameters:<br>Hello Time [s]:<br>Bridge Priority:<br>Bridge Identifier:<br>MaxAge Time [s]:<br>Forward Delay [s]: | 32768<br>2048<br>40 |           | First ▼ Sunday ▼ in January ▼ at 0 ▼ o'clock                                                                      |       |
|                                                                        | Priority:<br>Transmit Count:<br>Cost Style:                                                                               | 128                 |           | Services:<br>SNMP (Simple Network Management Protocol):<br>ON COFF<br>Module homepage:<br>ON COFF<br>Save Changes | ]     |

[scen100i-200513-01.tif, 1, en\_US

Figure 4-76 MergeTool > [EN100 Interface Settings] Dialog with Selected IFD File

Edit the **Optical module settings** as follows:

| Table 4-12 | Optical Modul | e Settings of EN100 | Settings |
|------------|---------------|---------------------|----------|
|------------|---------------|---------------------|----------|

| Parameter       | Description                                                                                                                                                                                                                                                                             | Setting Range or<br>Selection |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Operating mode  | The operating mode for SWT 3000 is set to <b>Line</b> by default. The <b>Line</b> mode is equivalent to the functions of the EN100 module with electrical interface.                                                                                                                    | Line                          |
| Redundancy type | If the <b>Switch</b> mode has been selected, set the <b>Redundancy</b><br><b>type</b> next. Available <b>Redundancy types</b> are <b>Rapid Spanning Tree</b><br><b>Protocol (RSTP)</b> and <b>Optical Switch Module (OSM)</b> . The redun-<br>dancy type depends on the ring structure. | RSTP or OSM                   |
|                 | <b>Redundancy type OSM</b> is a proprietary procedure of the Siemens AG. The OSM type can only be used in combination with at least one external switch that can control this type of redundancy. Set one of the external switches as master.                                           |                               |
|                 | <b>Redundancy type RSTP</b> is used world-wide and supported by nearly all switches.                                                                                                                                                                                                    |                               |

| Parameter                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Setting Range or<br>Selection                                                                                                                                            |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSTP parameter ><br>Hello Time [s]    | If no test message is received 3 times in a row during the speci-<br>fied monitoring time, the connection is considered faulty. The link<br>status is also monitored. It leads to an immediate detection of an<br>interruption with subsequent changeover. Permissible values are<br>from 1 s to 10 s (the standard recommends a default setting of 2 s).                                                                                                                                                                                                                                                                                                                                                                                                                        | From 1 s to 10 s<br>Change the RSTP<br>parameter settings<br>only if this change is<br>necessary. In partic-<br>ular, use the settings<br>recommended in this<br>manual. |
| RSTP parameter ><br>Bridge Priority   | This value represents a priority for a switch. Every switch in the ring network has a specific priority that has been set equally for all switches by default. Furthermore, this priority is linked to the MAC address within the switch, which always yields different priorities. The lowest priority defines the logical separation of the ring network. Here, the messages are output from the ring network. The highest priority (identified by zero) marks the root switch. If messages are output or input there, both logical lines must have the same length. Permissible values are: 0, 4096, 8192, 12 288, 16 384, 20 480, 24 576, 28 672, 32 768, 36 864, 40 960, 45 056, 49 152, 53 248, 57 344, and 61 440 (the standard recommends a default setting of 32768 s). | From 0 s to 61 440 s<br>(in increments of<br>4096)                                                                                                                       |
| RSTP parameter ><br>Bridge Identifier | Enter a number from 0 to 4 294 967 295 as an identifier for the switch (default setting: 2048).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | From 0 to 2 <sup>32</sup>                                                                                                                                                |
| RSTP parameter ><br>MaxAge Time [s]   | Set a time from 6 s to 40 s. After this time has elapsed, older messages will be removed from the network (default setting: 40 s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | From 6 s to 40 s                                                                                                                                                         |
| RSTP parameter ><br>Forward Delay [s] | The ports of the module remain in one of the conditions -<br>discarding, learning, and forwarding - not longer than for the time<br>set here. Permissible values are from 4 s to 30 s (the standard<br>recommends a setting of 21 s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | From 4 s to 30 s                                                                                                                                                         |
| RSTP parameter ><br>Priority          | Every switch in the ring network has a specific priority that has<br>been set equally for all switches by default. The priority is preset by<br>the switch manufacturer. Furthermore, this priority is linked to the<br>MAC address within the switch, which always yields different prior-<br>ities. The lowest priority defines the logical separation of the ring<br>network. Here, the messages are output from the ring network.<br>The highest priority (identified by zero) marks the root switch. If<br>messages are output or input there, both logical lines must have<br>the same length (default setting: 128).                                                                                                                                                      | From 0 to 240 (in increments of 16)                                                                                                                                      |
| RSTP parameter ><br>Transmit Count    | Maximum number of configuration messages sent for a specific<br>event (structural reconfiguration). This number must exceed the<br>number of existing switches in the ring network. Permissible values<br>are from 3 to 128 (the standard recommends a setting of 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | From 3 to 128                                                                                                                                                            |
| RSTP parameter ><br>Cost Style        | This value is a variable that depends on the speed of the link<br>controlling the reconfiguration algorithm. A value of 200000 is<br>fixed for 200 Mbits. Changes are necessary only in special cases and<br>if Spanning Tree Protocol (STP) switches are used. The value -1 is<br>the identifier for the automatic mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200000                                                                                                                                                                   |

Edit the Time zone and summer time as follows:

4.11 MergeTool for IEC61850 with (i)SWT 3000

### Table 4-13 Time Zone and Summer Time Settings of EN100 Settings

| Parameter                    | Description                                                                                                                            | Setting Range or<br>Selection |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Time zone offset to GMT      | The time offset of your time to the Greenwich Mean Time (GMT).                                                                         | From -12 h to +12 h           |
| Summer time<br>switchover    | Select the option <b>enabled</b> or <b>disabled</b> summer time switchover if you do or do not wish to change to daylight saving time. | enabled or disabled           |
| Summer time offset<br>to GMT | The time offset of your time to the GMT.                                                                                               | From 0 h to +23 h             |
| Start of summer time         | Date for the change to daylight saving time.                                                                                           |                               |
| End of summer time           | Date for the change from daylight saving time.                                                                                         |                               |

Edit the **Services** as follows:

Table 4-14Service Settings of EN100 Settings

| Parameter       | Description                                                             | Selection |
|-----------------|-------------------------------------------------------------------------|-----------|
| SNMP            | You can use this setting to activate or deactivate the SNMP protocol.   | ON or OFF |
| Module homepage | You can use this setting to activate or deactivate the module homepage. | ON or OFF |

## 4.12 Measurement Tool

## 4.12.1 Measurement Tool

MeasurementTool is installed together with the PowerSys installation, it can be started from Windows Startup menu.

|    | Siemens Telecommunication Prod $\land$ |
|----|----------------------------------------|
|    | MeasurementTool                        |
| 瀫  | MergeTool                              |
| Ťŝ | PowerSys V3.x                          |



Figure 4-77 MeasurementTool in Windows Startup menu

Enter device IP address before the connection to PowerLink.

| E | thernet Configura    | ation |   |     |    |    |          |       | x |
|---|----------------------|-------|---|-----|----|----|----------|-------|---|
|   | - IP Configuration - |       |   |     |    |    |          |       |   |
|   | IP Address:          | 192   | · | 168 | ]. | 20 | <b>·</b> | 5     | 1 |
|   | Port:                |       |   |     |    |    |          | 10002 |   |
|   |                      |       |   |     |    |    |          | ok    |   |

neasurement\_tool\_ethernet\_config, 1, --\_--]

Figure 4-78 MeasurementTool Ethernet configuration



### NOTE

Measurement Tool is only available if the connection to a PowerLink via TCP/IP is established. Microsoft .NET Framework 2.0 is requested.

### Mode Analyzer IF

The MeasurementTool is a helpful tool to display the received signal inside PowerLink during operation and also for providing a level generator, a level meter and a display for tuning the receive and transmit filter. The MeasurementTool displays corresponds with the display of the service allocation display shown in services.

4.12 Measurement Tool

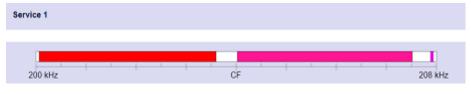
| 200 kHz CF | 208 kHz |
|------------|---------|

Figure 4-79 Service allocation display

| Measure Mode      |                           |             |   | 4    | dB                     |           |    |     |    |    |    |     |    |                     |                           |
|-------------------|---------------------------|-------------|---|------|------------------------|-----------|----|-----|----|----|----|-----|----|---------------------|---------------------------|
| Mode:             |                           | Analyzer IF | - |      | 0 -                    | <<        |    |     |    |    |    |     |    |                     |                           |
| Center Frequency  | (kHz):                    | 24          | ÷ |      |                        |           |    |     |    |    |    |     |    |                     |                           |
| Bandwidth (kHz):  |                           | 8           | ÷ |      | -20 -                  |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           | start meas. | _ |      | -40 -                  |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   |      | -60 -                  |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   |      | -80 -                  |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   |      |                        |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   |      | -100-                  |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   |      | -100-<br>-120-         |           |    |     |    |    |    |     |    |                     |                           |
|                   |                           |             |   | -1   | -120-                  | 9 20      | 21 | -22 | 23 | 24 | 25 | 26  | 27 | 28                  | 29 kH                     |
|                   |                           |             |   | *    | -120-                  | 9 20      | 21 | -22 | 23 | 24 | 25 | 26  | 27 | 28                  | 29 kH                     |
|                   |                           |             |   |      | -120-<br>1             | 9 20      |    | 22  |    | 24 |    | -26 |    |                     |                           |
| osition Cursor 1: | and all the second second | 2005        |   |      | -120-<br>1             | sve scree |    | 22  |    | 1  |    | -26 |    | add cu              | ment plot                 |
| Cursor            | and all the second second | 2005        |   | <br> | -120-<br>1<br>show log | sve scree |    | 22  |    | 1  |    | -26 |    | add cur<br>add plot | rrent plot<br>t from file |
| osition Cursor 1: | X: 0kHz Y: 0              | dB          |   |      | -120-<br>1             | sve scree |    | -22 |    | 1  |    | 26  |    | add cur<br>add plot | ment plot                 |

[scmtlaif-081210-01.tif, 1, e

Figure 4-80 Measuring tool Analyzer IF


CF corresponds to the center frequency of the transmission band and has to be set to 24 kHz. The screen of the Measurement Tool shows the services like a spectrum analyzer. With Changing the bandwidth or the center frequency the signal can be zoomed and moved.

Pushing the start measure button starts the measurement and changes the name of the button to stop measure. The display is refreshed after 1 to 2 seconds.

Pushing the stop measure button stops the measurement.

#### **Mode Filter**

The measuring tool is a helpful tool to display the received signal inside PowerLink during operation and also for providing a level generator, a level meter and a display for tuning the receive and transmit filter. The measuring tool display corresponds with the display of the service allocation display shown in services.



[sc\_service\_allocation\_display, 1, --\_--]

Figure 4-81 Service allocation display

| 🛃 PowerLink - Mea                           | surementTool   |           |   |                 |      |           |    |      |        | _02                        |
|---------------------------------------------|----------------|-----------|---|-----------------|------|-----------|----|------|--------|----------------------------|
| Measure Mode<br>Mode:<br>Center Frequency ( | (kHz): 24      |           | 1 | dB<br>0         |      |           |    |      |        |                            |
| Bandwidth (kHz):                            | 48             | #         |   | -20 -           |      |           |    |      |        |                            |
|                                             |                | test once |   | -40 -<br>-60 -  |      |           |    |      |        |                            |
|                                             |                |           |   | -80 -           |      |           |    |      |        |                            |
|                                             |                |           |   | -100-           |      |           |    |      |        |                            |
|                                             |                |           |   | -120-           |      |           |    |      |        |                            |
|                                             |                |           | - | 1               | 0 20 | 40        | 60 | 80 1 | 100    | 120 kHz                    |
| Cursor                                      |                |           | 1 | save screenshot |      | main-plot |    | _    | add cu | ment plot                  |
| Position Cursor 1:                          | X: 0kHz Y: 0dB |           | - |                 |      | 60        |    | _    |        | t from file                |
| Position Cursor 2:                          | X: 0kHz Y: 0dB |           |   | show log        |      |           |    |      |        |                            |
| Position Cursor 3:                          | X: 0kHz Y: 0dB |           |   | Zoom Y: 130 dB  | ÷    |           |    | _    |        | lot options<br>lot to file |
|                                             |                |           |   | Zoom X: 160 kHz |      |           |    |      | remo   | ve plot                    |

[scmtlflt-091210-01.tif, 1, en\_US]

Figure 4-82 Measuring tool Filter

CF corresponds to the center frequency of the transmission band and has to be set to 24 kHz.

In the mode Filter, the measuring tool is used as level generator, level meter and display for tuning the receive and transmit filter. The signal from the level generator to the filter that should be tuned is given from PowerLink at the TX- connector at the CFS-2 panel. The received signal from the filter that should be tuned is given to PowerLink at the RX- connector at the CFS-2 panel.

The coarse tuning of the filter has to be carried out and the PowerLink transmit and receive frequency has to be adjusted to the correct values before beginning the filter tuning.

After this preparatory work, the filter tuning has to be done as described in Chapter Commissioning.

Pushing the test once button starts the measurement.

### Saving the Screen

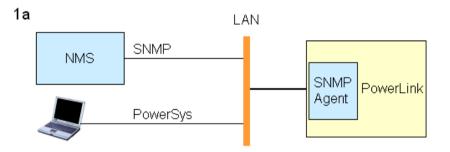
| owerSys - New        |                 |                        |     |       |        | ?      |
|----------------------|-----------------|------------------------|-----|-------|--------|--------|
| Save in              | DeviceFiles     |                        | •   | ← 🗈 🖻 | * :::- |        |
| 2                    | dp_imux.ddb     |                        |     |       |        |        |
| Recent               | 🛅 f2amp_2fsk.dd | b                      |     |       |        |        |
| -                    |                 |                        |     |       |        |        |
|                      |                 |                        |     |       |        |        |
| Desktop              |                 |                        |     |       |        |        |
|                      |                 |                        |     |       |        |        |
| My Documents         |                 |                        |     |       |        |        |
|                      |                 |                        |     |       |        |        |
|                      |                 |                        |     |       |        |        |
| My Computer          |                 |                        |     |       |        |        |
|                      | ]               |                        |     |       |        |        |
| My Network<br>Places | File name:      | PwrLnk_001             |     | -     |        | Save   |
| riaces               | Save as type:   | PowerSys Database (*.d | db) |       | -      | Cancel |

[scmestol-081210-01.tif, 1, en US]

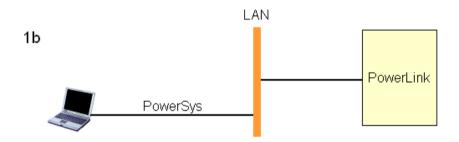
Figure 4-83 Measuring tool

| Selection             | Function                                           |
|-----------------------|----------------------------------------------------|
| save screenshot:      | The explorer opens for saving the measurement tool |
|                       | screen.                                            |
|                       | (png- or jpeg- file)                               |
| show log:             | Only for internal use                              |
| add current plot:     | set the color of the marked plot                   |
| add plot from file    | The explorer opens for adding a stored plot        |
| current plot options: | Setting base color of plots and cursors            |
| save plot to file:    | The actual shown plot will be saved (csv- file)    |
| remove plot:          | remove a marked plot from screen                   |

# 5 SNMP and Remote Access


| 5.1 | Remote Access and Remote Monitoring | 420 |
|-----|-------------------------------------|-----|
| 5.2 | SNMP                                | 422 |
| 5.3 | Remote Access                       | 437 |
| 5.4 | Web Interface                       | 443 |

## 5.1 Remote Access and Remote Monitoring


## 5.1.1 Overview

The following examples show the possibilities for remote access resp. remote monitoring of the PowerLink system.

## 5.1.2 Remote Access via Intranet (TCP/IP)



### 1a: Remote access via SNMP agent and NMS



### 1b: Remote access via PowerSys service program

(dwravint.091210-01.tif, 1, en\_US) Figure 5-1 Remote access via intranet

## 5.1.3 Remote Access via Modem

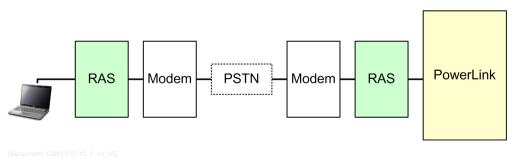
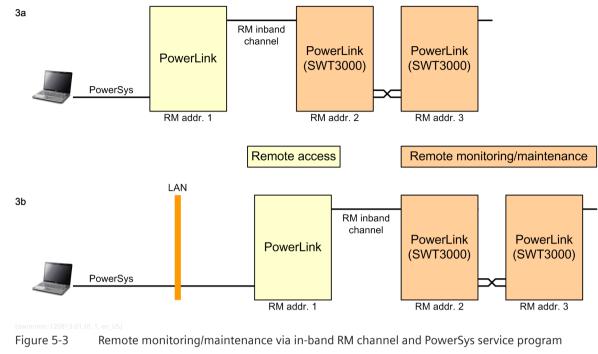



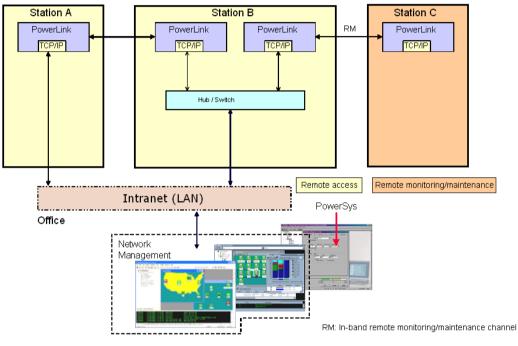

Figure 5-2 Remote access via RAS, modem and PowerSys service program



5.1.4 Remote Monitoring/Maintenance via In-band RM Channel

3a Remote monitoring via inband RM-Channel and service program PowerSys

3b Remote monitoring via inband RM-Channel and service program PowerSys with Intranet (LAN) remote access


## 5.2 SNMP

## 5.2.1 General Information

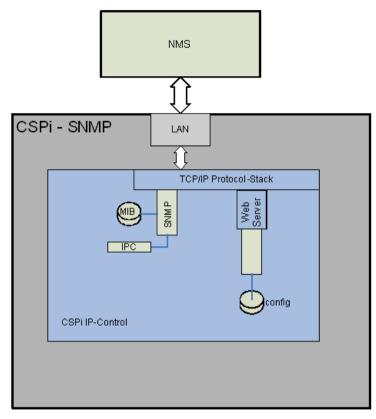
PowerLink 50/100, equipped with the module CSPi, offers SNMP agent functionality without additional hard-ware

## 5.2.2 SNMP Function

The SNMP agent allows the request of system parameters and a limited control (commands) of the PowerLink from a central NMS (Network Management System) via TCP/IP. The SNMP agent provides the status of the PowerLink device. Spontaneous alarm indications (traps) are transmitted to the NMS.



[dwsravin-131210-01.tif, 1, er


Figure 5-4 SNMP & Remote access via IP network

The minimum setting of the SNMP agent is:

- Local IP address
- Trap destination(s) IP address
- Trap delay and repetition suppression
- Community string
- Configuration via Web browser (password protected)

### **Functional Diagram**

The figure below shows a functional diagram of the SNMP system:



[dwsnmpfd-131210-01.tif, 1, en\_US] Figure 5-5 SNMP Functional diagram

### Components:

- TCP/IP protocol stack: The TCP/IP protocol stack handles the internet communication of the LAN.
- SNMP

Handling of the SNMP access of the spontaneous indication (traps)

• MIB

The management information base (MIB), contains the status information of the PowerLink system.

- IPC Inter process communication for communication and synchronization of the processes.
- Config.
   Configuration data base of PowerLink.

### PowerLink Read General Information

The following parameter can be read:

- System information CSPi hardware release, dongle serial number, PowerSys release
- Update information User, device number, change date/time comment

- Dongle information
  - Basic features
     Voice channels (F2), data channels (F3), teleprotection (F6), Data Pump (DP), iFSK, iMUX
  - CSPi features max. HF- bandwidth, SNMP agent, Ethernet,
  - Add on features: service telephone, Remote Monitoring, dynamic data pump
  - vMUX features
     voice channels, rFSK channels, X.21 Channels, fE1 interface
  - Serial number.
- Data pump information
   SNR, number of restarts, executed data rate, block error rate
- iFSK information
   Mode of iFSK channel 1 up to 4
- VFx information
   VFx index, VFx type, VFx hardware release
- IPCON setting Ethernet service/user interface, DHCP, IPCON, L2 filter, QoS, NTP, summer time switchover

### Read Integrated SWT 3000 (iSWT) Information

The following information can be read:

- iSWT hardware information
   PU4 hardware release, DLE hardware release (PowerLink 100), IFC1 hardware release, IFC2 hardware release
- iSWT counter (PowerLink 100: max. 24 inputs, max. 24 outputs, PowerLink 50: 4 inputs, 4 outputs) Input number and counter value, output number and counter value
- Event recorder Recorder sequence number, time stamp, event group, and event number, event description

### PowerLink Read Hardware Configuration

The following hardware configuration can be read:

- System configuration
   PowerLink 100:
   VFx modules 1 up to 3, iSWT1, iSWT2, vMUX, ALR1, ALR2, PLPA 50 W / 100 W
   PowerLink 50:
   VFx modules 1 up to 2, iSWT1, vMUX, ALR1, PLPA
- HF configuration Bandwidth, frequency grid, Tx/Rx frequency Tx/Rx frequency order, AXC configuration
- Service configuration RM, service number (max. 4), service type, service bandwidth
- RM configuration RM address, master, slave
- ALR configuration alarm adjustment, alarm delay

- iSWT system configuration Operation mode, purpose, VF variant, analog interface, digital interface. primary path, secondary path, Tx/Rx address, coded transmission, permissive, or direct tripping, IFC1/2 type
- Adjustment Rx level Rx level, Rx input gain, Rx overflow

### **PowerLink Set Commands**

The following commands can be set from the NMS:

- Force data pump synchronizing, Reset device, iSWT line select, iMUX loop enable/disable, local IF loop enable/disable
- IPCON setting (Ethernet service/user interface, DHCP, IPCON, L2 filter, QoS, NTP, summer time switchover)

## 5.2.3 Spontaneous Indication SNMP Traps

Spontaneous indications from the PowerLink device are transmitted from the SNMP agent to the configured Network Management Systems. Up to 6 NMS can be configured for receiving this traps. Each trap is sent with a severity (1-5) with the following signification:

| Table 5-1 | Alarm severity |
|-----------|----------------|
|-----------|----------------|

| Alarm severity | Signification |
|----------------|---------------|
| 1              | Critical      |
| 2              | Major         |
| 3              | Minor         |
| 4              | Warning       |
| 5              | Normal        |

### **General Traps**

• Authentication failure (severity 2)

An authentication failure trap signifies that the SNMP has received a protocol message that is not properly authenticated

#### **PowerLink Alarms**

If there is a status change during a configured time range, 2 events (active or not active) are assigned to each alarm and transmitted to the programmed NMS. Cyclic repetitive alarms within an adjustable time period are transmitted once only. Each alarm contains the severity level and a short description of the event. The following PowerLink alarms are transmitted from the SNMP agent:

- alarmHardware (severity 1)
   The PowerLink device reports hardware alarm. One or more configured hardware components are not available or faulty.
- alarmConfiguration (severity 1) The PowerLink reports configuration alarm. The adjusted device configuration is not valid.
- alarmGeneral (severity 1)
   The PowerLink reports general alarm
- alarmNonUrgent (severity 2) The PowerLink reports non urgent alarm
- alarmTx (severity 1) The PowerLink reports transmitter alarm

- alarmRx (severity 1) The PowerLink reports receiver alarm
- alarmS2N (severity 4)
   The PowerLink reports S/N alarm
- alarmRemGeneral (severity 1) \*)
   The PowerLink of the remote station reports general alarm
- alarmRemNonUrgent (severity 2) \*)
   The PowerLink of the remote station reports non urgent alarm
- alarmRemTx (severity 1) \*)
   The PowerLink of the remote station reports transmitter alarm
- alarmRemRx (severity 1) \*)
   The PowerLink of the remote station reports receiver alarm
- alarmRemS2N (severity 4) \*)
   The PowerLink of the remote station reports S/N alarm



### NOTE

REM alarms are only available with an existing RM connection at the local PowerLink device. REM alarms can be suppressed in the NMS if required.



### NOTE

The polling cycle is configured in the Network Management System and should not be less than 30 seconds.

## 5.2.4 Simple Network Management Protocol Version 3 (SNMPv3)

### 5.2.4.1 SNMPv3 Overview

Authentication in SNMP version 1 and version 2 is nothing more than a password (community string) which is sent in plaintext between the network manager and the SNMP agent. It is simple to intercept the community string because the SNMPv2 is a kind of unprotected protocol. Once the community string is known read out and modification of the device configuration or even shutdown might be possible.

The Simple Network Management Protocol Version 3 (**SNMPv3**) addresses the cryptographic security weakness of SNMPv1 and SNMPv2 using following methods:

### • User-based Security Model (USM):

Each user has a name, authentication key and privacy key. **MD5** or **SHA-1** authentication protocol is used to authentication SNMPv3 message. SNMPv3 agent authenticates the incoming request message with authentication key, and rejects the access if the authentication has failed.

The SNMPv3 message data is encrypted and decrypted with privacy key using DES protocol.

### • View-based Access Control Model:

It is used to control the access of USM user to the managed object of MIB.

SNMPv3 is supported in both **PowerLink** and **SWT 3000** (release  $\geq$  **P3.5.120**). Additionally, the notification can be sent out through both **SNMP Trap and Inform**.

The standard MIB modules are used for SNMPv3 and notification operation.

| Table 5-2 Standard MIB Modules |  |
|--------------------------------|--|
|--------------------------------|--|

| MIB                     | Comments                                                                                                           |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| SNMP-FRAMEWORK-MIB      | SNMP Management Architecture MIB (RFC 3411).                                                                       |
| SNMP-NOTIFICATION-MIB   | This MIB module provides mechanisms to remotely configure the notifica-<br>tion parameters (RFC 3413).             |
| SNMP-TARGET-MIB         | This MIB module provides mechanisms to remotely configure the target addresses and security parameters (RFC 3413). |
| SNMP-USER-BASED-SM-MIB  | This MIB module provides mechanisms to remotely configure User-based Security Model (RFC 3414).                    |
| SNMP-VIEW-BASED-ACM-MIB | This MIB module provides mechanisms to remotely configure View-based Access Control Model (RFC 3415).              |

The private MIB modules are used to access **PowerLink** and **SWT 3000** device configurations.

|  | Table 5-3 | Private MIB Modules of PowerLink and SWT 3000 |
|--|-----------|-----------------------------------------------|
|--|-----------|-----------------------------------------------|

| MIB                                         | Comments                                                                           |
|---------------------------------------------|------------------------------------------------------------------------------------|
| SIEMENS-POWERLINK-CSPI-MIB                  | This MIB module provides mechanisms to access PowerLink CSPi settings.             |
| SIEMENS-POWERLINK-CSPI-IPCON-MIB            | This MIB module provides mechanisms to access PowerLink CSPi IP related settings.  |
| SIEMENS-POWERLINK-CSPI-VMUX-MIB             | This MIB module provides mechanisms to access PowerLink vMux settings.             |
| SIEMENS-POWERLINK-CSPI-ISWT3000R3_5-<br>MIB | This MIB module provides mechanisms to access integrated <b>SWT 3000</b> settings. |
| SIEMENS-SWT3000R35-MIB                      | This MIB module provides mechanisms to access standalone <b>SWT 3000</b> settings. |

It is possible to configure PowerLink and SWT 3000 via PowerSys application whether with SNMPv2 or SNMPv3 (for more details, see chapter 5.2.4.2 SNMPv3 Configuration). If SNMPv3 is configured, the USM users, VACM, and notification parameters are managed through SNMP GET/SET command instead of PowerSys or Web server.

### 5.2.4.2 SNMPv3 Configuration

The SNMP version is configured in **Configuration - Ethernet - SNMP**.

| SNMP |      |            |                  |                |
|------|------|------------|------------------|----------------|
|      | SNMP | O Disabled | SNMP version 1/2 | SNMP version 3 |
|      |      |            |                  |                |

Figure 5-6 SNMP Version Configuration

| Table 5-4 | SNMP Agent Configuration   |
|-----------|----------------------------|
|           | SIVINI AGEIL COILIGUIALION |

| MIB Parameter                                                            | Comments                                                                              |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|                                                                          |                                                                                       |  |
| SNMP version                                                             | Configure SNMP version.                                                               |  |
|                                                                          | Disabled: Disable SNMP function                                                       |  |
|                                                                          | • Version 1/2: Enable SNMP version 1 and 2                                            |  |
|                                                                          | • Version 3: Enable SNMP version 3                                                    |  |
| Engine ID Unique identifier of SNMP engine. It contains following parts: |                                                                                       |  |
| • Start bit : 0x8000                                                     |                                                                                       |  |
|                                                                          | Enterprise OID: 0x586E                                                                |  |
|                                                                          | Indicator for identifier: 0x03                                                        |  |
|                                                                          | Identifier <mac address=""></mac>                                                     |  |
| Community strings                                                        | Display read and write community string for SNMPv1/2.                                 |  |
| Trap destination                                                         | Display trap destination address for SNMPv1/2.                                        |  |
| Min. active time                                                         | time Display minimum time that the alarm must be active before a rising trap is sent. |  |
| It is used for both SNMP V1/2 and V3.                                    |                                                                                       |  |
| Falldown delay                                                           | Display minimum time that the alarm must be inactive before a falling trap is sent.   |  |
|                                                                          | It is used for both SNMP V1/2 and V3.                                                 |  |

### 5.2.4.3 USM User Management

### Using the USM

Network Management System (NMS) usually has a user management tool, which is used to easily manage SNMPv3 USM user configuration on remote SNMPv3 agents, e.g. clone a new user, change the password etc. USM needs to be configured in a SNMPv3 NMS client and configuration is sent and stored in the SNMPv3 agent (PowerLink or SWT 3000) afterwards.

All these operations are accomplished through SNMP by setting **SNMP-USER-BASED-SMMIB::usmUserTable MIB object**.

3 initial users are provided in SWT 3000 devices for connection to SNMPv3 agent.

| User Name   | Auth Protocol | Auth Password | Priv Protocol | Priv Password |
|-------------|---------------|---------------|---------------|---------------|
| initial     | MD5           | cssnmpv3auth  | DES           | cssnmpv3priv  |
| templateMD5 | MD5           | cssnmpv3auth  | DES           | cssnmpv3priv  |
| templateSHA | SHA           | cssnmpv3auth  | DES           | cssnmpv3priv  |

| Clone User                     |
|--------------------------------|
| Enable User                    |
| Change Authentication Password |
| Change Privacy Password        |
| Disable User                   |
| Delete User                    |
|                                |

Figure 5-7 USM User Operation

#### Table 5-5 USM User Table

| Operation   | Comments                                   |
|-------------|--------------------------------------------|
| Clone User  | Create new SNMPv3 users from existing one. |
| Enable User | Enable a disabled SNMPv3 user.             |

| Operation                      | Comments                                                                                        |
|--------------------------------|-------------------------------------------------------------------------------------------------|
| Change Authentication Password | Change the authentication password to a new one.                                                |
| Change Privacy Password        | Change the privacy password to a new one.                                                       |
| Disable User                   | Disable the active SNMPv3 user and change the row status from "active(1)" to "notInService(2)". |
| Delete User                    | Delete the existing SNMPv3 user.                                                                |



### NOTE

Because the initial user name and password are printed on paper and are well known for other people, you must create at least one working user from the initial user template, change the default authentication, and the privacy password as soon as possible. After all needed working users are created, the initial and template users should be deleted.

### Example: Create New User

This example shows the workflow of creating a new user "testuser" using iReasoning MIB Browser.

- 1 Open the SNMPv3 user management tool from MIB Browser.
- 2 All users of the remote agent are listed in the user management tool.
- 3 Select the user template you want to clone from: templateMD5: user template with MD5 authentication protocol and DES privacy protocol templateSHA: user template with SHA authentication protocol and DES privacy protocol.
- 4 Click on clone user operation and enter a new user name in the text box.

|   | User Name            | Auth Protocol | Priv Protocol | Storage         | Status     |
|---|----------------------|---------------|---------------|-----------------|------------|
| 1 | initial              | HMAC-MD5      | DES           | nonVolatile (3) | active (1) |
| 2 | templateMD5          | HMAC-MD5      | DES           | nonVolatile (3) | active (1) |
| 3 | templateSHA          | HMAC-SHA-1    | DES           | nonVolatile (3) | active (1) |
|   | Input Example Cancel |               |               |                 |            |

Figure 5-8 Clone New User

• 5 - The new user "testuser" is cloned from templateMD5, whose authentication and privacy passwords are same as templateMD5.

|   | User Name   | Auth Protocol | Priv Protocol | Storage         | Status     |
|---|-------------|---------------|---------------|-----------------|------------|
| 1 | initial     | HMAC-MD5      | DES           | nonVolatile (3) | active (1) |
| 2 | testuser    | HMAC-MD5      | DES           | nonVolatile (3) | active (1) |
| 3 | templateMD5 | HMAC-MD5      | DES           | nonVolatile (3) | active (1) |
| 4 | templateSHA | HMAC-SHA-1    | DES           | nonVolatile (3) | active (1) |

[scusmuse-140912-01.tif, 1, en\_US]

Figure 5-9 USM User Table List

 6 - Change the authentication password and the privacy password. For example: Auth password: "testuser\_auth" Priv password: "testuser\_priv"

## NOTE

•

NOTE

It is recommended to have at least 8 characters for the password.



### 7 - Assign access right for the new cloned user (see Example: Assign Access Right)

# i

This step is not needed for the **SWT 3000** standalone device. The new cloned user has full access right to complete MIB modules and it cannot be changed by the user via VACM.

- 8 Check if new working user can connect to SNMP agent. Remove initial and template users as soon as all desired working users have been created.
- 9 Store all the configurations to flash and restart SWT 3000 system through SNMP by setting following MIB object:

 ${\sf SIEMENS-SWT3000R35-MIB::} swtlpActivationReq.0 = storeToFlashAndRestart(1)$ 



### NOTE

For all detail operation steps, check the user manual of your MIB Browser.

### 5.2.4.4 VACM Management

### Definition

VACM controls the access right of the user to the MIB object, which is accomplished through SNMP by setting MIB module SNMP-VIEW-BASED-ACM-MIB.

Configure the VACM in a SNMPv3 NMS client. The configuration is sent and stored in the SNMPv3 agent afterwards.

The initial user has the full access right to complete MIB modules by default.



### NOTE

VACM is not supported in the **SWT 3000** device. All SNMPv3 users in **SWT 3000** have the full access right to complete MIB modules by default.

### Example: Assign Access Right

This example shows the workflow of assigning full access rights for a new user "testuser" using iReasoning MIB Browser.

- 1 Open SNMP-VIEW-BASED-ACM-MIB::vacmSecurityToGroupTable in MIB Browser table view
- 2 Create a new row with the cloned user name "testuser".

|             | vacmSecurityModel                                               | vacmSecurityName | vacmGroupName                    | vacmSecurityToGro | upStorageType            | vacmSecurityT | FoGroupStatu | s |
|-------------|-----------------------------------------------------------------|------------------|----------------------------------|-------------------|--------------------------|---------------|--------------|---|
|             | 1                                                               | comm1            | grpcomm1                         | 9mm1 4            |                          | 1             |              |   |
| 2<br>3<br>4 | 1                                                               | comm2            | grpcomm2                         | n2 4              |                          | 1             |              |   |
| 3           | 2                                                               | comm1            | grpcomm1                         | 4                 |                          | 1             |              |   |
| 4           | 2                                                               | comm2            | grpcomm2                         | 4                 |                          | 1             |              |   |
|             | 3                                                               | initial          | grpinitial                       | 4                 |                          | 1             |              |   |
|             | 3                                                               | templateMD5      | grptemplateMD5                   | 4                 |                          | 1             |              |   |
| 7           | 3                                                               | templateSHA      | grptemplateSHA                   | 4                 |                          | 1             |              |   |
|             | Create a new<br>vacmSecurityMode<br>vacmSecurityName<br>Action: | ¥:               | 3 <br>testuser<br>Create And Wai | t 💽               | Data Type:<br>Data Type: |               | nteger       |   |

#### [sccreate-140912-01.tif, 1, en US]

Figure 5-10 Create New Row in vacmSecurityToGroupTable

• 3 - Assign "testuser" to the existing group name "grpinitial".

|   | vacmSecurityModel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vacmSecurityName | vacmGroupName  | vacmSecurityToGroupStorageType | vacmSecurityToGroupS | tatus |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------|----------------------|-------|--|--|--|
| 1 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comm1            | grpcomm1       | 4                              | 1                    |       |  |  |  |
| 2 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comm2            | grpcomm2       | 4                              | 1                    |       |  |  |  |
| 3 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comm1            | grpcomm1       | 4                              | 1                    |       |  |  |  |
| _ | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comm2            | grpcomm2       | 4                              | 1                    |       |  |  |  |
| 5 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | initial          | grpinitial     | 4                              | 1                    |       |  |  |  |
|   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | testuser         |                | 3                              | 3                    |       |  |  |  |
|   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | templateMD5      | <u></u>        | 4                              | 1                    |       |  |  |  |
| 8 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | templateSHA      | grptemplateSHA | 4                              | 1                    |       |  |  |  |
|   | Image: Sympletic symple |                  |                |                                |                      |       |  |  |  |
|   | Ok Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                |                                |                      |       |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SNMP SET         |                |                                |                      |       |  |  |  |

|           | L I                                                         | $\sim$ |
|-----------|-------------------------------------------------------------|--------|
|           |                                                             | _      |
| OID       | .1.3.6.1.6.3.16.1.2.1.5.3.8.116.101.115.116.117.115.101.114 |        |
| Data Type | Integer                                                     |        |
| Value     | 1                                                           |        |
|           |                                                             |        |
|           |                                                             |        |
|           | Ok Cancel                                                   |        |

[scchange-140912-01.tif, 1, en\_US

Figure 5-11 Change Group Name and Row Status

 Table 5-6
 vacmSecurityToGroupTable Settings

| Field                     | Value      |
|---------------------------|------------|
| vacmGroupName             | grpinitial |
| vacmSecurityToGroupStatus | active(1)  |

• "testuser" is added into table vacmSecurityToGroupTable.

|   | vacmSecurityModel | vacmSecurityName | vacmGroupName  | vacmSecurityToGroupStorageType | vacmSecurityToGroupStatus |
|---|-------------------|------------------|----------------|--------------------------------|---------------------------|
| 1 | 1                 | comm1            | grpcomm1       | 4                              | 1                         |
| 2 | 1                 | comm2            | grpcomm2       | 4                              | 1                         |
| 3 | 2                 | comm1            | grpcomm1       | 4                              | 1                         |
| 4 | 2                 | comm2            | grpcomm2       | 4                              | 1                         |
| 5 | 3                 | initial          | grpinitial     | 4                              | 1                         |
| 6 | 3                 | testuser         | grpinitial     | 3                              | 1                         |
| 7 | 3                 | templateMD5      | grptemplateMD5 | 4                              | 1                         |
| 8 | 3                 | templateSHA      | grptemplateSHA | 4                              | 1                         |

[scvacmse-140912-01.tif, 1, en\_US

Figure 5-12 vacmSecurityToGroupTable List

• 5 - Store all the configurations to flash and restart system through SNMP by setting following MIB object: SIEMENS-POWERLINK-CSPI-IPCON-MIB::ipSettingsActivationReq.0 = storeToFlashAndRestart(1)  6 - Connect SNMPv3 agent with new user "testuser", and check if the user has full access right for private and standard MIB modules.
 SIEMENS-POWERLINK-CSPI-IPCON-MIB::ipSettingsActivationReq.0 = storeToFlashAndRestart(1)

#### 5.2.4.5 Key Reset

In case of any security incident which has affected the SNMPv3 communication, a key reset should be executed. With the key reset operation the initial users can be retrieved in PowerSys application.



### NOTE

After key reset operation, all created SNMPv3 users will be deleted from SNMP-USER-BASED-SM-MIB::usmU-serTable MIB object.

The new working users have to be cloned again from the initial user template after key reset operation (see **Example: Create new user**).

The key reset operation is as follow:

- 1 Open SWT 3000 > Commands
- 2 Click the **Reset SNMPv3 key** button.

#### 5.2.4.6 Notification

#### Definition

A notification is a way for an agent to inform the SNMP Master Agent, e.g. Network Manager System (NMS) that some alarms occurred in the system.

Configure the notification in a SNMPv3 NMS client. The configuration is sent and stored in the SNMPv3 agent afterwards.

There are 2 types of notification:

#### • SNMP Trap

Agent sends traps to NMS if an alarm event occurs. No acknowledgement is sent from NMS to the agent. So the agent has no possibility to know if the trap is received.

#### SNMP Inform

It is nothing more than an acknowledged trap. If the trap is not received and acknowledged by the NMS, the agent will retransmit it until timeout.

Depending on the configured SNMP version by PowerSys (see Chapter 5.2.4.2 SNMPv3 Configuration), the notification is handled in different methods:

#### SNMPv1/2

Only SNMP Trap is supported, the function is the same as the former released version. Trap destination is configured through web pages or SNMP by setting private MIB object SIEMENS-

SWT3000R35-MIB::swtlpSnmpTrapDestTable for SWT 3000.

• SNMPv3

Both SNMP Trap and Inform are supported. The notification parameters including trap addresses are moved to standard MIB module SNMP-NOTIFICATION-MIB and SNMP-TARGET-MIB. All configurations must be done through SNMP set operation.

#### Example: Create Notification Entry through SNMP

This example shows the workflow of sending an SNMP Trap to 2 destinations through both SNMPv2c and SNMPv3 protocols using iReasoning MIB Browser.

• 1 - Create a new row in the table SNMP-NOTIFICATION-MIB::snmpNotifyTable.

|                 |                 | $\mathbf{X}$    |
|-----------------|-----------------|-----------------|
| group1          | Data Type:      | OctetString     |
| Create And Wait |                 |                 |
|                 |                 |                 |
| Ok Cancel       |                 |                 |
|                 |                 |                 |
|                 |                 |                 |
|                 |                 |                 |
|                 | Create And Wait | Create And Wait |



Figure 5-13 Create New Row in snmpNotifyTable

|   | snmpNotifyName | snmpNotifyTag | snmpNotifyType | snmpNotifyStorageType | snmpNotifyRowStatus |
|---|----------------|---------------|----------------|-----------------------|---------------------|
| 1 | group1         | group1        | trap           | 3                     | 1                   |

Figure 5-14 snmpNotifyTable List

Table 5-7 snmpNotifyTable Settings

| Field               | Value     |
|---------------------|-----------|
| snmpNotifyName      | group1    |
| snmpNotifyTag       | group1    |
| snmpNotifyType      | trap(1)   |
| snmpNotifyRowStatus | active(1) |

• 2 - Create a new row in table SNMP-TARGET-MIB::snmpTargetParamsTable

| 🕸 Create a new row     |                   |            |             |
|------------------------|-------------------|------------|-------------|
| snmpTargetParamsName : | AuthPriv-testuser | Data Type: | OctetString |
| Action:                | Create And Wait   |            |             |
|                        | Ok Cancel         |            |             |
|                        |                   |            |             |
|                        |                   |            |             |
|                        |                   |            |             |
|                        |                   |            |             |

[scparame-140912-01.tif, 1, en\_US]

Figure 5-15 Create New Row in snmpTargetParamsTable

|   |   | snmpTargetPar     | snmpTargetParamsMPModel | snmpTargetParamsSecurityModel | snmpTargetParams | snmpTarget   | snmpTargetPa | snmpTargetParams |
|---|---|-------------------|-------------------------|-------------------------------|------------------|--------------|--------------|------------------|
| 1 | L | AuthPriv-testuser | 3                       | 3                             | testuser         | authPriv     | 3            | 1                |
| 2 | 2 | NoAuthNoPriv      | 1                       | 2                             | public           | noAuthNoPriv | 3            | 1                |

[scpartab-140912-01.tif, 1, en\_US]

Figure 5-16 snmpTargetParamsTable Settings

| Table 5-8 snmpTargetParamsTable Setting | Table 5-8 | snmpTargetParamsTable Settings |
|-----------------------------------------|-----------|--------------------------------|
|-----------------------------------------|-----------|--------------------------------|

| Field                         | Value           |
|-------------------------------|-----------------|
| Target Paramter 1             |                 |
| snmpTargetParamsMPModel       | SNMPv3(3)       |
| snmpTargetParamsSecurityModel | USM(3)          |
| snmpTargetParamsSecurityName  | testuser        |
| snmpTargetParamsSecurityLevel | authPriv(3)     |
| snmpTargetParamsRowStatus     | active(1)       |
| Target Parameter 2            |                 |
| snmpTargetParamsMPModel       | SNMPv2c(1)      |
| snmpTargetParamsSecurityModel | SNMPv2c(2)      |
| snmpTargetParamsSecurityName  | public          |
| snmpTargetParamsSecurityLevel | noAuthNoPriv(1) |
| snmpTargetParamsRowStatus     | active(1)       |

• 3 - Create 2 new rows in table SNMP-TARGET-MIB::snmpTargetAddrTable

| 🚯 Create a new row   |                 |            |             |
|----------------------|-----------------|------------|-------------|
| snmpTargetAddrName : | addr1           | Data Type: | OctetString |
| Action:              | Create And Wait |            |             |
|                      | Ok Cancel       |            |             |
|                      |                 |            |             |
|                      |                 |            |             |
|                      |                 |            |             |
|                      |                 |            |             |

[scsnmpta-140912-01.tif, 1, en\_US]

Figure 5-17 Create New Row in snmpTargetAddrTable

|   |   | snmpTarget | snmpTargetAddrTD | snmpTargetAddrTAd | snmpTargetAd | snmpTargetA | snmpTargetAd | snmpTargetAd      | snmpTargetAd | snmpTargetAd |
|---|---|------------|------------------|-------------------|--------------|-------------|--------------|-------------------|--------------|--------------|
|   | L | addr1      | snmpUDPDomain    | C0-A8-14-0A-00-A2 | 1500         | 3           | group1       | AuthPriv-testuser | 3            | 1            |
| 4 | 2 | addr2      | snmpUDPDomain    | C0-A8-14-0B-00-A2 | 1500         | 3           | group1       | NoAuthNoPriv      | 3            | 1            |

[scsnmpad-140912-01.tif, 1, en\_L

Figure 5-18 snmpTargetAddrTable List

### Table 5-9 snmpTargetAddrTable Settings

| Field                  | Value                                 |
|------------------------|---------------------------------------|
| Target Address 1       |                                       |
| snmpTargetAddrName     | addr1                                 |
| snmpTargetAddrTDomain  | snmpUDPDomain(.1.3.6.1.6.1.1)         |
| snmpTargetAddrTAddress | 192.168.20.10:162 (192.168.20.10:162) |

| Field                   | Value                                 |
|-------------------------|---------------------------------------|
| snmpTargetAddrTagList   | group1                                |
| snmpTargetAddrParams    | AuthPriv-testuser                     |
| snmpTargetAddrRowStatus | active(1)                             |
| Target Address 2        |                                       |
| snmpTargetAddrName      | addr2                                 |
| snmpTargetAddrTDomain   | snmpUDPDomain(.1.3.6.1.6.1.1)         |
| snmpTargetAddrTAddress  | 192.168.20.11:162 (192.168.20.11:162) |
| snmpTargetAddrTagList   | group1                                |
| snmpTargetAddrParams    | NoAuthNoPriv                          |
| snmpTargetAddrRowStatus | active(1)                             |

- 4 Start trap receiver on target address "192.168.20.10" on port 162.
- 5 Start trap receiver on target address "192.168.20.11" on port 162. Configure following security parameters on the receiver:

| User Name | Auth Protocol | Auth Password | Priv Protocol | Priv Password |
|-----------|---------------|---------------|---------------|---------------|
| testuser  | MD5           | testuser_auth | DES           | testuser_priv |

### 5.2.5 NMS Commissioning

The necessary MIBs are part of the PowerSys software package. They have to be integrated in the NMS. After the NMS has been configured, traps from the SNMP agent are received. It is also possible to read PowerLink (ref. to *PowerLink Read General Information*) resp. iSWT information (ref. to *Read Integrated SWT 3000 (iSWT) Information*) or configuration (ref. to *PowerLink Read Hardware Configuration*). Commands can be set as well from the NMS (ref. to *PowerLink Set Commands*).

Import the provided MIB files to the MIB compiler of your NMS in the following sequence:

- 1. SIEMENS-POWERLINK-CSPI.MIB
- 2. SIEMENS-POWERLINK-CSPI-IPCON.MIB
- 3. SIEMENS-POWERLINK-CSPI-VMUX.MIB
- 4. SIEMENS-POWERLINK-CSPI-ISWT3000R3\_5.MIB
- 5. SIEMENS-SWT3000R35.MIB

### 5.3 Remote Access

### 5.3.1 General Information

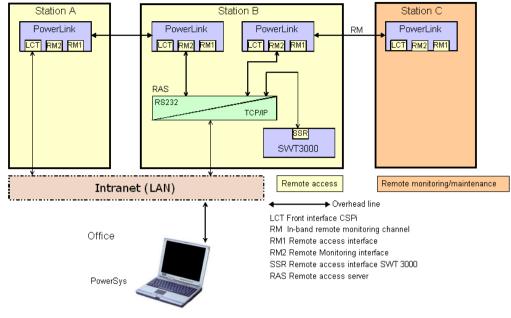
The TCP/IP connection via Intranet as well as a remote access server (RAS) connection serves complete system functionality administration identical to local on-site operation. Standard TCP/IP network protocols are used for easy access to each PowerLink from anywhere within a company Intranet. The system can interface with your own network security systems and firewalls, providing you with just the right security level your company requires.

The remote access to the PowerLink is possible with the service program PowerSys. With <**Menu – Connection setup**> the connection to the device via serial interface or TCP/IP has to be configured.

| Connection |             |                                   |  |  |
|------------|-------------|-----------------------------------|--|--|
|            |             | Serial O TCP/IP O TCP/IP over SSL |  |  |
|            | Serial port | COM11: USB Serial Port            |  |  |
|            | IP address  | 192. 168. 20. 200 Port 10001      |  |  |
|            | RM address  | 0                                 |  |  |
|            |             |                                   |  |  |
|            |             |                                   |  |  |

Figure 5-19 Configuration example for the TCP/IP connection

After the TCP/IP connection has been selected the IP address and port of the remote access server (RAS), or PowerLink has to be entered.


The service program is connected with <**Menu - Connect to device**> or the corresponding button.

### 5.3.2 Remote Access Examples

The following figures show examples for the connection on a PowerLink 100 device. In PowerLink 50, the data interface RM2 is not available.

The figure below shows a RAS connection to the PowerLink resp. SWT 3000. Information from the PowerLink in station C can be read via in-band remote monitoring channel if the RM function is activated.

5.3 Remote Access



[dwtrcnpl-131210-01.tif, 1, en\_U

Figure 5-20 TCP/IP and RAS connection to the PowerLink devices in the station A and B

The next example shows a RAS connection via modem. The stations A and C are accessible via in-band remote monitoring channel and the service RM.

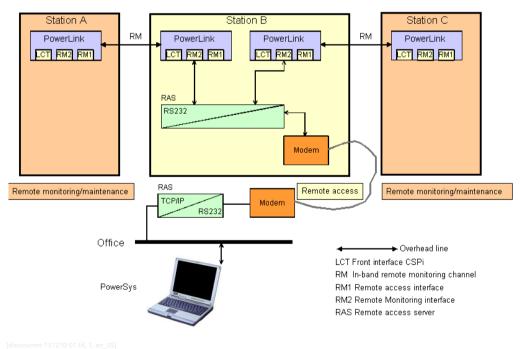
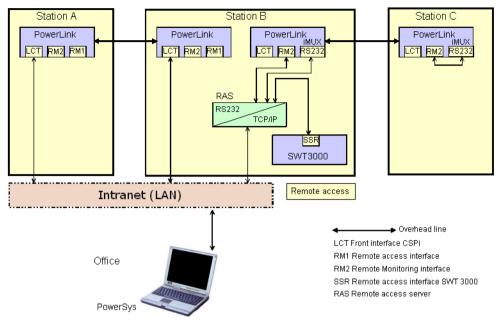
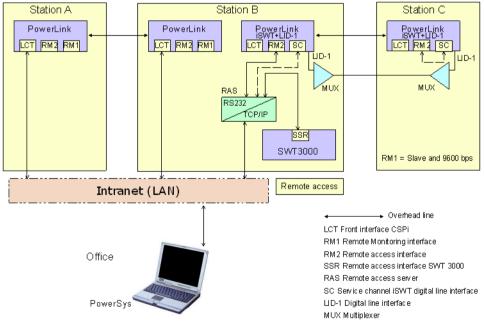




Figure 5-21 RAS connection via modem


The example in figure below shows a remote access to the PowerLink in station A and B via intranet and remote access server (RAS). Access to the PowerLink in station C is performed by using an iMUX channel. The bit rate for this channel is 19 200 bps and the UART mode 8N1. For the connection between the RAS and the iMUX resp. iMUX and RM-2 interface a one-to-one cable is necessary.



dwrasvrc-131210-01.tif, 1, en

Figure 5-22 Remote access to station C via iMUX channel

With an integrated SWT 3000 using additional a digital transmission line via the interface LID-1 a service channel (SC) is available. This is a transparent data channel with 9600 bps. For remote access from station B, the output of this channel is connected in station C to the RM-2 interface of the PowerLink. This interface has to be adjusted to "Slave" mode and 9600 bps.



[dwraplsc-131210-01.tif, 1,

Figure 5-23 The remote access to the PowerLink in station C is performed via SC of the iSWT



### NOTE

The LAN connection to PowerLink in the examples (see *Figure 5-20, Figure 5-21, Figure 5-22, Figure 5-23*) is for instance connected to the LCT interface. It is also possible to make this connection to another TCP/IP interface of PowerLink.

### 5.3.3 RM Inband Channel

In the event that no intranet or modems are available, you can still monitor or configure remote terminals using the inband RM channel. With the optional service "Remote Monitoring" (RM), data can be transmitted between the devices of one or more PowerLink routes. The RM function enables the user to have access via a serial interface with the service program to the following function:

- query of the device data (configuration, parameter, status) of the remote device
- temporary adjustments (for example, test loops)
- producing a reset

Changing of the configuration and parameters in the remote device is possible if the configuration via inband RM-Channel is activated.

| RM      |                              |          |   |
|---------|------------------------------|----------|---|
|         | Device address               |          | 1 |
|         | RM mode                      | Master   | ▼ |
|         | Config via inband RM-channel |          |   |
|         |                              |          |   |
| RM-2    |                              |          |   |
|         | RM-2 mode                    | Slave    | • |
|         | RM-2 baudrate                | 19200 Bd | • |
|         |                              |          |   |
| Timeout |                              |          |   |
|         |                              |          |   |
|         | RM-1 timeout                 |          | 4 |
|         |                              |          |   |

#### [sc\_configuration\_rm, 1

Figure 5-24 Configuration via in-band RM Channel has to be enabled in the RM configuration



### NOTE

Also with enabled RM configuration it is still **not permitted** to change the HF and the System configuration via RM!

### 5.3.4 Route Coupling via RM-2 for PowerLink 100

Via an additional interface RM-2 up to 5 transmission routes can be coupled. It is possible to couple PowerLink transmission links with SWT 3000 links in arbitrary sequence.

When using transmission links with SWT 3000 the correct baud rate (9600 Bd) must be adjusted.

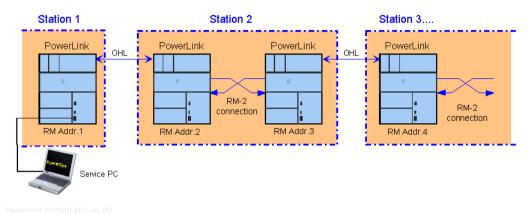



Figure 5-25 Example of a route coupling via the RM-2 interface

#### Service PC connected to PowerLink:

Activation of a RM-2 data transmission from another PowerLink is possible without influencing the Service PC connection at the front interface LCT. Because the RM-2 connection is the second one, only read permission is available, while the first connection (Service PC) has read/write access.

Active data transfer via RM-2:

Connection of the Service PC to the front interface LCT does not block the RM-2 transmission. Because the connection is the second one, only read permission is available, while the first connection (RM-2) has read/ write access (if configured).

The RM-2 interface of the PowerLink system has the same characteristics as the SSB interface of the SWT 3000 systems.

The figure below shows the remote connection to the PowerLink in station A via TCP/IP connection. The access to the PowerLink devices in station B and C is possible when the RM in-band channel is activated. For the RM2 – RM2 connection in station B a crossed cable has to be used. 1 RM2 interface must be configured as "Slave" the other one as "Master".

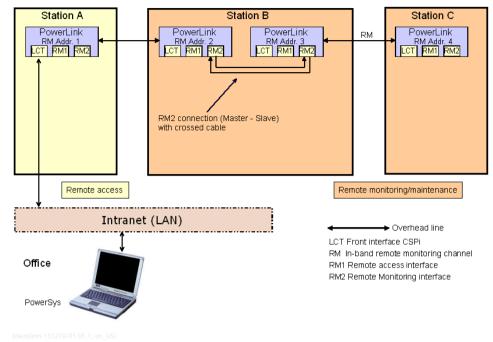



Figure 5-26 Reading the PowerLink information in station B and C with the RM function

The PowerSys program is connected with < Menu - Connect to device using RM>.

### 5.4 Web Interface

### 5.4.1 Connection PowerLink – Service PC

The connection between the service PC and PowerLink is done via the 10/100Base-T Ethernet service interface LCT. The LCT connector is located at the front of the CSPi module. The connection is realized by using a standard CAT5e (shielded) patch-cable.



### NOTE

The use of a shielded patch-cable is recommended.

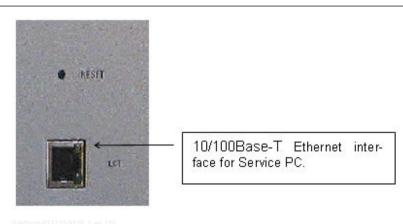



Figure 5-27 Ethernet connector for Service PC

After connecting the service PC to PowerLink, start a standard browser (for example Microsoft Internet Explorer or Firefox) on the service PC.

### PowerLink – Default IP- Address

| Default IP address of PowerLink     | 192.168.20.5     |
|-------------------------------------|------------------|
| IP address range of the DHCP server | 192.168.20.10-14 |

In the default configuration of PowerLink the DHCP Server functionality is set to on. Therefore the Service PC has to be set to "Obtain an IP address automatically" (for further details refer to chapter *Commissioning*). The IP-Controller start-up time to establish a connection with the PC after a Reset of PowerLink is approximately 50 s.

### 5.4.2 Start Page before Login

After entering the actual IP address of the connected PowerLink in the browser (default IP- address: 192.168.20.5) the following screen is displayed.

 Coodbye
 Coodbye

[scstrtpg-201113-94.tif, 1,

Figure 5-28 Start page of PowerLink Web interface

For working with the Web interface of CSPi, enter the password. Continue with clicking "OK"

i

### NOTE

Default password for full access: cspiwrite

For security reasons the access to the Web interface is **disabled by default** settings (release  $\ge$  **P3.5.130**). You have to enable the access by **http** or **https** via the service program PowerSys in configuration menu: **PowerLink > Configuration > Ethernet >IP (Service port)** 

For details, please refer to Chapter Configuration of the PowerLink Ethernet Interface and Chapter Cyber Security.



### NOTE

Without knowing the password, access to the PowerLink Web interface is not possible! If the password is lost, the CSPi module must be send to the factory for resetting to the default values. All changed values are written temporary to the equipment by clicking the Send button. To fix these settings in the equipment the Activation of Settings (*Ipcon Settings – Change Access Password*) is necessary.

### 5.4.3 Start Page after Login

| PowerLink CSPi - Windows Internet Explo |                      | ×                                               |
|-----------------------------------------|----------------------|-------------------------------------------------|
| 🚱 🕞 🗢 🙋 http://192.168.20.5/cgi-bin/sn  | mp_form.cgi?1        | 💽 🗟 🍫 🗙 🖓 Siemens Search                        |
| 🙀 Favoriten 🖉 PowerLink CSPi            |                      | 🟠 🔹 🗟 🤟 🖻 🦛 🔹 Seite 🔹 Sicherheit 🔹 Extras 🔹 🔞 🗸 |
|                                         |                      | SIEMENS<br>PowerLink CSPi                       |
|                                         | ersion Information   |                                                 |
| Service Interface Settings              | Component Version    |                                                 |
| Oser Interface Seturigs                 | Boot Loader 00.01.06 |                                                 |
| tpcon setungs                           | Kernel 00.01.14      |                                                 |
| SIMP V2 Trap-Destination Ta             | HW Config 00.01.04   |                                                 |
| INTP Summer time seconds                | _                    |                                                 |
| L2-Filter Settings                      | File System 00.04.11 |                                                 |
| L2-Filter Table                         |                      |                                                 |
| QoS Settings                            |                      |                                                 |
| Traffic Class Table                     |                      |                                                 |
| Access Password                         |                      |                                                 |
| Activation of Settings                  |                      |                                                 |
|                                         |                      |                                                 |

[scstrpga-201113-96.tif, 1, en\_US]

Figure 5-29 Version Information of CSPi Web interface (Example)

After entering the PowerLink Web interface the screen with the version numbers is displayed.

### 5.4.4 Service Interface Settings

The service interface is used for the communication between the service PC and PowerLink. It is located at the front of the CSPi (LCT).

| C 🗢 🖉 http://192.168.20.4/c | groin/shinp_rorm.cgi/2            |                   |                                         |
|-----------------------------|-----------------------------------|-------------------|-----------------------------------------|
| Favorites CSPi              |                                   |                   | 🐴 🔹 🔝 🗧 🖶 👻 Page 🔹 Safety 👻 Tools 🔹 🔞 🔹 |
|                             | A th                              |                   | SIEMENS<br>PowerLink CSP                |
| Version Information         | Service Interface Settings        |                   |                                         |
| Service Interface Settings  | Setting                           | Value             |                                         |
| User Interface Settings     | MAC address                       | 02 09 8E FE C3 45 |                                         |
| Ipcon Settings              | IP-Address                        | 192.168.20.4      |                                         |
| SNMP Trap-Destination Table | Subnet-Mask                       | 255.255.255.0     |                                         |
| NTP Summer Time Settings    | IP-Address Resolution Mode        | OHCP ○ Predefined |                                         |
| L2-Filter Settings          | Predefined Ip-Address             | 192.168.20.4      |                                         |
| L2-Filter Table             | Predefined Subnet-Mask            | 255.255.255.0     |                                         |
| QoS Settings                | DHCP Server                       | <b>V</b>          |                                         |
| Traffic Class Table         | DHCP Server IP-Address Pool Begin | 192.168.20.10     |                                         |
| Access Password             | DHCP Server IP-Address Pool Size  | 5                 |                                         |
|                             | DHCP Server Lease Time [s]        | 86400             |                                         |
| Activation of Settings      | DHCP Predefined Subnet Mask       | 255.255.255.0     |                                         |
|                             | DHCP Predefined Gateway           | 192.168.20.1      |                                         |
|                             | NAT-Access enabled                |                   |                                         |
|                             | Send Reset                        |                   |                                         |
|                             |                                   |                   |                                         |

[scdhcpse-060712-01.tif, 1, en US]

| Figure 5-30 | Service Interface Settings |
|-------------|----------------------------|
|-------------|----------------------------|

| Settings                          | Comments                                                                                                                                                                                    |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC address                       | Actual MAC address of CSPi Service Interface                                                                                                                                                |
| IP-Address                        | Actual IP-address of CSPi Service Interface                                                                                                                                                 |
| Subnet-Mask                       | Actual Subnet Mask                                                                                                                                                                          |
| Predefined IP-Address             | User defined IP-address                                                                                                                                                                     |
| Predefined Subnet-Mask            | User defined Subnet Mask                                                                                                                                                                    |
| IP-Address Resolution Mode        |                                                                                                                                                                                             |
| DHCP                              | Service interface is connected to a DHCP Server and expect an IP-address.                                                                                                                   |
|                                   | May not be combined with DHCP Server on!                                                                                                                                                    |
| Predefined                        | IP address and subnet mask for the service interface defined by the user.                                                                                                                   |
|                                   | The values, given in the fields "Predefined", are<br>written to the CSPi with SEND. After restart of<br>PowerLink this user given values are valid as actual<br>IP-address and subnet mask. |
| DHCP Server                       | DHCP Server of the service interface on(☑)/off (□)                                                                                                                                          |
|                                   | (Default: DHCP Server of the service interface on(☑))                                                                                                                                       |
| DHCP Server IP-Address Pool Begin | Start address of DHCP Server given addresses                                                                                                                                                |
| DHCP Server IP-Address Pool Size  | Number of Addresses given by DHCP Server                                                                                                                                                    |
| DHCP Server Lease Time            | Validation of given IP-Address before automatic update                                                                                                                                      |
| DHCP Predefined Subnet Mask       | Predefined subnet mask address for connected DHCP client                                                                                                                                    |
| DHCP Predefined Gateway           | Predefined gateway address for connected DHCP client                                                                                                                                        |

# Telecommunication Products, PowerLink 100 and PowerLink 50, Equipment Manual C53000-G6040-C614-5, Edition 09.2023

| Settings                   | Comments                                                                                                                                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAT-Access enabled         | Network Address Translation enabled                                                                                                                             |
| HTTP Connection            | Read-only field, displays the connection option to<br>the Web interface as <b>configured by PowerSys</b><br><b>program</b> :http /https or disabled             |
| PowerSys TCP/IP Connection | Read-only field, displays the TCP/IP connection<br>option for PowerSys as <b>configured by PowerSys</b><br><b>program</b> : ssl encryption or no ssl encryption |
| Create Certificate         | Option to create a Trusted Certificate for Secure Connection.                                                                                                   |
|                            | For details, refer to chapter Cyber Security                                                                                                                    |
| Send                       | Send the values to the CSPi                                                                                                                                     |
| Reset                      | Reject the changes                                                                                                                                              |

Adaption to the user requirements



### NOTE

If the IP-Address of the interface is changed, make sure, that the actual values are known later. If the user does not know the IP-Address of the CSPi service interface it is not possible to communicate with the equipment.

### 5.4.5 User Interface Settings

The electrical user interface is located at the CFS2 connector panel (IP-1). The optical service interface is located at the front of the CSPi (ETH).

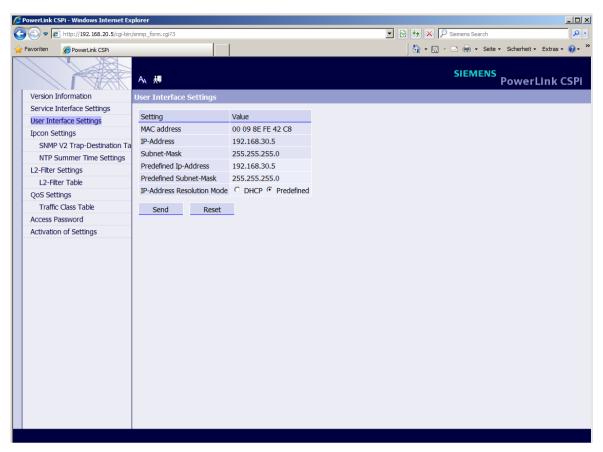





Figure 5-31 User Interface Settings

### Table 5-11User Interface Settings

| Settings                   | Comments                                                                                                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC address                | Actual MAC address of CSPi User Interface                                                                                                                                          |
| IP-Address                 | Actual IP-address of CSPi User Interface                                                                                                                                           |
| Subnet-Mask                | Actual Subnet Mask                                                                                                                                                                 |
| Predefined IP-Address      | User defined IP-address                                                                                                                                                            |
| Predefined Subnet-Mask     | User defined Subnet Mask                                                                                                                                                           |
| IP-Address Resolution Mode | DHCP                                                                                                                                                                               |
|                            | User interface is connected to a DHCP Server and expect an IP-address.                                                                                                             |
|                            | Predefined                                                                                                                                                                         |
|                            | IP address and subnet mask for the user interface defined by the user.                                                                                                             |
|                            | The values, given in the fields "Predefined", are written to the CSPi with SEND. After restart of PowerLink this user given values are valid as actual IP-address and subnet mask. |
| Send                       | Send the values to the CSPi                                                                                                                                                        |
| Reset                      | Reject the changes                                                                                                                                                                 |

# i

### NOTE

If the IP- Address of the interface is changed, make sure, that the actual values are known later. If the user does not know the IP- Address of the CSPi user interface it is not possible to communicate with the equipment.

### 5.4.6 Ipcon Settings

| 🔊 🗢 🙋 http://192.168.20.5/cgi-bin/s | snmp form.cgi?4                          | •                                | E 😽 🗙 🔎 Siemens Search                      |
|-------------------------------------|------------------------------------------|----------------------------------|---------------------------------------------|
| voriten A PowerLink CSPi            |                                          | <u> </u>                         | 🐴 🔹 🔄 🖉 🖷 🖷 🔹 Seite 🕶 Sicherheit 🗸 Extras 🗸 |
|                                     | An A                                     |                                  | SIEMENS<br>PowerLink CS                     |
| /ersion Information                 | Ipcon Settings                           |                                  |                                             |
| Service Interface Settings          |                                          |                                  |                                             |
| Jser Interface Settings             | Setting                                  | Value                            |                                             |
| pcon Settings                       | Default Gateway IP-Address               | 192.168.20.5                     |                                             |
| SNMP V2 Trap-Destination Ta         | NTP Server IP-Address                    | 192.168.20.2                     |                                             |
| NTP Summer Time Settings            | SNMP Version                             | V1/2                             |                                             |
| 2-Filter Settings                   | SNMP EnginID                             | 80 00 58 6E 03 02 09 8E FE 42 C8 |                                             |
| L2-Filter Table                     | NTP activated                            |                                  |                                             |
| oS Settings                         | NTP Poll Interval [1-86400 sec]          | 60                               |                                             |
| Traffic Class Table                 | Timezone Offset [hh:mm]                  | 00:00                            |                                             |
| ccess Password                      | SNMP Community String - Read Only Access | cspiread                         |                                             |
| Activation of Settings              | PowerLink Configuration Port Number      | 10001                            |                                             |
| leaved on or occarigo               | Measurement Port Number                  | 10002                            |                                             |
|                                     | Send Reset                               |                                  |                                             |

With the IPCON settings the values for the gateway, the NTP- server and the trap destination are defined.

[scipcons-201113-97.tif, 1, en\_US]

Figure 5-32 Ipcon (PowerLink IP Controller) Settings

#### Table 5-12 Ipcon (PowerLink IP Controller) Settings

| Settings                          | Comments                                                                        |
|-----------------------------------|---------------------------------------------------------------------------------|
| Default Gateway IP-Address        | Gateway for Ethernet user port                                                  |
| NTP Server IP-Address             | NTP (Network Time Protocol) server address                                      |
| NTP activated                     | off ( $\Box$ ) NTP not used for time synchronization                            |
|                                   | on(🗗) NTP used for time synchronization                                         |
|                                   | Default: NTP Server off ()                                                      |
| NTP Poll Interval                 | 1 - 86400 sec                                                                   |
|                                   | It is recommended to use a polling cycle not less than 60 seconds.              |
| Timezone Offset (hh:mm)           | The Time zone is always the GMT. Select the local deviation (up to $\pm 12h$ ). |
| SNMP Community String – Read Only | Text string, max. 10 characters,                                                |
| Access                            | cspiread (default)                                                              |
|                                   | Must be identically with the community string in the NMS                        |

5.4 Web Interface

| Settings                                            | Comments                                                                                                         |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| PowerLink Configuration Port Number                 | 1024 to 65 535                                                                                                   |  |
|                                                     | (Adjust the same value in PowerSys – Options – Connection,<br>Communication: TCP/IP, TCP/IP Configuration Port.) |  |
|                                                     | Default: 10001                                                                                                   |  |
| Measurement Port Number                             | 1024 to 65 535                                                                                                   |  |
|                                                     | (Adjust the same value in PowerSys – Options – Connection,<br>Communication: TCP/IP, TCP/IP Measurement Port.)   |  |
|                                                     | Default: 10002                                                                                                   |  |
| Send                                                | Send the values to the CSPi                                                                                      |  |
| Reset                                               | Reject the changes                                                                                               |  |
| <sup>1)</sup> Range for PowerLink Configuration Por | t: 0 to 65 535, but well known ports up to 1023 should not be used.                                              |  |
| <sup>2)</sup> Range for PowerLink Measurement Por   | t: 0 to 65 535, but well known ports up to 1023 should not be used                                               |  |



### NOTE

For the clock synchronization via NTP only the related parameters are configured in the PowerLink Web interface. The local clock synchronization type of the PowerLink device is configured and activated with the PowerSys service program (refer to 3.18.8 Clock Synchronization).

It is not possible to activate the NTP via the Web Interface. The Checkbox "NTP activated" in the IPCon settings of the Web interface shows the status, whether NTP synchronization was activated in the PowerSys configuration or not.

### **NTP Daylight Saving Time**

Network Time Protocol (NTP) is a networking protocol to synchronize the clock between an NTP server and a PowerLink or SWT 3000 device. No information of time zone or daylight saving time (summer time) is provided by NTP, which has to be configured manually using the Web server (see *Figure 5-32*) or SNMP SET command.

The Universal Time Coordinated (UTC) received from the NTP server will be adjusted with the setting of local time zone or daylight saving time.



### NOTE

The same content can also be displayed as read-only in PowerSys.

|           | SPi - Windows Internet Exp<br>http://192.168.20.5/cgi-bin/ |                       |                   |             |                            |              | - 🗟 <del>69</del> 🗙 🔎 | Siemens Search                 | يا<br>بر |
|-----------|------------------------------------------------------------|-----------------------|-------------------|-------------|----------------------------|--------------|-----------------------|--------------------------------|----------|
| avoriten  | PowerLink CSPi                                             | onnp_ronnegi.o        |                   |             |                            |              |                       | 🖃 🌐 🔹 Seite 🔹 Sicherheit 👻 Ext |          |
|           |                                                            | A 永<br>Ipcon Settings | NTP Summer        | Time Settin | gs                         |              |                       | SIEMENS<br>PowerLin            |          |
| Service I | interface Settings                                         |                       |                   |             |                            |              |                       |                                |          |
| User Inte | erface Settings                                            | Setting               |                   | Value       |                            |              |                       |                                |          |
| Ipcon Se  | ettings                                                    | Summer Time           |                   |             |                            |              |                       |                                |          |
| SNMP      | V2 Trap-Destination Ta                                     |                       | Offset to GMT [hh |             |                            |              | 01:00                 |                                |          |
| NTP S     | Summer Time Settings                                       | Start of Summ         |                   | Third       | <ul> <li>Sunday</li> </ul> | in March     | ✓ at 3 ✓ clock        |                                |          |
| L2-Filter | Settings                                                   | End of Summe          | er Time           | First       | <ul> <li>Sunday</li> </ul> | ▼ in October | ✓ at 3 ✓ clock        |                                |          |
| L2-Filt   | er Table                                                   | Send                  | Reset             |             |                            |              |                       |                                |          |
| QoS Sett  | tings                                                      |                       |                   |             |                            |              |                       |                                |          |
| Traffic   | : Class Table                                              |                       |                   |             |                            |              |                       |                                |          |
| Access P  | assword                                                    |                       |                   |             |                            |              |                       |                                |          |
| Activatio | n of Settings                                              |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |
|           |                                                            |                       |                   |             |                            |              |                       |                                |          |



Figure 5-33 PowerLink NTP Daylight Saving Time Setting using the Web Server

| Settings                             | Comments                                                                                                                                                                                    |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | This enables daylight saving time switchover, it is only relevant for NTP.<br>If it is enabled, you have to configure the summer time offset, the begin and the<br>end of summer time also. |
| Summer Time Offset to<br>GMT [hh:mm] | Daylight saving time offset to GMT (Greenwich Mean Time).<br>The possible range of value: -12:00 to 12:00                                                                                   |
| Start of Summer Time                 | Define daylight saving start time                                                                                                                                                           |
| End of Summer Time                   | Define daylight saving end time                                                                                                                                                             |

### Ipcon Settings – Trap Destination

Up to 6 destinations can be set. The SNMPv2 traps are send automatically to these addresses.

| 💽 🗢 🙋 http://192.168.20.5/cgi-bi | n/snmp_form.cgi?5        |                       |                  | 💌 🗟 🤧 🗙 🔎 Siemens Search                      |
|----------------------------------|--------------------------|-----------------------|------------------|-----------------------------------------------|
| avoriten 🖉 PowerLink CSPi        |                          |                       |                  | 🔓 🕶 🗟 👻 🖃 🚔 🔹 Seite 🔹 Sicherheit 👻 Extras 🕶 🔞 |
|                                  | AA 🙏                     |                       |                  | SIEMENS<br>PowerLink CSI                      |
| Version Information              | Ipcon Settings ► SNMP V2 | 2 Trap-Destination Ta | ble              |                                               |
| Service Interface Settings       |                          |                       |                  |                                               |
| User Interface Settings          | Index IP-Address         | Community String      | UDP Port Enabled |                                               |
| Ipcon Settings                   | 1 192.168.80.2           | public                | 162 🔽            |                                               |
| SNMP V2 Trap-Destination Ta      | a 2 192.168.90.2         | public                | 162              |                                               |
| NTP Summer Time Settings         | 3 192.168.20.2           | public                | 162 🗖            |                                               |
| L2-Filter Settings               | 4 192.168.20.2           | public                |                  |                                               |
| L2-Filter Table                  | 5 192.168.20.2           | public                | 162 🗖            |                                               |
| QoS Settings                     | 6 192.168.20.2           | public                | 162              |                                               |
| Traffic Class Table              | Send Reset               |                       |                  |                                               |
| Access Password                  |                          |                       |                  |                                               |
| Activation of Settings           |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |
|                                  |                          |                       |                  |                                               |

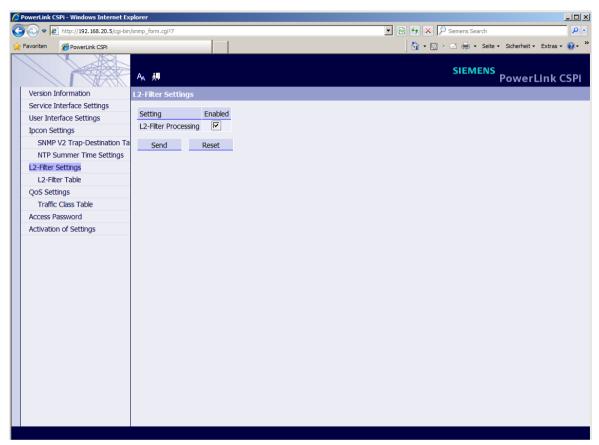


#### Figure 5-34 Ipcon Settings – Trap Destination

| Settings                                                 | Comments                                                                                                       |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Index                                                    | 1 to 6                                                                                                         |  |
| IP-Address                                               | IP-Address of Trap destination (NMS)                                                                           |  |
| Community String                                         | Text string, max. 10 characters,                                                                               |  |
|                                                          | Must be identically with the community string, expected by the NMS when receiving a                            |  |
|                                                          | trap                                                                                                           |  |
| UDP Port                                                 | Range: 1024 to 65 535                                                                                          |  |
|                                                          | default: 162 (well known port for traps)                                                                       |  |
|                                                          | Must be identically with the number in the NMS                                                                 |  |
| Enabled on $(\Box)$ / off $(\Box)$                       |                                                                                                                |  |
|                                                          | Default: off ()                                                                                                |  |
| Send                                                     | Send the values to the CSPi                                                                                    |  |
| Reset                                                    | Reject the changes                                                                                             |  |
| <sup>1)</sup> Range for UDP Port<br>Port 161: put and ge | :: 0 to 65 535, but well known ports up to 1023 should not be used. Exception for SNMP:<br>et, Port 162: traps |  |

Adaption to the user requirements.

The **NMS addresses** as well as the **community string** for set/get has to be adjusted via web login and must match between the SNMP agent and the NMS.




### NOTE

For further information about the configuration of SNMP (v2/v3) please refer to chapter SNMP.

### 5.4.7 L2 Filter Settings

With L2 (Level 2) filter settings it is possible to lower the transmitted Ethernet traffic via PowerLink by blocking defined types of traffic. Within this form the function is activated or deactivated. Default: Filter settings are switched off.



<sup>[</sup>scl2fltr-201113-99.tif, 1, en US]

Figure 5-35 Level 2 Filter Settings

| Table 5-13 | Level 2 Filter Settings |
|------------|-------------------------|
|------------|-------------------------|

| Settings               | Comments                    |
|------------------------|-----------------------------|
| L2-Filter Processing   | L2-Filter Processing off    |
| L2-Filter Processing 🗹 | L2-Filter Processing on     |
| Send                   | Send the values to the CSPi |
| Reset                  | Reject the changes          |

#### L2 Filter Settings – L2 Filter Table

With L2 (Level 2) filter settings it is possible to lower the transmitted Ethernet traffic via PowerLink by blocking defined types of traffic. Within this form the type of data is chosen.

|                             | A₁ ∦     | SIEN                                  | IENS | PowerLi  | nk CS |
|-----------------------------|----------|---------------------------------------|------|----------|-------|
| Version Information         | L2-Filte | r Settings ▶ L2-Filter Table          |      |          |       |
| Service Interface Settings  |          |                                       |      | _        |       |
| User Interface Settings     | Index    | Ether Type Value                      |      | Enabled  |       |
| lpcon Settings              | 1        | Internet Protocol, Version 6 (IPv6)   | -    |          |       |
| SNMP Trap-Destination Table | 2        | Internet Protocol, Version 4 (IPv4)   | -    | <b>F</b> |       |
| L2-Filter Settings          | 3        | PPP over Ethernet (Discovery Stage)   | •    | 2        |       |
| L2-Filter Table             |          | PPP over Ethernet (PPP Session Stage) | •    | 2        |       |
| QoS Settings                | 5        | GOOSE (IEC 61850-8-1)                 | •    | T I      |       |
| Traffic Class Table         |          |                                       |      | 19       |       |
| Access Password             |          | GSE (IEC 61850-8-1)                   | -    |          |       |
| Activation of Settings      | 7        | SV (IEC 61850-9-1)                    | •    | 2        |       |
|                             | S        | end Rese:                             |      |          |       |

[scl2fltb-081210-01.tif, 1, en

Figure 5-36 Level 2 Filter Settings – Filter Table

Table 5-14Level 2 Filter Settings – Filter Table

| Settings                              | Comments            |
|---------------------------------------|---------------------|
| Internet Protocol, Version 6 (IPv6)   | () transmitted      |
|                                       | (🗹) not transmitted |
| Internet Protocol, Version 4 (IPv4)   | () transmitted      |
|                                       | (๗) not transmitted |
| PPP over Ethernet (Discovery Stage)   | () transmitted      |
|                                       | (๗) not transmitted |
| PPP over Ethernet (PPP Session Stage) | () transmitted      |
|                                       | (๗) not transmitted |
| Address Resolution Protocol (ARP)     | () transmitted      |
|                                       | (🗹) not transmitted |
| Reverse Address Resolution Protocol   | () transmitted      |
| (RARP)                                | (๗) not transmitted |
| VLAN Tag                              | () transmitted      |
|                                       | (๗) not transmitted |
| GOOSE (IEC 61850-8-1)                 | () transmitted      |
|                                       | (🗹) not transmitted |
| GSE (IEC 61850-8-1)                   | () transmitted      |
|                                       | (🗹) not transmitted |

| Settings           | Comments                                                                                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SV (IEC 61850-9-1) | () transmitted                                                                                                                                                |
|                    | (🗹) not transmitted                                                                                                                                           |
| Send               | Send the values to the CSPi                                                                                                                                   |
| Reset              | Reject the changes                                                                                                                                            |
| Goose              | Generic object oriented substation events is a control model mechanism in which any format of data (status, value) is grouped into a data set an transmitted. |
| GSE                | Generic substation events are defined as fast transfer of event data for a peer-to-peer communica tion mode.                                                  |
| SV                 | Sampled values                                                                                                                                                |

### 5.4.8 QoS Settings

Enabling the QoS processing, PowerLink reserves the given data rate for VoIP (voice over IP) traffic and/or IEC 60850-5-104 protocol. Adjustments for the data rates have to be done in the menu traffic class table. Default: QoS settings are switched off

| PowerLink CSPi - Windows Internet Ex | kplorer                           |         |   |                          |                                 |
|--------------------------------------|-----------------------------------|---------|---|--------------------------|---------------------------------|
|                                      | 1/snmp_form.cgi?9                 |         | • | 🛚 🗟 😽 🗙 🔎 Siemens Search | P                               |
| 🚖 Favoriten 🏾 🏉 PowerLink CSPi       |                                   |         |   | 🏠 • 🔊 - 🖃 🚔 • Se         | ite 🔹 Sicherheit 👻 Extras 👻 🔞 🛡 |
|                                      | A <sub>A</sub> ∦,                 |         |   | SIEMEN                   |                                 |
| Version Information                  | QoS Settings                      |         |   |                          |                                 |
| Service Interface Settings           |                                   |         |   |                          |                                 |
| User Interface Settings              | Setting                           | Enabled |   |                          |                                 |
| Ipcon Settings                       | QoS Processing                    | •       |   |                          |                                 |
| SNMP V2 Trap-Destination Ta          | Header Compression                |         |   |                          |                                 |
| NTP Summer Time Settings             | Actual PPP LINK Data Rate [kbit/s | s] 10   |   |                          |                                 |
| L2-Filter Settings                   | Send Reset                        |         |   |                          |                                 |
| L2-Filter Table                      | - Seria Reset                     |         |   |                          |                                 |
| QoS Settings                         |                                   |         |   |                          |                                 |
| Traffic Class Table                  |                                   |         |   |                          |                                 |
| Access Password                      |                                   |         |   |                          |                                 |
| Activation of Settings               |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |
|                                      |                                   |         |   |                          |                                 |

Figure 5-37 QoS Settings

#### Table 5-15 QoS Settings

| Settings                         | Comments                                |
|----------------------------------|-----------------------------------------|
| QoS Processing                   | QoS Processing off                      |
| QoS Processing 🗹                 | QoS Processing on                       |
| Actual PPP LINK Data Rate [Kbps] | Actual value, PowerLink is working with |
| Send                             | Send the values to the CSPi             |
| Reset                            | Reject the changes                      |

The Header Compression is configured in the web page through **PowerLink > QoS settings**.

Header Compression

dwtcpiph-170513-01.tif, 1, en\_l

Figure 5-38 Parameter: Header Compression

Checked **Header Compression** enables the ROHC (RFC3095) and the header compression for low-speed serial links (RFC1144).



### NOTE

Both local and remote PowerLink must have the same configuration for ROHC.

### 5.4.9 QoS Settings – Traffic Class Table

Within this menu a min. resp. max. data rate (Kbps) for traffic class VoIP (voice over IP) and/or IEC 60870-5-104 protocol can be set. The range between the min. and the max. value is guaranteed for the enabled service. This reservation is only active, if those traffic class is transmitted. Otherwise the reserved data rate can be used by other Ethernet data.

If the data rate of a traffic class exceeds the given max. value, than the exceeding data will be transmitted within the normal data stream.

| 🕥 🗢 🙋 http://192.168.20.5/cgi-bin/s | snmp_form.cgi?10  |             |                   |                  |                  | 🗖 🗟 🐓 🗙 🔎 |               |              |            |
|-------------------------------------|-------------------|-------------|-------------------|------------------|------------------|-----------|---------------|--------------|------------|
| avoriten 🏾 🏀 PowerLink CSPi         |                   |             |                   |                  |                  | 👌 • 🔊 •   | 🖃 🖶 👻 Seite 🗸 | Sicherheit 🝷 | Extras 👻 🌘 |
|                                     | A. 秋              |             |                   |                  |                  |           | SIEMENS       | PowerLi      | nk CS      |
| Version Information                 | QoS Settings • Tr | affic Class | Table             |                  |                  |           |               |              |            |
| Service Interface Settings          | Traffic Class     | Min. Data I | Data [[4]-14/-1 M | Data Data I      | hat (a) Carablad |           |               |              |            |
| User Interface Settings             |                   | Min. Data F |                   | ax. Data Rate [k | -                |           |               |              |            |
| Ipcon Settings                      | VoIP              |             | 2                 |                  | 4 🗹              |           |               |              |            |
| SNMP V2 Trap-Destination Ta         | IEC 60870-5-104   |             | 2                 |                  | 4 🗖              |           |               |              |            |
| NTP Summer Time Settings            | Send              | Reset       |                   |                  |                  |           |               |              |            |
| L2-Filter Settings                  |                   |             |                   |                  |                  |           |               |              |            |
| L2-Filter Table                     |                   |             |                   |                  |                  |           |               |              |            |
| QoS Settings                        |                   |             |                   |                  |                  |           |               |              |            |
| Traffic Class Table                 |                   |             |                   |                  |                  |           |               |              |            |
| Access Password                     |                   |             |                   |                  |                  |           |               |              |            |
| Activation of Settings              |                   |             |                   |                  |                  |           |               |              |            |
| i caradon or occarigo               |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |
|                                     |                   |             |                   |                  |                  |           |               |              |            |

Figure 5-39 (

QoS Settings – Traffic Class Table

Table 5-16 QoS Settings – Traffic Class Table

| Settings                    | Comments                    |
|-----------------------------|-----------------------------|
| VoIP                        | QoS for VoIP off            |
| VoIP 🗹                      | QoS for VoIP on             |
| IEC 60870-5-104             | QoS for IEC 60870-5-104 off |
| IEC 60870-5-104 🗹           | QoS for IEC 60870-5-104 on  |
| Min. Data Rate              | Reserved data rate [Kbps]   |
| Max. Data Rate <sup>4</sup> | Reserved data rate [Kbps]   |
| Send                        | Send the values to the CSPi |
| Reset Reject the changes    |                             |

### 5.4.10 Change Access Password

Within this menu the password for the access to the Web interface and the SNMP community string can be set.

<sup>4</sup> Must be less than datarate of the Data Pump



[sccngapd-081210-01.tif, 1, en\_US]

Figure 5-40 Ipcon Settings – Change Access Password

| Table 5-17 | Incon Settings - | Change | Access Password |
|------------|------------------|--------|-----------------|
|            | ipcon settings   | Change | Accessiassword  |

| Settings                                  | Comments                                                 |
|-------------------------------------------|----------------------------------------------------------|
| SNMP Community String – Read Write Access | Text string, max. 10 characters,                         |
|                                           | cspiwrite (default)                                      |
|                                           | Must be identically with the community string in the NMS |
| Send                                      | Send the values to the CSPi                              |
| Reset                                     | Reject the changes                                       |

### 5.4.11 Activation of Settings

Within this menu all the settings can be saved in PowerLink. Saving the values in PowerLink causes a reset in PowerLink.

| D CSDiWeb D ddi D Analmassages D ddi-c                        |     |  |  |  |  |  |
|---------------------------------------------------------------|-----|--|--|--|--|--|
| CSPiWeb ddi Alog/messages ddi-c                               |     |  |  |  |  |  |
| A A A                                                         | SPI |  |  |  |  |  |
| Version Information Activation of Settings                    |     |  |  |  |  |  |
| Service Interface Settings                                    |     |  |  |  |  |  |
| User Interface Settings C Store settings to flash and restart |     |  |  |  |  |  |
| Ipcon Settings Send Reset                                     |     |  |  |  |  |  |
| SNMP Trap-Destination Table                                   |     |  |  |  |  |  |
| L2-Filter Settings                                            |     |  |  |  |  |  |
| L2-Filter Table                                               |     |  |  |  |  |  |
| QoS Settings                                                  |     |  |  |  |  |  |
| Traffic Class Table                                           |     |  |  |  |  |  |
| Access Password                                               |     |  |  |  |  |  |
| Activation of Settings                                        |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               |     |  |  |  |  |  |
|                                                               | 4   |  |  |  |  |  |

[scactyst-081210-01.tif. 1. en\_US]

Figure 5-41 Activation of Settings

Table 5-18 Activation of Settings

| Settings                            | Comments                                                                |
|-------------------------------------|-------------------------------------------------------------------------|
| Store settings to flash and restart | Save all actual settings in the CSPi and restart the CSPi IP controller |
| Send                                | Send the values to the CSPi                                             |
| Reset                               | Reject the changes                                                      |



### NOTE

Restart of the CSPi interrupts all services.

## 6 MCM Function

| 6.1 | Overview                | 462 |
|-----|-------------------------|-----|
| 6.2 | Functional Description  | 463 |
| 6.3 | Commissioning           | 471 |
| 6.4 | IFC-MCM                 |     |
| 6.5 | Equipment Configuration | 485 |
| 6.6 | MCM 32                  | 493 |

### 6.1 Overview

The function MCM (Multi Command Mode) extends the transmission of the integrated SWT 3000 via the **analog** interface from actual 4 to maximum 24 commands.

If only 20 commands have to be transmitted in the MCM mode, a second SWT 3000 can be integrated in the mounting position B of the PowerLink.

The SWT 3000 with the MCM function is integrated in the PowerLink. The transmission is always carried out in the **alternate multi purpose operation** (AMP) in combination with analog voice channel (F2) or with the Data Pump.

Due to the number of inputs and outputs in the MCM operating mode, the functionality of the interface module IFC-x from the SWT 3000 is divided in the modules IFC-24 and IFC-MCM.

The module IFC-24 only exists once per equipment, and is connected via a front cable to the PU4. The connecting cables to the IFC-MCM modules are plugged at the rear side of the module.

The MCM module consists of a basis and a sub module which are connected with each other via a ribbon cable. The basis module has 2 binary inputs and 4 relay outputs. The sub module also has 2 binary inputs, however here 4 semi-conductor outputs are available.

This chapter provides detailed instructions for commissioning the PowerLink system using the MCM function including jumper settings for the MCM resp. IFC-24 modules and explanation of the corresponding forms in the PowerSys service program.

### 6.2 Functional Description

### 6.2.1 Introduction

The general function of the SWT 3000 has been already described in the system description chapter *System Description*. The additional features for the MCM function are described below.

### NOTE

The MCM function is only available for PowerLink 100.

### 6.2.2 Structure and Requirements

The function MCM (Multi Command Mode) extends the command transmission of the (i)SWT 3000 via the **analog** interface from actual max. 4 to max. 24.



### NOTE

If up to 20 commands (max. 5 IFC-MCM units inserted in PowerLink) have to be transmitted in the MCM mode, a second SWT 3000 can be integrated in the mounting position B of the PowerLink. This has the capability to transmit up to four independent protection signaling commands.

For MCM the existing operation modes are expanded with the **mode 6**. The commands are transmitted serial and according to the programmed priority. They are divided into two categories:

- Relay Protection (RP) commands and
- Emergency automation (EA) signals

The classification only serves for a linguistically distinction of the priority. There is no functional difference between these two items.

### **Relay Protection Commands (RP)**

Up to 4 relay protection (RP) commands have to be transmitted serially and according to the programmed priority.

### **Emergency Automation Signals (EA)**

Up to 20 emergency automation (EA) signals have to be transmitted serial and according to the programmed priority.

While transmitting these two command categories the line protection equipments have the possibility to take action, e.g. with trip commands, in order to minimize the malfunction effect in case of disturbance. The normal operation mode is thus recovered as fast as possible.

#### Input Allocation/Input Treatment

The RP or EA commands can be connected to the inputs and outputs of the SWT 3000 equipment in an arbitrary sequence, because it is possible, to define the transmission priority by software. For the impulse suppression, two different input debounce times can be selected by means of jumper. They exist additional to the debounce time adjustable with the software. When selecting the longer debounce time, the signal transmission time is also corresponding longer.

#### **Priority Assignment**

The assignment of the inputs to the individual priority steps is carried out with the service program. For each priority step only one input can be assigned. This prioritization can also be carried out via the RM function.

#### **Output Allocation**

In the MCM operating mode a binary input (BI1 to BI24) can be assigned to any command output (CO1 to CO24). Combinatory operations are not possible.

#### **Priority Control**

For all 24 commands a different priority has to be adjusted. A command with higher priority interrupts the transmission of a command with lower priority. The interrupted command (which wasn't transmitted for the defined duration) will be transmitted again after all commands with higher priority have been send.

#### **Transmit Memory**

In general a send flag is set from an input command. This is only deleted after the command has been send for the complete transmission time. If the transmission of a command is delayed due to commands of higher priority, and the waiting command occurs again or several times at the input, it will nevertheless be transmitted only **once**.

### 6.2.3 Alternate Multi Purpose Operation

The SWT 3000 with the MCM functions is integrated in the PowerLink. The transmission is always carried out in the **alternate multi purpose operation** (AMP) in combination with analog voice channel (F2) or with the Data Pump. Using the F6-modulation ensures the reliable and secure transmission via very long HV-lines. Only one single signal is necessary to transmit the relay protection or the emergency automation signal.



### NOTE

Further information about the alternate multi purpose operation mode can be found in the chapter System Description.

### MCM with an Analog Voice Channel F2

The guard of the voice channel has to be adjusted to 3.81 kHz. The MCM trip frequencies are transmitted in the range from 0.3 up to 3.6 kHz. The voice band is adjustable from 0.3 up to 2.04 kHz (min.) and, in steps of 120 Hz, up to 3.6 kHz.

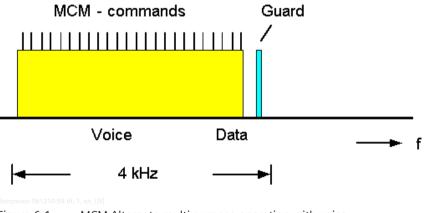



Figure 6-1

re 6-1 MCM Alternate multi purpose operation with voice

#### MCM with Data Pump

In the alternate multi purpose operation with the Data Pump (DP) the guard for the protection signaling system is the DP pilot. The MCM trip frequencies are transmitted within the DP-bandwidth. The DP bandwidth is adjustable between 3.5 to 7.5 kHz

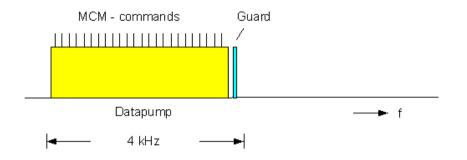



Figure 6-2 MCM Alternate multi purpose operation with Data Pump bandwidth 3.5 kHz

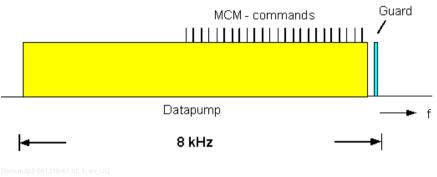
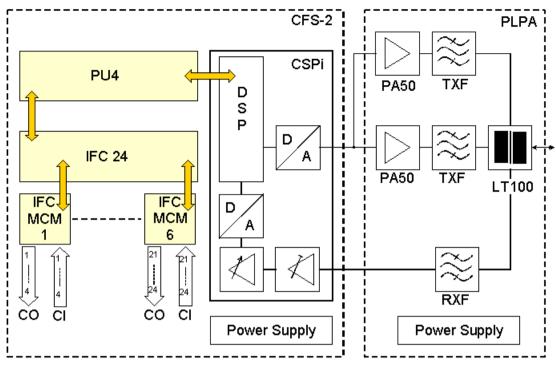



Figure 6-3 MCM alternate multi purpose operation with Data Pump bandwidth 7.5 kHz

#### **Transmission Period**

The transmission period of a command is per default fixed to 50 ms. A longer upcoming command will also be transmitted only once for 50 ms. This value is adjustable via the service program in the range 50 to 100 ms in steps of 5 ms.


#### **Transmit Power**

Because of the transmission range the commands are coded in such a way, that for each tone the full transmit power is available. This means a coding which uses two or more tones at the same time on the line is not necessary.

#### **Interface Modules**

Due to the number of inputs and outputs in the MCM operating mode 6 (max. 24) the functionality of the interface module IFC from the SWT 3000 is divided in the modules IFC-24 and IFC-MCM.

The module IFC-24 only exists once per equipment, and is connected via a front cable to the PU4. The connection cables to the IFC-MCM modules are plugged at the rear side of the module.



[cdplmcmf-120813-62.tif, 1, en\_U

Figure 6-4 Block diagram of the PowerLink 100 system with MCM function

The MCM module consists of a basis and a sub module which are interconnected via a ribbon cable. The basis module has 2 binary inputs and 4 relay outputs. The sub module also has 2 binary inputs, however here 4 semi-conductor outputs are available.

#### **Event Memory**

The event memory is taken over from the system SWT 3000 without changes. Display possibilities (alarm only, commands only, all events) are available. Also for the other operating modes.

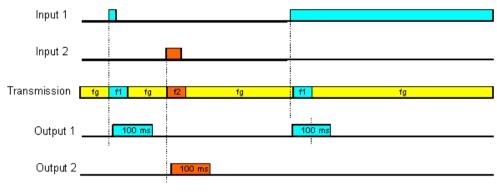
When reading out the user has the possibility to get all events, all commands or only other events chronologically displayed.

#### **Output Extension**

The extension of the command output can be adjusted from 0 up to 500 ms (2000 ms for Supervision Command) in steps of 5 ms. The default setting for MCM commands must be 50 ms.

#### Fall Back Mode to the Normal Operation

If the transmitter remains in the command transmission mode due to a fault it will be forced to switch back into the normal mode after 10 s (default value; adjustable from 5 to 30 s). In this case an alarm output is activated. The remaining services are available again after this fall back mode.


The alarm condition will only be cleared after all inputs are de-energized (no RP or EA input signal present).

### 6.2.4 Transmission Scheme

#### Example 1

The relay protection or emergency automation signal at the transmitter input x causes the transmission of the corresponding frequency fx for a certain time (Ttrans = 50 ms).

The receiver Output x sends the output impulse to the relay protection or emergency automation equipment (Tout = 100 ms).



mcmc-061210-63.tif, 1, en\_U

Figure 6-5 Transmission time of the MCM commands

#### **Explanation:**

In the example above the input 1 is energized for a very short time (< 50 ms) and later for a long time (approx. 1 sec). The transmission time in both cases is 50 ms and the command output time is the transmission period plus the extension time = 100 ms.

#### Example 2

The relay protection signals (input 2) and the emergency automation signals (input 1 and input 3) are transmitted with different priority.

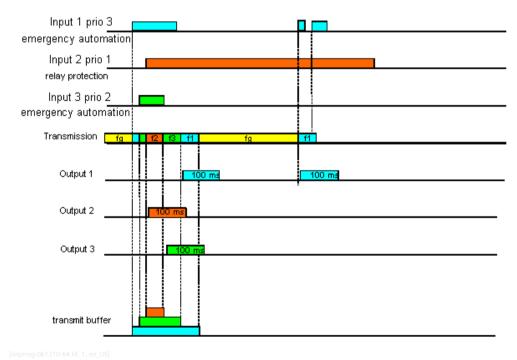



Figure 6-6

Transmission priority for the different input signals

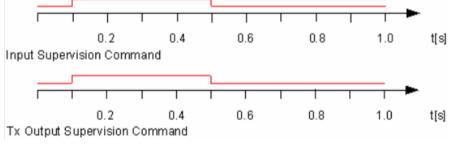
### **Explanation:**

The inputs 1, 2 and 3 are energized nearly in the same time. Due to the different priorities the relay protection signal from input 2 is transmitted first. The input 1 and 3 signals are stored according to their priority in the transmit buffer, and sent subsequent to the signal from input 2.

### 6.2.5 Guard Alarm

If there is no valid command frequency present a guard alarm is triggered after about 10 ms. The Guard alarm is cancelled in the MCM operating mode as soon as a valid trip frequency resp. the Guard is received.

### 6.2.6 Supervision Command

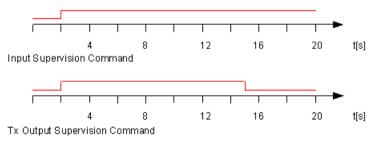

The command with the lowest priority can be used as "Supervision Command". For a Supervision Command, where the priority is fixed automatically to 24, special features are available.

| IFC-MCM   | Supervision command | Priority |
|-----------|---------------------|----------|
| 1 module  | 4th command         | 24       |
| 2 modules | 8th command         | 24       |
| 3 modules | 12th command        | 24       |
| 4 modules | 16th command        | 24       |
| 5 modules | 20th command        | 24       |
| 6 modules | 24th command        | 24       |

Table 6-1Where is the Supervision Command

### **Continuous Signal Transmission**

The Supervision Command is transmitted as long as the Supervision Command input is activated.




[scsupcom-120813-01.tif, 1, --\_--

Figure 6-7 Supervision Command Continuously

### **Input Limitation Alarm**

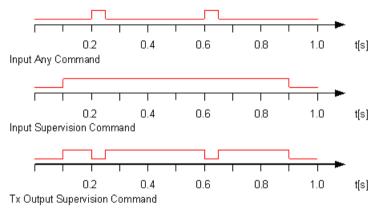
If the activation time of the Supervision Command is longer than the adjusted input limitation time, a non urgent alarm is generated. Depending on this alarm the Supervision Command transmission can be stopped.



[scsupcm2-110711-01.tif, 1

Figure 6-8 Supervision Command with input limitation

# NOTE


Result of exceeding the adjusted "Limit of Supervision Command"

- Anon urgent alarm is generated
- In case of activated: "Blocking outputs on Limit of Supervision Command", the transmission of the Supervision Command is stopped and PowerLink switches back to normal working conditions

# Interruption of Supervision Command

As known, the Supervision Command has the lowest priority, therefore every other command has a higher priority.

If, during the transmission of a Supervision Command, any other command has to be transmitted, the Supervision Command is interrupted and the command with the higher priority is transmitted to the remote equipment. After finishing the transmission of the command with the higher priority, the transmission of the Supervision Command is restored, if the input contact of the Supervision Command is still active and the input limitation time setting has not been exceeded.



dwsupcm3-110711-01.tif, 1,

Figure 6-9 Supervision Command Interrupted from command with higher priority



# NOTE

All MCM signal transmission are done in Alternate Multipurpose Mode. Therefore the transmission of a MCM signal (including Supervision Command) interrupts the normal working condition of PowerLink.

# 6.2.7 Signaling Allocation

The signaling allocation is used to configure free output ports of IFC-MCM boards as command signaling for any command input, command output or alarm event. All free output ports can be configured as signaling ports, but the total transmitted command number is reduced.

By default, all IFC-MCM output ports are allocated for command outputs. These output ports must be deactivated in output allocation view at first before signaling allocation. Multiple command input and output can be signaling to the same port.

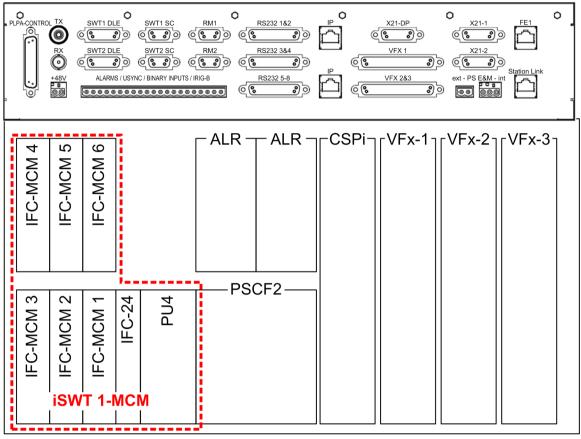
| Table 6-2 | Powerlink > | Configuration > | iSWT-1 > | Signaling Allocation |
|-----------|-------------|-----------------|----------|----------------------|
|           | 10WEILINK / | configuration / | 12001 1/ | Signaling Anocation  |

| ldx | IFC-1/<br>OUT1 | IFC-1/<br>OUT2 | IFC-1/<br>OUT3 | IFC-1/<br>OUT4 | <br>IFC-6/<br>OUT1 | IFC-6/<br>OUT3 | IFC-6/<br>OUT4 |
|-----|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|
| IN1 | Х              |                |                |                |                    |                |                |
| IN2 |                | Х              |                |                |                    |                |                |
|     |                |                | Х              |                |                    |                |                |

| ldx   | IFC-1/<br>OUT1 | IFC-1/<br>OUT2 | IFC-1/<br>OUT3 | IFC-1/<br>OUT4 | <br>IFC-6/<br>OUT1 | IFC-6/<br>OUT2 | IFC-6/<br>OUT3 | IFC-6/<br>OUT4 |
|-------|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|----------------|
| IN24  |                |                |                | Х              |                    |                |                |                |
| OUT1  |                |                |                |                | Х                  |                |                |                |
| OUT2  |                |                |                |                |                    | Х              |                |                |
|       |                |                |                |                |                    |                | Х              |                |
| OUT24 |                |                |                |                |                    |                |                | Х              |
| ALR   |                |                |                |                |                    |                |                |                |

IN1...24 Signal transmitted input commands

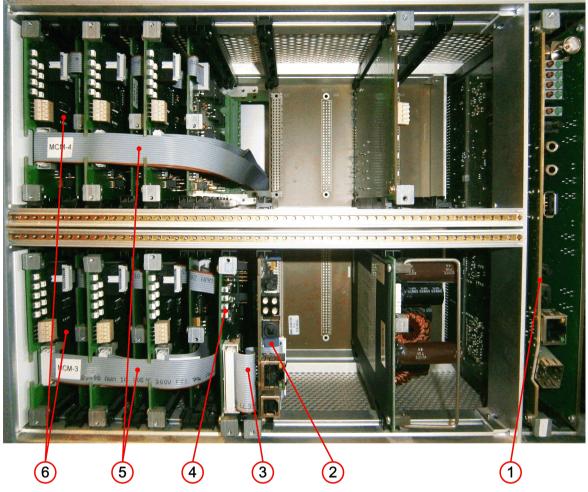
OUT1...24 Signal received output commands


ALR Signal occurred alarm events

The MCM-Basis-Module has 4 relay outputs and the MCM-Sub-Module has 4 semi-conductor outputs. The 4 command outputs in basis module are mirrored to sub module. So, it can be used as contact doubling purpose.

# 6.3 Commissioning

# 6.3.1 Overview


The PU4 module of the iSWT-MCM is located in the iSWT mounting position 1 of the PowerLink equipment.



tdpliswt-180913-65.tif, 1, en\_L

Figure 6-10 iSWT 3000 with the MCM functionality and 6 interface modules

iSWT 1: integrated SWT 3000 in mounting position 1



[dwuccfs2-270813-01.tif, 1, --

Figure 6-11 View into an uncovered CFS-2 part containing iSWT 3000 with MCM function

- (1) CSPi
- (2) PU4
- (3) TPi-Bus cable between PU4 and IFC-24
- (4) IFC-24
- (5) From / To Transfer connector IFC-24 module (rear side of CFS-2)
- (6) IFC-MCM

If the number of MCM modules is not more than 5, a second iSWT 3000 (in the mounting position 2) can be used in the PowerLink system.

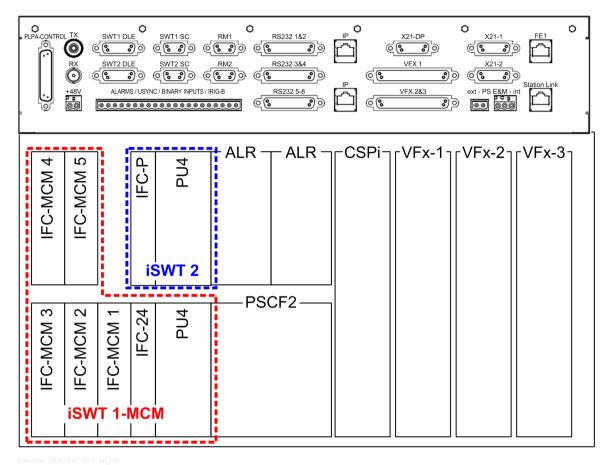
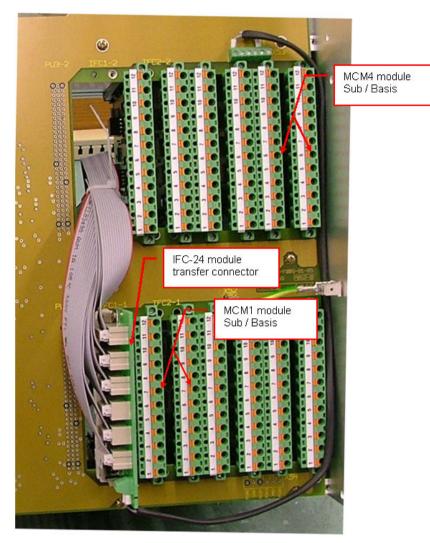
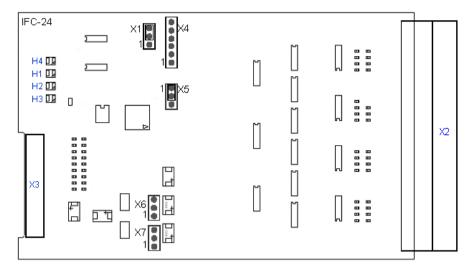




Figure 6-12 iSWT 3000 with the MCM functionality and an additional iSWT 3000 in mounting position 2

iSWT 1: integrated SWT 3000 in mounting position 1 iSWT 2: integrated SWT 3000 in mounting position 2




[scifc24m-071210-68.tif, 1, en

Figure 6-13 Position of the IFC-24 and MCM modules in the PowerLink system rear view

# 6.3.2 IFC-24 Module

# Displays



[tdifc24m-071210-69.tif, 1, en\_U

Figure 6-14 The IFC-24 module

The four LED (H1 to H4) on the IFC-24 module have the following signification

| Table 6-3 | Signification of the LED on the IFC-24 module |
|-----------|-----------------------------------------------|
|-----------|-----------------------------------------------|

| LED | Signification                       |  |  |
|-----|-------------------------------------|--|--|
| H1  | P12 Relay voltage ON                |  |  |
| H2  | P12 Relay voltage for module 3-4 ON |  |  |
| H3  | P12 Relay voltage for module 5-6 ON |  |  |
| H4  | Test mode                           |  |  |

# **Jumper Settings**

Table 6-4 Jui

Jumper settings on the IFC-24 module

| Jump<br>er | Position | Signification                                                                                                                                                                                                                                          |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X6         | 2-3*)    | The 12 V supply for the MCM modules 1 to 6 is carried out from the power supply (PS) PowerLink via the switched signal P12_R.                                                                                                                          |
| X6         | 2-Jan    | The 12 V supply for the MCM modules 1 to 2 is carried out from the power supply (PS)<br>PowerLink via the switched signal P12_R. The supply for the MCM modules 3 to 4 is<br>carried out from the power supply PS-MCM via the switched signal P12_M34. |
| X7         | 2-3*)    | The 12 V supply for the MCM modules 1 to 6 is carried out from the power supply (PS) PowerLink via the switched signal P12_R.                                                                                                                          |
| X7         | 2-Jan    | The 12 V supply for the MCM modules 1 to 2 is carried out from the power supply (PS)<br>PowerLink via the switched signal P12_R. The supply for the MCM modules 5 to 6 is<br>carried out from the power supply PS-MCM via the switched signal P12_M56. |

\*) default setting



# NOTE

X1 (Pos 2-3) and X5 (Pos 1-2), are only given for test purpose and may not be modified! X4 is used for programming purpose only

The connection of the IFC-24 module to the PU4 occurs via the 26 pin connector X3. The power supply of the IFC-24 with 5 V resp. 12 V is also conducted via this connector.

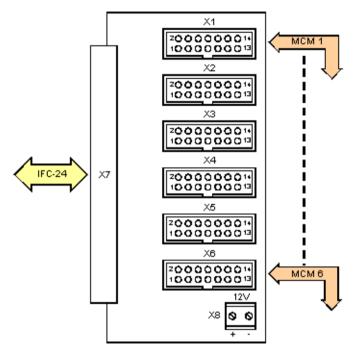
## Pin Assignment of the X2 Connector

| Pin | а           | b    | С    |
|-----|-------------|------|------|
| 1   | BA11        | BA12 | BA13 |
| 2   | BA14        | BE11 | BE12 |
| 3   | BE13        | BE14 | PD1  |
| 4   | P12_R       | VCC  | GND  |
| 5   | Test_N      |      |      |
| 6   | BA21        | BA22 | BA23 |
| 7   | BA24        | BE21 | BE22 |
| 8   | BE23        | BE24 | PD2  |
| 9   | P12_R       | VCC  | GND  |
| 10  | Test_N      |      |      |
| 11  | BA31        | BA32 | BA33 |
| 12  | BA34        | BE31 | BE32 |
| 13  | BE33        | BE34 | PD3  |
| 14  | P12_R       | VCC  | GND  |
| 15  | Test_N      |      |      |
| 16  | BA41        | BA42 | BA43 |
| 17  | BA44        | BE41 | BE42 |
| 18  | BE43        | BE44 | PD4  |
| 19  | P12_R       | VCC  | GND  |
| 20  | Test_N      |      |      |
| 21  | BA51        | BA52 | BA53 |
| 22  | BA54        | BE51 | BE52 |
| 23  | BE53        | BE54 | PD5  |
| 24  | P12_R       | VCC  | GND  |
| 25  | Test_N      |      |      |
| 26  | BA61        | BA62 | BA63 |
| 27  | BA64        | BE61 | BE62 |
| 28  | BE63        | BE64 | PD6  |
| 29  | P12_R       | VCC  | GND  |
| 30  | Test_N      |      |      |
| 31  | <br>P12_MCM | GND  |      |
| 32  | P12 MCM     | GND  |      |

Table 6-5Pin assignment of the IFC-24 connector X2

y = No. Binary input (1 to 4) y = No. Command output (1 to 4)

BA Command x = MCM module (1 to 6) output


PD Present detect signal (MCM existing)

BAxy

P12\_R12 V Relay voltageVCC5 V Power supplyTest NTest mode

# **Transfer Connector**

The connections from the IFC-24 to the MCM modules 1 to 6 are established by means of a transfer connector and 14 conductor ribbon cables.

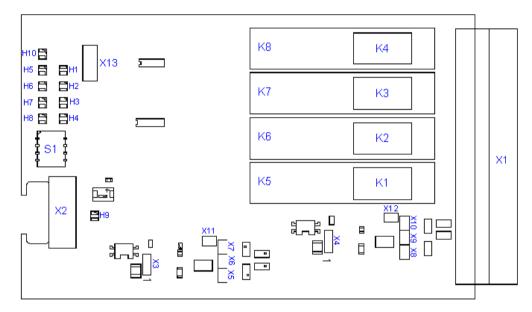


cdifcmcm-071210-70.tif, 1, en\_U

Figure 6-15 connector from the IFC-24 module to the MCM modules

Table 6-6 Assignment of the transfer connector, in brackets the 14 pin plug connectors X1 to 6

| Pin | а               | b                 | C                  |
|-----|-----------------|-------------------|--------------------|
| 32  | BA1_N (X1:1)    | BA2_N (X1:2)      | BA3_N (X1:3)       |
| 31  | BA4_N (X1:4)    | BE1 (X1:5)        | BE2 (X1:6)         |
| 30  | BE3 (X1:7)      | BE4 (X1:8)        | PD1_N (X1:9)       |
| 29  | P12_R (X1:10)   | <b>P5</b> (X1:11) | <b>GND</b> (X1:12) |
| 28  | TEST_N (X1:13)  |                   |                    |
| 27  | BA5_N (X2:1)    | BA6_N (X2:2)      | BA7_N (X2:3)       |
| 26  | BA8_N (X2:4)    | BE5 (X2:5)        | <b>BE6</b> (X2:6)  |
| 25  | BE7 (X2:7)      | BE8 (X2:8)        | PD2_N (X2:9)       |
| 24  | P12_R (X2:10)   | <b>P5</b> (X2:11) | <b>GND</b> (X2:12) |
| 23  | TEST_N (X2:13)  |                   |                    |
| 22  | BA9_N (X3:1)    | BA10_N (X3:2)     | BA11_N (X3:3)      |
| 21  | BA12_N (X3:4)   | BE9 (X3:5)        | BE10 (X3:6)        |
| 20  | BE11 (X3:7)     | BE12 (X3:8)       | PD3_N (X3:9)       |
| 19  | P12_M34 (X3:10) | <b>P5</b> (X3:11) | <b>GND</b> (X3:12) |
| 18  | TEST_N (X3:13)  |                   |                    |
| 17  | BA13_N (X4:1)   | BA14_N (X4:2)     | BA15_N (X4:3)      |
| 16  | BA16_N (X4:4)   | BE13 (X4:5)       | BE14 (X4:6)        |


| Pin | а               | b                     | C                   |
|-----|-----------------|-----------------------|---------------------|
| 15  | BE15 (X4:7)     | BE16 (X4:8)           | <b>PD4_N</b> (X4:9) |
| 14  | P12_M34 (X4:10) | P5 (X4:11)            | <b>GND</b> (X4:12)  |
| 13  | TEST_N (X4:13)  |                       |                     |
| 12  | BA17_N (X5:1)   | BA18_N (X5:2)         | BA19_N (X5:3)       |
| 11  | BA20_N (X5:4)   | BE17 (X5:5)           | BE18 (X5:6)         |
| 10  | BE19 (X5:7)     | BE20 (X5:8)           | PD5_N (X5:9)        |
| 9   | P12_M56 (X5:10) | <b>P5</b> (X5:11)     | <b>GND</b> (X5:12)  |
| 8   | TEST_N (X5:13)  |                       |                     |
| 7   | BA21_N (X6:1)   | BA22_N (X6:2)         | BA23_N (X6:3)       |
| 6   | BA24_N (X6:4)   | BE21 (X6:5)           | BE22 (X6:6)         |
| 5   | BE23 (X6:7)     | BE24 (X6:8)           | PD6_N (X6:9)        |
| 4   | P12_M56 (X6:10) | <b>P5</b> (X6:11)     | <b>GND</b> (X6:12)  |
| 3   | TEST_N (X6:13)  |                       |                     |
| 2   | P12_MCM (X8:1)  | GND_MCM (X8:2)        |                     |
| 1   | P12_MCM (X8:1)  | <b>GND_MCM</b> (X8:2) |                     |

# 6.4 IFC-MCM

# 6.4.1 Overview

The MCM module consists of a basis and a sub module which are connected with each other via a ribbon cable. The basis module has 2 binary inputs and 4 relay outputs. The sub module also has 2 binary inputs, however here 4 semi-conductor outputs are available.

# 6.4.2 MCM-Basis-Module



[tddspjmp-071210-71.tif, 1, en\_US]

Figure 6-16 Displays and jumper of the MCM - basis module

The input circuit for the protection commands was taken over from the IFC-D/P modules of the SWT 3000 without any modification. Therefore the same nominal input voltages selectable with jumpers are available. The setting options are shown in the table below.

| Binary input | 220 V          | 110 V         | 48/60 V       | 24 V           |
|--------------|----------------|---------------|---------------|----------------|
| BE1          | X11 = inserted | X11 = open    | X11 = open    | X11 = open     |
|              | X5 = open      |               | X5 = open     | X5 = open      |
|              | X6 = open      | X5 = inserted |               | X6 = open      |
|              | X7 = open      | X6 = open     | X6 = inserted | X7 = inserted  |
|              | open           | X7 = open     | X7 = open     |                |
| BE2          | X12 = inserted | X12 = open    | X12 = open    | X12 = open     |
|              | X8 = open      |               | X8 = open     | X8 = open      |
|              | X9 = open      | X8 = inserted |               | X9 = open      |
|              | X10 = open     | X9 = open     | X9 = inserted | X10 = inserted |
|              |                | X10 = open    | X10 = open    |                |

Table 6-7Selection of the nominal input voltage for the MCM - basis module

Additionally a hardware debounce time can be adjusted for each binary input. The jumper settings are shown in the table below.

| Table 6-8 | Selection | of the HW | debounce time |
|-----------|-----------|-----------|---------------|
| Table 0-0 | Selection | of the HW | depounce time |

| Binary<br>input | HW debounce time 0.6 ms | HW debounce time 1 ms |
|-----------------|-------------------------|-----------------------|
| BE1             | X3 Pos. 1-2 *)          | X3 Pos. 2-3           |
| BE2             | X4 Pos. 1-2 *)          | X4 Pos. 2-3           |

\*) default setting

#### Displays

The LED H1 up to H10 have the following signification:

# Table 6-9Signification of the LED H1 up to H10 on the MCM basis module

| LED | Color                          | Signification             |  |  |
|-----|--------------------------------|---------------------------|--|--|
| H1  | Green                          | Binary input 1 activated  |  |  |
| H2  | Green Binary input 2 activated |                           |  |  |
| H3  | Green                          | Binary input 3 activated  |  |  |
| H4  | Green Binary input 4 activated |                           |  |  |
| H5  | Red                            | Binary output 1 activated |  |  |
| H6  | Red                            | Binary output 2 activated |  |  |
| H7  | Red                            | Binary output 3 activated |  |  |
| H8  | Red                            | Binary output 4 activated |  |  |
| H9  | Green                          | P12 V existing            |  |  |
| H10 | Red                            | Test mode                 |  |  |

## Test Mode

With the adjustment Test mode <IFC-Test> in the service program, it is possible to switch over into the test mode. In this operating mode commands can be activated on the MCM module by means of the DIL switches \$1.1 up to \$1.4 for each binary input. The activated test mode is indicated with the LED H10 "red".

# i

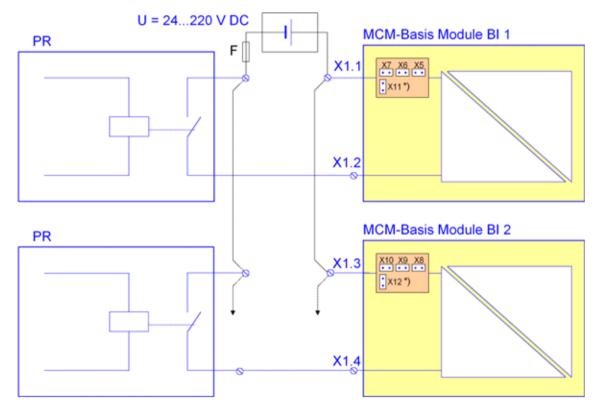
# NOTE

For security reasons all inputs are reported from the controller as "Off" independent from the actual switch position after switching over into the test mode. The "On" condition can be achieved only by turning all switches into the "**Open**" position and after that into the "Close" position.

# Connector Assignment of the MCM Basis Module

The assignment of the 12-pol power connector X1 is shown in the table below:

| Pin | Signal name | Signification  |
|-----|-------------|----------------|
| 1   | BEX1_A *)   | Binary input 1 |
| 2   | BEX1_B      |                |
| 3   | BEX2_A      | Binary input 2 |
| 4   | BEX2_B      |                |
| 5   | BAX1_A      | Relay output 1 |
| 6   | BAX1_B      |                |
| 7   | BAX2_A      | Relay output 2 |
| 8   | BAX2_B      |                |
| 9   | BAX3_A      | Relay output 3 |


Table 6-10Connector assignment of the MCM - basis module

| Pin | Signal name | Signification  |  |
|-----|-------------|----------------|--|
| 10  | BAX3_B      |                |  |
| 11  | BAX4_A      | Relay output 4 |  |
| 12  | BAX4_B      |                |  |

\*) X = 1 to 6

## **Connection of the Protection Relay**

The connection principle of the protection relay to the MCM basis module is shown in the figure below:

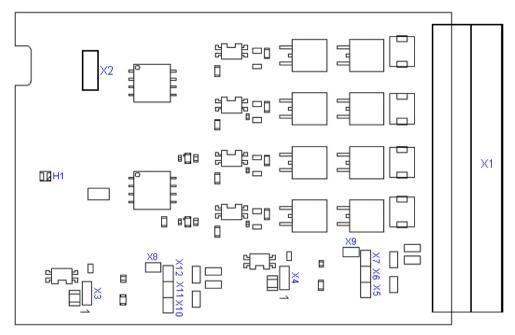


[cdconprc-071210-72.tif, 1, en\_US]

Figure 6-17 Connection principle of the MCM - basis module

PR protection relay contact

F fuse


\*) default setting of the MCM jumper

In order to avoid interference on the cables between the protection relays and the interface cards we strongly recommend the following measures:

- Use shielded cables. Usually the cable shield should be grounded on both ends. However if the cables are very long and the ground potentials at both ends of the cable are different, it is advisable to ground the shield only on one cable end (preferably at the PLC side) to avoid high transients in case of short circuit currents.
- Use twisted pair wires.
- Avoid parallel laying with power cables in the same duct.
- Cable shall be min. 2 kV proved screen/wire/ and wire/wire.

We recommend the distance between the protection relay and the SWT 3000 as short as possible. The typical distance is about 30 m. However also distances of up to 300 m are in service without problems.

# 6.4.3 MCM-Sub-Module



Ítddspips-071210-73.tif. 1. en U

Figure 6-18 Displays and jumper of the MCM - Sub Module

The nominal voltage for the binary inputs can be adjusted with jumpers. The setting options are shown in the table below.

| Binary input | 220 V         | 110 V          | 48/60 V        | 24 V           |
|--------------|---------------|----------------|----------------|----------------|
| BE3          | X8 =inserted  | X8 = open      | X8 = open      | X8 = open      |
|              | X10 = open    |                | X10 = open     | X10 = open     |
|              | X11 = open    | X10 = inserted |                | X11 = open     |
|              | X12 = open    | X11 = open     | X11 = inserted | X12 = inserted |
|              |               | X12 = open     | X12 = open     |                |
| BE4          | X9 = inserted | X9 = open      | X9 = open      | X9 = open      |
|              | X5 = open     |                | X5 = open      | X5 = open      |
|              | X6 = open     | X5 = inserted  |                | X6 = open      |
|              | X7 = open     | X6 = open      | X6 = inserted  | X7 = inserted  |
|              |               | X7 = open      | X7 = open      |                |

 Table 6-11
 Selection of the nominal input voltage for the MCM - Sub Module

Additionally a hardware debounce time can be adjusted for each binary input. The jumper settings are shown in the table below.

Table 6-12Selection of the HW debounce time

| Binary<br>input | HW debounce time 0.6 ms | HW debounce time 1 ms |
|-----------------|-------------------------|-----------------------|
| BE3             | X3 Pos. 1-2 *)          | X3 Pos. 2-3           |
| BE4             | X4 Pos. 1-2 *)          | X4 Pos. 2-3           |

\*) default setting

# Displays

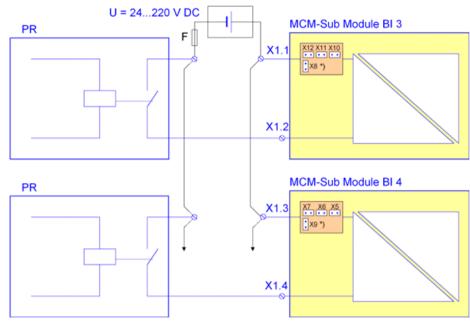
The LED H1 has the following signification

| Table 6-13 | Signification of the LED H1 on the MCM - Sub Module  |
|------------|------------------------------------------------------|
|            | Signification of the LED HT off the MCM - Sub Module |

| LED | Color | Signification  |
|-----|-------|----------------|
| H1  | Green | P12 V existing |

#### Connector Assignment of the MCM Sub-Module

The assignment of the 12-pol power connector X1 is shown in the table below


| Table 6-14 C | Connector | assignment | of the N  | 1CM - Sub | Module |
|--------------|-----------|------------|-----------|-----------|--------|
| Table 6-14 ( | Lonnector | assignment | of the lv | 1CIVI - 3 | au     |

| Pin | Signal name | Signification           |
|-----|-------------|-------------------------|
| 1   | BEX3_A *)   | Binary input 3          |
| 2   | BEX3_B      |                         |
| 3   | BEX4_A      | Binary input 4          |
| 4   | BEX4_B      |                         |
| 5   | BAX1_A      | Semi-conductor output 1 |
| 6   | BAX1_B      |                         |
| 7   | BAX2_A      | Semi-conductor output 2 |
| 8   | BAX2_B      |                         |
| 9   | BAX3_A      | Semi-conductor output 3 |
| 10  | BAX3_B      |                         |
| 11  | BAX4_A      | Semi-conductor output 4 |
| 12  | BAX4_B      |                         |

\*) X = 1 to 6

### **Connection of the Protection Relay**

The connection principle of the protection relay to the MCM sub module is shown in the figure below. Please refer also to the recommended measures in the section*Connection of the Protection Relay* 



[cdcprmsm-071210-74.tif, 1, e

Figure 6-19 Connection principle of the MCM - Sub Module

- PR protection relay contact
- F fuse
- \*) default setting of the MCM jumper

# 6.5 Equipment Configuration

# 6.5.1 MCM Transmission with Voice

## System configuration

The module for connecting the voice channel is selected with VFx-1. For the iSWT the connection via CSPi has to be selected.



# NOTE

For detailed information concerning the VFx modules and settings for the voice transmission refer to Chapter *Commissioning* in this manual.

### **HF** configuration

In the HF configuration form the HF-bandwidth, the frequency grid, the transmit resp. receive frequency and the frequency order has to be defined.



# NOTE

For detailed information refer to Chapter Commissioning in this manual.

### MCM service configuration

In the PowerLink service configuration form first the type of the voice channel E&M, subscriber resp. office (depending on the VFx module) has to be defined in service 1.

Then the AMP mode with the integrated iSWT 3000 in position A (iSWT1) has to be selected. For the MCM transmission the **F6 guard must be 3810 Hz**. After that the frequency variant for the MCM transmission mode VF40FX\_M6 is available and has to be configured.

| F2 E&M 🔻 🗌             | SERTEL                            | RM             |                                |
|------------------------|-----------------------------------|----------------|--------------------------------|
| I/O select<br>VFM-1/P1 | Input level                       | Output level   | el Bandwidth<br>dB 0300-3600 🗡 |
| 2 wire switch          | <ul> <li>4 wire switch</li> </ul> |                | MCM settings<br>for the iSWT1  |
| I/O select<br>iSWT1    | Variant<br>VF40FX_M6              | Bandwi<br>3540 | vidth                          |
| O Guard 2615 F         | Hz 🧿 Guard 3                      | 3810 Hz        |                                |
|                        |                                   |                |                                |

\_\_example\_mcm\_voice, 1

Figure 6-20 Service configuration for the MCM transmission with voice (example)

#### System configuration of the iSWT 3000

For the MCM function the operation mode 6 has to be adjusted. Using an analog equipment the frequency variant VF40FX\_M6 must be used.

6.5 Equipment Configuration

## iSWT 30000 configuration interface

| Interface          |                                                              |
|--------------------|--------------------------------------------------------------|
| IFC-1              | IFC-24                                                       |
| IFC-2              | 6 Modules 🗸 🗸                                                |
| IFC-3<br>IFC-4     | 1 Module<br>2 Modules<br>3 Modules<br>4 Modules<br>5 Modules |
| Special allocation | 6 Modules                                                    |
| Test mode          | Off 🔹                                                        |

#### [sc\_example\_iswt\_mcm\_interface, 1, --

Figure 6-21 Interface configuration for the iSWT 3000 with MCM-Function

In this form the interface modules have to be configured. For the MCM function the IFC1 type must be IFC-24. The number of IFC-MCM modules depends on the number of commands which have to be transmitted. Max. 6 modules can be set.

Also the enabling of the function Supervision Command is done within this form.



# NOTE

Inputs of additional configured MCM modules are not automatically enabled and must be enabled manually because the priority has to be selected!

In case of enabling Supervision Command the last available command is automatically fixed to priority 24.

#### Input configuration

In the input configuration form the available inputs have to be enabled and the assignment of the inputs to the individual priority stage is carried out. For each priority stage **only one** input can be assigned. With selecting the default button an one-to-one assignment is set.

With selecting the dear button all assigned priority stages are cleared.

In case of using Supervision Command, the fixed priority of the Supervision Command is not cleared.

| Input | Enable | Prio | Invert | Input | Enable | Prio   | Invert | Input | Enable | Prio     | Invert |
|-------|--------|------|--------|-------|--------|--------|--------|-------|--------|----------|--------|
| (1)   |        | 1 🔻  |        | (9)   |        | 9 🔻    |        | (17)  |        | 17 🔻     |        |
| (2)   |        | 2 🔻  |        | (10)  |        | 10 🔻   |        | (18)  |        | 17       |        |
| (3)   |        | 3 🔻  |        | (11)  |        | 11 🛛 🛨 |        | (19)  |        | 18<br>19 |        |
| (4)   |        | 4 🔻  |        | (12)  |        | 12 🔻   |        | (20)  |        | 20<br>21 |        |
| (5)   |        | 5 🔻  |        | (13)  |        | 13 🔻   |        | (21)  |        | 22<br>23 |        |
| (6)   |        | 6 🔻  |        | (14)  |        | 14 🗡   |        | (22)  |        | 24       |        |
| (7)   |        | 7 🗸  |        | (15)  |        | 15 🔶   |        | (23)  |        |          |        |
| (8)   |        | 8 🔻  |        | (16)  |        | 16 🔻   |        | (24)  |        |          |        |

Figure 6-22

2 Priority selection for the command inputs

#### Timer configuration for command input

In the MCM mode the adjustment for the limitation of input commands as well as the adjustment for the input command extension is not adjustable because the duration of the command transmission is fixed to 50 ms.

#### **Pulse Suppression**

With Command Input-2 a pulse suppression in the range 0 to 100 ms in steps of 1 ms can be adjusted for each released binary input.

#### **Output Allocation**

In the **operation mode 6 MCM** it is possible to assign each trip frequency to **one** command output (Output 1 up to Output 24 depending on the number of MCM modules) on the receive side. A **predefined** assignment can be loaded with **<Default>**. All settings are deleted with **<Clear>**.

| Cmd | Connect | Output | Cmd  | Connect | Output | Cmd  | Connect | Output |
|-----|---------|--------|------|---------|--------|------|---------|--------|
| (1) |         | 1 🔻    | (9)  |         | 9 🔻    | (17) |         | 17 🔻   |
| (2) |         | 2 🔻    | (10) |         | 10 🔻   | (18) |         | 18 🔻   |
| (3) |         | 3 🔻    | (11) |         | 11 🗡   | (19) |         | 19 🔻   |
| (4) |         | 4 🔻    | (12) |         | 12 🔻   | (20) |         | 20 🔻   |
| (5) |         | 5 🔻    | (13) |         | 13 🔻   | (21) |         | 21 🔻   |
| (6) |         | 6 🔻    | (14) |         | 14 🔻   | (22) |         | 22 🔻   |
| (7) |         | 7 🔻    | (15) |         | 15 🔻   | (23) |         | 23 🔻   |
| (8) |         | 8 🔻    | (16) |         | 16 🔻   | (24) |         | 24 🔻   |

Figure 6-23 iSWT 3000 output selection for the MCM function

#### Limitation of Command Output

The limitation of command output is in the MCM function not available.

#### **Output Command Extension**

At receive side:

- Each MCM command output time can be extended individually in the range from 0 up to 500 ms in steps of 5 ms
- The Supervision Command output time can be extended in the range from 0 up to 2000 ms, also in steps of 5 ms.

The output duration for a command at the receive side is equal to the transmission time plus the output extension time.

Each command output time can be extended in the range from 0 up to 500 ms in steps of 5 ms.

#### Setting Options for the iSWT 3000 <Timer Configuration>

| Table 6-15 | Settings of the SWT 3000 | timer configuration |
|------------|--------------------------|---------------------|
|            |                          |                     |

| Selection                      | Settings | Remarks                                                 |
|--------------------------------|----------|---------------------------------------------------------|
| Duration of unblocking impulse |          | Note: This function is not adjustable for the MCM mode! |
| Delay of unblocking impulse    |          | Note: This function is not adjustable for the MCM mode! |

6.5 Equipment Configuration

| Selection                                                                                                       | Settings                       | Remarks                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delay of receiver alarm                                                                                         | 0 to 2000 ms in steps of 50 ms | Delay time before output of the receiver alarm via relay.                                                                                                                                                                                                                                                                   |
| Delay of S/N alarm                                                                                              | 0 to 2000 ms in steps of 50 ms | Delay time before output of the S/N alarm via relay.                                                                                                                                                                                                                                                                        |
| Transmit Duration (Only when<br>switching functions in the<br>system configuration or MCM<br>is parameterized.) | 50 to 100 ms in steps of 5 ms  | Transmission time of each activated single command.                                                                                                                                                                                                                                                                         |
| Supervision duration of trans-<br>mission                                                                       | 5 to 30 s in steps of 1 s      | Supervision time for the transmission of<br>all MCM commands in the transmit buffer.<br>Exceeding the adjusted value is causing Tx<br>alarm and switches the transmission back<br>from command transmission to normal<br>operation. The Supervision Command trans-<br>mission time is not included in this evalua-<br>tion. |
| Limit of Supervision command                                                                                    | 0 to 15 s in steps of 1 s      | Supervision time for the transmission of<br>the Supervision Command. Exceeding the<br>adjusted value is causing an non-urgent<br>alarm. If the option "Blocking Outputs<br>on Limit of Supervision Command" is<br>active, the transmission of the Supervision<br>Command is also stopped. 0 means no limi-<br>tation.       |

# Setting Options for the iSWT 3000 <Alarms>

| Alarm control                                    |                       |    |
|--------------------------------------------------|-----------------------|----|
| Threshold for receiver alarm                     | -20                   | dB |
| Threshold for S/N alarm                          | 15                    | dB |
| S/N-Time                                         | 3                     | S  |
| Force receiver alarm on S/N and/or BE alarm      |                       |    |
| Blocking outputs on S/N and/or BE alarm          |                       |    |
| Blocking outputs on limit of supervision command |                       |    |
| Switch NU-Relay on GAL                           |                       |    |
| Alarm output RXALR used for                      | Receiver alarm(RXALR) | ▼  |
| Disable auto reset                               |                       |    |
| Auto reset delay                                 | 0                     | s  |



Figure 6-24 The iSWT 3000 alarm settings

| Selection                                                         | Setting options                  | Comments                                                                                                                                                                    |
|-------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Threshold for receive level alarm                                 | -30 to -10 dB in steps of 5 dB   | When the PU4 input level drops about the adjusted value, this is causing receive alarm                                                                                      |
| Threshold for S/N alarm                                           | -20 to -10 dB in steps of 5 dB   | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| S/N Time                                                          | 1 up to 30 sec in steps of 1 sec | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| Force receiver alarm on S/N<br>and/or BE alarm                    |                                  | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| Blocking outputs on S/N and/or<br>BE alarm                        |                                  | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| Blocking outputs on Limit of<br>Super-vision Command              | Ø                                | In addition to the non urgent alarm caused<br>by exceeding the adjusted value of Supervi-<br>sion Command the transmission of the of<br>the Supervision Command is stopped. |
|                                                                   |                                  | Supervision Command transmission not influenced by the Limit of Supervision Command.                                                                                        |
| Switch NU-Relays on GAL                                           |                                  | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| Alarm output EALR used for                                        | Receive Alarm (EALR)             | Default setting                                                                                                                                                             |
| The output EALR can be allo-<br>cated to an alarm output in the   | unblocking (UNBL)                | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| alarm configuration (refer to chapter <i>Commissioning, Alarm</i> |                                  | Note: This function is not adjustable for the MCM mode!                                                                                                                     |
| Relays).                                                          | input limitation alarm (INPLIM)  | Limit of Supervision Command alarm given to the alarm relay                                                                                                                 |

| Table C 1C | Catting antions for the SCNT 2000 plarm cattings |
|------------|--------------------------------------------------|
| Table 6-16 | Setting options for the iSWT 3000 alarm settings |
|            |                                                  |

# 6.5.2 MCM Transmission with Data Pump

#### System Configuration

MCM transmission with the Data Pump doesn't require a VFx module. Therefore only the iSWT 3000, the ALR module(s) and the PLPA have to be adjusted in the system configuration.

### **HF** Configuration

In the HF configuration form the HF-bandwidth, the frequency grid, the transmit resp. receive frequency and the frequency order has to be defined.



# NOTE

For detailed information refer to Chapter Commissioning.

#### Service Configuration MCM with Data Pump

In the PowerLink service configuration form the Data Pump (DP) has to be defined in service 1. MCM is available for the Data Pump bandwidth 3.5 kHz and 7.5 kHz.

The AMP mode with the integrated iSWT 3000 in position A (iSWT 3000-1) has to be selected. For the MCM transmission the VF01DP\_M6 variant has to be configured for the DP bandwidths 3.5 kHz resp. VF02DP\_M6 for the DP bandwidth 7.5 kHz.

6.5 Equipment Configuration

| DP 🔻             | SERTEL            | RM                 |       |               |      |  |
|------------------|-------------------|--------------------|-------|---------------|------|--|
| Interface        | X.21-DP           |                    |       | -             |      |  |
| Sync-Mode        | adapted           |                    |       | •             |      |  |
| DP-Mode          | Slave             |                    |       | •             |      |  |
| Bandwidth        | 3500 Hz           |                    |       | -             |      |  |
| Primary datarate | 9600              |                    |       | Bit/s         |      |  |
| ,                |                   |                    |       |               |      |  |
| Expected SNR     | 46 dB             | Max bitrate        | 34800 |               |      |  |
|                  | X.21-DP clock mod | le DCE             |       |               |      |  |
|                  | AMP               |                    |       |               |      |  |
|                  | I/O select        | Variar<br>VF01DP_M |       | Bandw<br>3540 | idth |  |
|                  |                   |                    |       |               |      |  |
|                  |                   |                    |       |               |      |  |



# i

The further settings for the Data Pump are described in chapter Commissioning.

# System Configuration of the iSWT 3000

NOTE

The settings for the iSWT 3000 configuration are the same like described for the transmission with a voice channel (refer to *System Configuration of the iSWT*) except for the frequency variant which has to be adjusted to VF01DP\_M6 for the DP bandwidths 3.5 kHz resp. VF02DP\_M6 for the DP bandwidth 7.5 kHz.

# 6.5.3 Measuring Mode M6 Meas

Using the VF40X\_M6 resp. VF0xDP\_M6 frequency variant, the guard of the iSWT 3000 is not transmitted. A trip frequency is only transmitted for 50 ms when a binary input is energized.

For the purpose of level measurement it is possible to switch the guard resp. each trip frequency of the iSWT 3000 to boost operation by selecting the corresponding M6 measuring mode (M6 Meas) in the PowerLink For the purpose of level measurement it is possible to switch the guard resp. each trip frequency of the iSWT to boost operation by selecting the corresponding M6 measuring mode (M6 Meas) in <**iSWT-x - Test**> form shown in the figure below.

| General        | Command input<br>test |                               |         |           |
|----------------|-----------------------|-------------------------------|---------|-----------|
|                |                       |                               |         |           |
|                | Line select           | <ul> <li>Automatic</li> </ul> | Primary | Secondary |
|                | LID / FOM loop        | All loops off                 |         |           |
|                |                       |                               |         |           |
| A              | MP measurement mode   | off                           |         | •         |
|                |                       | off<br>f1_boost               |         | <u>^</u>  |
| ommand transmi | ssion time mesurement | f2_boost                      |         |           |
|                |                       | f3_boost<br>f4_boost          |         |           |
|                | Test mode             | f5_boost                      |         |           |
|                |                       | f6_boost<br>f7_boost          |         |           |
|                | Reset SNMPv3 key      | f8_boost                      |         |           |
|                |                       | f9_boost                      |         |           |
|                |                       | f10_boost<br>f11_boost        |         |           |
|                | Reset device          | f12_boost                     |         |           |
|                |                       | f13_boost<br>f14_boost        |         |           |
|                | Clear device setting  | f15_boost                     |         |           |
|                | olour dolloo ootalig  | f16_boost                     |         |           |
|                |                       | f17_boost                     |         |           |
|                |                       | f18_boost                     |         |           |

#### sc\_mm\_trip\_frequencies, 1, --\_-

Figure 6-26 Selecting the trip frequencies for the measuring mode



# NOTE

To prevent an unintended command output at the remote station, the PowerLink equipment must be connected to the dummy load when operating the measuring mode of the **trip** frequencies.

The corresponding trip frequencies and its transmit levels are displayed in <Service>.



# NOTE

The frequencies can be measured **only** in the HF range at the CSPi resp. PLPA output!

## MCM Function

6.5 Equipment Configuration

| System pilot (-) 795 | 10 Hz -23 | 0.0 dB System pilot(+) | 79570 Hz  | -23.0 dB      |              |
|----------------------|-----------|------------------------|-----------|---------------|--------------|
| Service 1            | Service 2 | Service 3              | Service 4 |               |              |
| F2 E&M               | VF-Input  | VF-Level               | HF (Tx)   | HF-Level CSPi | HF-Level Out |
|                      | 800 Hz    | -3.5 dB                | 76560 Hz  | -23.0 dB      | 27.5 dB      |
| PILOT -              |           |                        | 79510 Hz  | -23.0 dB      | 27.5 dB      |
| PILOT +              |           |                        | 79570 Hz  | -23.0 dB      | 27.5 dB      |
| int.F6               | VF40FX_M6 |                        |           |               |              |
| Guard:               | 3789 Hz   |                        | 79570 Hz  | -23.0 dB      | 27.5 dB      |
| Fs:                  | 475 Hz    |                        | 76256 Hz  | -17.0 dB      | 33.5 dB      |
| F1:                  | 3506 Hz   |                        | 79287 Hz  | -17.0 dB      | 33.5 dB      |
| F2:                  | 3380 Hz   |                        | 79161 Hz  | -17.0 dB      | 33.5 dB      |
| F3:                  | 3254 Hz   |                        | 79035 Hz  | -17.0 dB      | 33.5 dB      |
| F4:                  | 3127 Hz   |                        | 78908 Hz  | -17.0 dB      | 33.5 dB      |
| F5:                  | 3001 Hz   |                        | 78782 Hz  | -17.0 dB      | 33.5 dB      |
| F6:                  | 2875 Hz   |                        | 78656 Hz  | -17.0 dB      | 33.5 dB      |
| F7:                  | 2748 Hz   |                        | 78529 Hz  | -17.0 dB      | 33.5 dB      |

[sc\_example\_mcm\_trip\_amp\_voice, 1, --\_--

Figure 6-27 Example of the MCM trip frequencies in the AMP operation with voice

# 6.6 MCM 32

# 6.6.1 MCM 32 in 4 kHz bandwidth

The MCM multi command mode supports up to 32 tele-protection commands via 2 iSWT units operating in alternative multi purpose of same F2 or DP service. The major features if MCM 32 enabled:

- 24 Emergency automation signals from iSWT-1 with Mode 6
- 8 Relay protection commands from iSWT-2 with Mode 7a
- Mode 7a uses coded tripping frequency for up to 8 independent commands
- Mode 6 uses un-coded tripping frequency for up to 24 priority commands
- Both iSWT units share the same HF bandwidth, and Mode 7a has higher priority to interrupt the transmission of Mode 6

The guard signal will be transmitted for at least 50 ms after a mode 7a command transmission.

• F2 or DP service data are interrupted for a short period of command transmission

Example configurations for MCM 32 in F2 or DP service:

| I/O select       | Input level                      | Out       | put level | Bandwid   | ith |
|------------------|----------------------------------|-----------|-----------|-----------|-----|
| VFM-3/P1 🗸       | -14.0                            | dB 4.0    | dB        | 0300-2040 | •   |
| 2 wire switch    | <ul> <li>4 wire switc</li> </ul> | h         |           |           |     |
| AMP              |                                  |           |           |           |     |
|                  |                                  |           |           |           |     |
| I/O select       | Varian                           | t         | Bandwidth |           |     |
| iSWT1 🗸          | VF40FX_M6                        | 3540      |           |           |     |
| Guard: 2615 H    | Hz 🧿 Guard                       | : 3810 Hz |           |           |     |
|                  |                                  |           |           |           |     |
| MCM 32 in 4kHz t | andwidth                         |           |           |           |     |
| I/O select       | Variant                          | E         | Bandwidth |           |     |
|                  | VF40F2_CT_I                      | PL 3540   |           |           |     |
| iSWT2            | VF40FZ_01_1                      | 5040      |           |           |     |

[sc\_mcm32\_example, 1, --\_--]

|              | MCM 32 in F2    | MCM 32 in DP |  |  |  |  |
|--------------|-----------------|--------------|--|--|--|--|
| System       |                 |              |  |  |  |  |
| iSWT-1       | via CSPi        |              |  |  |  |  |
| iSWT-2       | via CSPi or FOM |              |  |  |  |  |
| HF           |                 |              |  |  |  |  |
| HF bandwidth | 4 kHz           |              |  |  |  |  |

|                         | MCM 32 in F2             | MCM 32 in DP |  |  |
|-------------------------|--------------------------|--------------|--|--|
| Service                 |                          |              |  |  |
| Service type 1          | F2                       | DP           |  |  |
| AMP                     | Checked                  | Checked      |  |  |
| I/O select              | iSWT-1                   |              |  |  |
| Guard                   | 3810 Hz                  |              |  |  |
| Variant                 | VF40FX_M6                | VF01DP_M6    |  |  |
| MCM in 32 kHz bandwidth | Checked                  |              |  |  |
| I/O select              | iSWT-2                   | iSWT-2       |  |  |
| Variant                 | VF40F2_CT_PL             | VF40_CT_PL   |  |  |
| Service type 4          | Occupied to store iSWT-2 | 2 unit data  |  |  |
|                         | iSWT-1                   |              |  |  |
| Operation mode          | Mode 6 (MCM)             |              |  |  |
| IFC-1                   | IFC-24                   |              |  |  |
| IFC-2                   | 6 Modules                |              |  |  |
|                         | iSWT-2                   |              |  |  |
| Operation mode          | Mode 7a (8iC)            |              |  |  |
| IFC-1                   | IFC-D/P                  |              |  |  |
| IFC-2                   | IFC-D/P                  |              |  |  |

The service type 4 is occupied to store iSWT-2 unit data and cannot be configured for other service. In the service information view, Mode 7a command frequency and leveling are displayed in service 4.

# 7 Planning Guide

| 7.1 | Overview                                   | 496 |
|-----|--------------------------------------------|-----|
| 7.2 | Frequency Planning                         | 497 |
| 7.3 | Transmission Range                         | 504 |
| 7.4 | Planning Examples                          | 507 |
| 7.5 | PowerCalc_xx_xx.xls                        | 514 |
| 7.6 | Examples of Using the vMUX and StationLink | 522 |

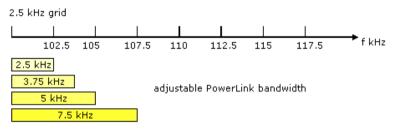
# 7.1 Overview

The instruction provides information for the sales department planning PowerLink connections with the following topics:

- Frequency planning
- Transmission range
- HF bandwidth
- Services transmitted in the PowerLink
- Noise level and calculation of the signal to noise ratio (SNR)

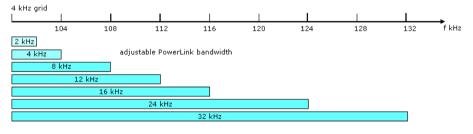
2 examples for a PowerLink with digital resp. analog interfaces show step by step the power calculation and the calculation of the SNR.

In a final step the program **PowerCalc\_xx\_xx.xls**, part of the PowerSys software package, is introduced including an operating instruction and calculating examples.


# 7.2 Frequency Planning

# 7.2.1 General Information

The utilizable frequency range for the carrier transmission over high voltage lines (PLC) is from 24 kHz to 1000 kHz. In many countries due to various conditions, certain frequency ranges are reserved for air traffic control, shipping radio service etc.

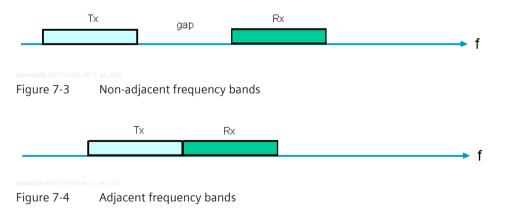

The frequency range is subdivided in frequency spaces with gross bandwidth B of 2.5 kHz or 4 kHz. At the occupancy of frequency spaces only gross bandwidth of 2.5 resp. 4 kHz or multiple of that may be used.

# **HF Bandwidth**



[dwadjb2k-031210-01.tif, 1, en\_US

Figure 7-1 Adjustable bandwidth for the 2.5-kHz grid




[dwadjb4g-031210-01.tif, 1, en\_US]

Figure 7-2 Adjustable bandwidth for the 4-kHz grid

# Adjacent or Non-Adjacent Bands

Depending on the frequency gap between the Tx and Rx frequency band, this is considered as an adjacent or non-adjacent transmission.



# 7.2.2 Frequency Plan

The frequency plan determines the proper frequency allocation for each PLC link in the frequency scheme to avoid cross talk between any PLC links installed in the network. Cross talk affects speech, data, and protection signaling signals.

# 7.2.3 Planning Rules

## Minimum Space Within the Same Terminal

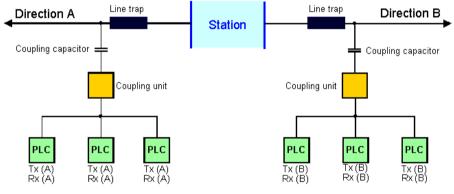

In principle the space between the Tx and Rx band is free selectable. However it is recommended to select non adjacent. If this is not possible, use adjacent mode without any space. For more details about adjacent and non- adjacent mode refer to chapter *Commissioning*.

Table 7-1Min. space between Tx and Rx bands within the same terminal

| PowerLink                      |        |         |  |
|--------------------------------|--------|---------|--|
|                                | analog | digital |  |
| Tx-Rx within the same terminal |        |         |  |
| adjacent band                  | 0      | 0       |  |
| spaced band                    | ≥1 x B | ≥1 x B  |  |

B = HF Bandwidth

#### Minimum Space Between Terminals on the Same Line



[cdplcsys-061210-01.tif, 1, en\_L

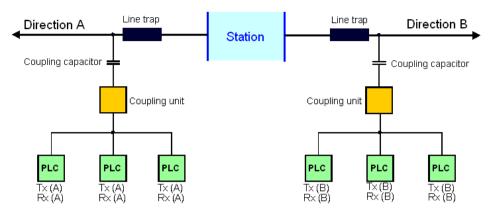
Figure 7-5 PLC systems using the same or different directions

Tx(A) / Rx(A) = PLC Transmitter / Receiver in direction A Tx(B) / Rx(B) = PLC Transmitter / Receiver in direction B

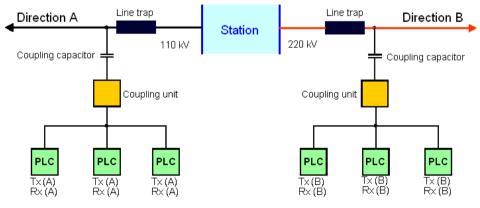
# Table 7-2Min. space between Tx and Tx bands for PLC systems using the same line

|                                     | Ром    | PowerLink |  |
|-------------------------------------|--------|-----------|--|
|                                     | analog | digital   |  |
| Parallel terminals on the same line |        |           |  |
| Tx (A) - Tx (A)                     | 8 kHz  | 8 kHz     |  |
| Tx (A) – Rx (A)                     | 8 kHz  | 8 kHz     |  |
| Rx (A) – Rx (A)                     | 8 kHz  | 8 kHz     |  |

# Minimum Space Between Terminals Using Lines in Different Directions







Figure 7-6 PLC systems using the same or different directions

Digital PLC requires special attention for frequency planning, because it utilizes the bandwidth closer to the band limits

Table 7-3 Min. gap between Tx and Tx bands for PLC systems using lines in different directions

| PowerLink                                          |             |                |  |  |
|----------------------------------------------------|-------------|----------------|--|--|
|                                                    | analog      | digital        |  |  |
| Same stations line in different directions         | S           |                |  |  |
| Tx (A) – Tx (B)                                    | 0 kHz       | 4 kHz          |  |  |
| Tx (A) – Rx (B)                                    | 0 kHz       | 4 kHz          |  |  |
| Rx (A) – Rx (B)                                    | 0 kHz       | 4 kHz          |  |  |
| When analog and digital PLC's are mixed, supersede | the rules f | or digital PLC |  |  |

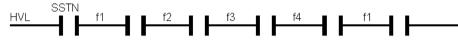
# Minimum Space Between Terminals Using Lines in Different Directions and Different Voltage Levels



csy3-061210-01.tif, 1, en l

Figure 7-7 PLC systems using the same or different directions and voltage levels

Table 7-4 Min. space between Tx and Rx bands for PLC systems using different voltage levels

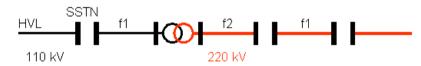

|                                       | PowerLink |         |
|---------------------------------------|-----------|---------|
|                                       | analog    | digital |
| Same station different voltage levels |           |         |

|                               | PowerLink |       |
|-------------------------------|-----------|-------|
| Lines in different directions |           |       |
| Tx (A) – Tx (B)               | 0 kHz     | 0 kHz |
| Tx (A) – Rx (B)               | 0 kHz     | 0 kHz |
| Rx (A) – Rx (B)               | 0 kHz     | 0 kHz |

### **Re-use of Frequencies**

Digital PLC requires special attention for frequency planning, because it utilizes the bandwidth closer to the band limits. Therefore interference from neighboring PLC's have direct impact in the SNR which consequently reduces the transmission capacity.

Due to the same reason for digital PLC links not only 2 adjacent line sections - as in most cases sufficient for analog PLC links (except for very short lines) - but also the 3rd line section has to be considered when re-using a carrier frequency. Very short line sections do not count in full.




[dwrucf3l-061210-01.tif, 1, en\_U

Figure 7-8 Re-use of the carrier frequency f1 after three line sections

| HVL      | High voltage line   |
|----------|---------------------|
| SSTN     | Sub station         |
| f1 to f4 | carrier frequencies |

In terms of frequency planning a change of the voltage level, for example from 110 kV to 220 kV, is considered like 2 line sections (see figure below). In this case the same frequency can be re-used after 1 line section.



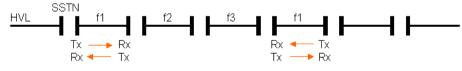

[dwruf1]v-061210-01 tif\_1\_en\_

Figure 7-9 Re-use of the frequency f1 after 1 line section when changing the voltage level

| HVL      | High voltage line   |
|----------|---------------------|
| SSTN     | Sub station         |
| f1 to f2 | carrier frequencies |

With the following restriction the same frequency can be used again after 2 line sections on the same voltage level:

The location of Tx and Rx from the PLC systems shown in the figure below must be observed!



[dwtdrtr2-061210-01.tif, 1, en\_l





[dwlctrna-061210-01.tif, 1, en\_US]

Figure 7-11 This location of Tx and Rx is not allowed when using the same frequency after 2 line sections

#### Summary Re-use of the Same Frequency

### Table 7-5Summary for repetition of the same frequency

|                                                                                                  | Siemens                            |             | IEC 60663     | IEEE 643                                          |
|--------------------------------------------------------------------------------------------------|------------------------------------|-------------|---------------|---------------------------------------------------|
|                                                                                                  | Re-use of the same frequency after |             |               |                                                   |
|                                                                                                  | analog PLC                         | digital PLC |               |                                                   |
| Standard                                                                                         | 3 sections                         | 3 sections  | 2 sections    | 2 sections                                        |
| Location of Tx and Rx to be considered                                                           | 2 sections                         |             |               |                                                   |
| Only if very long line sections<br>are in between and location of<br>Tx, Rx has to be considered |                                    | 2 sections  |               |                                                   |
| Different voltage level counts<br>as                                                             | 2 sections                         | 2 sections  | 2 sections    | no info.                                          |
| Same frequency within a station                                                                  | no                                 | no          | not mentioned | Yes, if cross-<br>station attenua-<br>tion >40 dB |

# 7.2.4 Line Traps

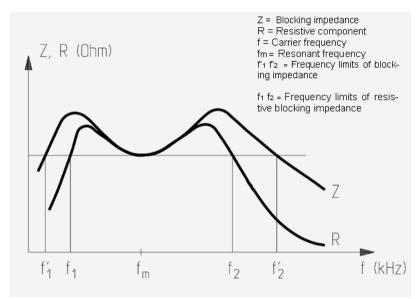
Line traps are connected in series with HV transmission lines. The main function of the line trap is to present a high impedance at the carrier frequency band while introducing negligible impedance at the power frequency. The high impedance limits the attenuation of the carrier signal within the power system by preventing the carrier signal from being:

- Dissipated in the substation
- Grounded in the event of a fault outside the carrier transmission path
- Dissipated in a tap line or a branch of the main transmission path.

# **Blocking Range of Line Traps**

The blocking range of the existing line traps has to be considered when planning new frequencies for an existing line. The PLC channels have to be placed within the blocked bandwidth of the line trap. The bandwidth of a line trap is that frequency range over which the line trap provides a certain specified minimum blocking impedance or resistance. Minimum blocking resistance should be specified if the potential exists for the reactive component of the line trap impedance to resonate with the substation impedance. Different types of tuning may be supplied:

#### Single Frequency Tuning:


If narrow blocking bands are required single frequency tuning is the simplest and most economical type
of tuning available

#### **Double Frequency Tuning:**

• The double frequency tuning arrangement blocks 2 relatively narrow bands of fre-quencies. Otherwise, the blocking characteristic is similar to single frequency tuning.

# Wideband Tuning:

 Wideband tuning is the most common type of tuning as it efficiently utilizes the main coil inductance. Wideband tuned line traps are suitable for multi-channel applications, since relatively constant impedance is obtained over a broad frequency range. This type of tuning provides high-bandwidth flexibility for future changes or expansion of PLC frequencies. PLC channels can be placed anywhere within the blocked band-width.



[dwwfltbc-061210-01.tif, 1, en\_US]



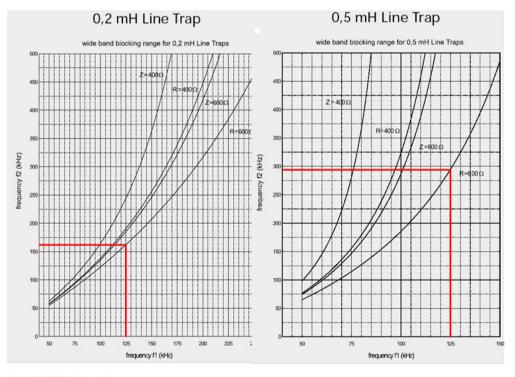



Figure 7-13 Blocking range of different line traps (example f1 = 125 kHz)

# 7.2.5 Summary of the Necessary Information for Frequency Planning:

- Overview of the high voltage network (drawing)
- Frequency grid 2.5 kHz resp. 4 kHz
- Tx frequencies of all existing PLC links
- Through connections of frequencies
- Blocking range of the line traps
- Frequency ranges reserved for air traffic control, shipping radio service etc.
- Bandwidth of the PLC devices

# **Station Layouts**

First of all, station layouts have to be drawn containing the following information:

- All overhead lines connected to this station with voltage level and coupling type
- Entry of the blocking range from the line traps and the existing PLC Tx resp. Rx frequencies for each line.
- Entry of possibly frequency blocking zone reserved for air traffic control, shipping radio service etc.

## Line Layouts

For the high voltage lines getting additional resp. new frequencies, line layouts have to be prepared containing the following information:

- Blocking range of the line traps
- Tx frequencies of existing PLC's on this line
- Through connections of frequencies
- Line sections 1 up to 3 from the view of this line with all existing frequencies
- Display of the occupied frequencies

# 7.2.6 Planning New Frequencies

When planning new frequencies, the min. gap to the existing frequencies on the used line and in line section 1 has to be observed.

The gap and position to the frequencies used in the line sections 2 and 3 is not important. If an analog device is replaced by a digital device the gap to existing PLC's on the same line and in section 1 has to be checked (refer to table *Table 7-3*).

The new frequency may not be used in the line section 1 to 3 drawn in the line layouts. Frequencies which are no longer used have to be canceled.

The new planned frequencies have to be added also to all line layouts containing this line in section 1 to 3 and in to all station layouts.

# 7.3 Transmission Range

# 7.3.1 General Information

The maximum transmission range of the PowerLink is the difference between the transmit level PTX and the lowest possible receive level  $PR_{Xmin}$ . The attenuation of the transmission path must be lower than this difference.



[dwplctrp-061210-01.tif, 1, en\_US]

Figure 7-14 The PLC transmission path

Output Power-Power Line attenuation = Receive Power

The lowest possible receive level  $PR_{Xmin}$  depends on the noise level  $P_{Noise}$  of the high voltage line and the required signal to noise ratio SNR for the transmitted services. For determining the transmission range, the following information has to be taken into consideration:

- The used HF bandwidth and frequencies of the PowerLink
- The power amplifier (25 W, 50 W, or 100 W)
- The services which have to be transmitted
- The attenuation of the high voltage line
- The expected noise level

# 7.3.2 Power Amplifier

For the PowerLink equipment, transmit amplifiers with 25/50 W and 100 W peak power ratings are available. The necessary power rate depends on the number and type of services and the min. required receive level. This again depends on the noise level  $P_{Noise}$  and the required signal to noise ratio SNR for the transmitted services.

Each additional service which is transmitted, reduces the output power of the PLC system. At the end of this chapter, you'll find the description of the tool "PowerCalc\_xx\_xx.xls", available on the manual CD. This tool calculates the max. acceptable line attenuation, after entering the services to be transmitted, the power amplifier and the expected noise level.

# 7.3.3 Services Transmitted in the PowerLink

The max. number of services which can be transmitted in the PowerLink is 4. The available transmitter power is automatically allocated to the different types of signal. The allocation is determined by the noise-bandwidth and the required signal-to-noise ratio of the services. The output level of the CSPi module and the system for each service is shown in **<Service**>.

| System pilot (-) | ot (-) 78315 Hz -23.0 dB Syste |           | System pilot(+ | ) 78375 Hz | -23.0 dB  |               |              |
|------------------|--------------------------------|-----------|----------------|------------|-----------|---------------|--------------|
| Service 1        | T                              | Service 2 |                | Service 3  | Service 4 |               |              |
| F2 E&M           |                                | VF-Input  |                | VF-Level   | HF (Tx)   | HF-Level CSPi | HF-Level Out |
|                  |                                | 800 Hz    |                | -3.5 dB    | 76560 Hz  | -23.0 dB      | 27.5 dB      |
| PILOT -          |                                |           |                |            | 78315 Hz  | -23.0 dB      | 27.5 dB      |
| PILOT +          |                                |           |                |            | 78375 Hz  | -23.0 dB      | 27.5 dB      |

[sc\_example\_voice\_pilot\_level, 1, --\_--]

Figure 7-15 Example for the display of the voice and pilot level from a PowerLink system

### 7.3.4 Power Line Attenuation

For planning PowerLink connections, a careful calculation of the line attenuation is essential. For a correct calculation of the power line, a number of different values are necessary:

- Data of the high voltage line like: Tower, voltage range, length of the line, type of conductors, sag of the line, transpositions etc.
- The PLC frequencies used for transmission and receiving
- The type of the coupling unit: Phase-to-ground, Phase-to-Phase, or Inter-System coupling.
- The conductors used for coupling

Using a computer program is as accurately as possible. The program also helps to determine the useful conductor(s) for connecting the coupling unit(s).

### 7.3.5 Coupling Units

A phase-to-ground coupling is often used for reasons of cost. This is generally adequate from an engineering viewpoint unless extra-high-voltage lines with a high noise level or long distances are involved. In most line protection applications, however, it is recommended to use a phase-to-phase coupling or intersystem coupling regardless of the higher cost.

|   | Coupling type            | Financial outlay   | Attenuation        | Transmission                                                                      |
|---|--------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------|
| 1 | Phase-to-ground coupling | minimal            | greater than for 2 | not guaranteed if a coupled conductor breaks                                      |
| 2 | Phase-to-phase coupling  | twice as high as 1 | smaller than for 1 | possible if a coupled conductor breaks                                            |
| 3 | Inter-system<br>coupling | twice as high as 1 |                    | also possible in case of short<br>circuit or grounding of a<br>system on the line |

Table 7-6Comparison of the different coupling types

### 7.3.6 Noise Level

The noise level should be taken according IEC resp IEEE recommendations for adverse weather, because the transmission line has to be available throughout the whole year.

The noise level depends on the voltage level, the construction of the overhead line and the used frequency. Typical corona noise power levels on 220 kV transmission lines as in IEC 60663 referring to a 4 kHz bandwidth is:

-20 dBm to -10 dBm

The values are given for a 4 kHz bandwidth. For a different bandwidth (BW) of the service a correction  $P_{cor}$  has to be added to this level.



[fo4khzbw-061210-01.tif, 1, en\_US]

In case of transmitting via Data Pump the service program PowerSys offers a bit rate estimation which shows the max. bit rate for a given bandwidth and noise level.

### 7.3.7 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is calculated with

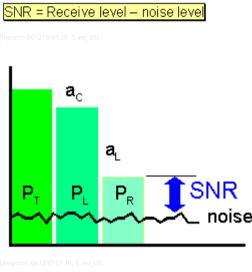
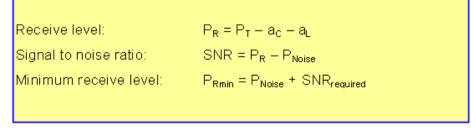




Figure 7-16 The calculation of the SNR

- PT = Transmit level at the output of the PLC
- PL = Transmit level at the coupling point of the line
- PR = Receive level
- ac = Coupling loss
- aL = Line attenuation

### 7.3.8 Formulas for the Calculation of the Transmission Range and the SNR



[foctrsnr-061210-01.tif, 1, en\_US]

Subsequently you'll find calculation examples for using the Data Pump resp. for voice and data transmission in the PowerLink.

## 7.4 Planning Examples

### 7.4.1 PowerLink with Data Pump

In the following example the PowerLink configuration is a Data Pump with 7.5 kHz bandwidth, and 100 W power amplifier.

The figure below shows the output level of the DP signal generator at the CSPi module

| System pilot (-) 8394 | 40 Hz -41 | .9 dB System pilot(+) | 83940 Hz  | -41.9 dB      |              |
|-----------------------|-----------|-----------------------|-----------|---------------|--------------|
| Service 1             | Service 2 | Service 3             | Service 4 |               |              |
| Signalgenerator       | VF-Input  | VF-Level              | HF (Tx)   | HF-Level CSPi | HF-Level Out |
| DP-                   | 510 Hz    |                       | 80083 Hz  |               |              |
| DP mid                | 2232 Hz   |                       | 81805 Hz  | -17.5 dB      | 33.0 dB      |
| DP+                   | 3954 Hz   |                       | 83527 Hz  |               |              |

[sc\_example\_hf-dp, 1, --\_-

Figure 7-17 HF output for a PowerLink system with Data Pump

When using a PLC line equipment (PLE) with a 100 W power amplifier, it results in a transmit volt-age-level at the HF output (75 Ohm) from:

### HF-Level Out = 33.0 dB

The QAM signal of the Data Pump has to be calculated 10 dB less and results in 23.0 dB.

The maximum obtainable transmission rate of a Data Pump connection depends on the available bandwidth and the signal-to-noise-ratio (SNR). For SNR calculation, the voltage level must be converted into a power level because the noise levels are also given in power levels.

### Power Level

Conversion of the voltage level to a power level: The power level (reference to 1 mW at 600 Ohm) results from

- Voltage level at 75 Ohm: +9 dB
- Voltage level at 150 Ohm: +6 dB

This results in a power level for the:

• QAM-signal: +39.6 dBm

#### **Coupling Loss**

According IEC 60663 an overall loss of 5 dB can be calculated. This results in a power level for the QAM signal at the coupling point of the overhead line from 34.6 dBm.

### Max. Possible Transmission Rate

To determine the max. possible transmission rate the signal-to-noise ratio (SNR) must be known. Subsequently the calculation for this example: QAM signal level at the coupling point: 34.6 dBm.

In the next step, an exact calculation of the line attenuation is necessary! In this example, a line attenuation of 12 dB is assumed. This results in a receive level from:

#### Transmit level minus line attenuation = 34.6 dBm – 12 dB = 22.6 dBm for the DP

fotImlat-061210-01.tif, 1, en\_US]

In the following table noise levels for different DP bandwidth, voltage levels and carrier frequencies (CF) with adverse weather conditions are shown.

| High<br>voltage | CF  |       | DF    | Bandw | vidth in | kHz adj | ustable | in the F | PowerLi | nk    |       |
|-----------------|-----|-------|-------|-------|----------|---------|---------|----------|---------|-------|-------|
| in kV           | kHz |       |       |       |          |         |         |          |         |       |       |
|                 |     | 7.5   | 7     | 6.5   | 5.5      | 5       | 4.7     | 4.5      | 4       | 3.7   | 3.5   |
| 110             | 75  | -14.3 | -14.6 | -14.9 | -15.6    | -16     | -16.3   | -16.5    | -17     | -17.3 | -17.6 |
| 110             | 250 | -20.3 | -20.6 | -20.9 | -21.6    | -22     | -22.3   | -22.5    | -23     | -23.3 | -23.6 |
| 110             | 500 | -22.3 | -22.6 | -22.9 | -23.6    | -24     | -24.3   | -24.5    | -25     | -25.3 | -25.6 |
| 230             | 75  | -10.3 | -10.6 | -10.9 | -11.6    | -12     | -12.3   | -12.5    | -13     | -13.3 | -13.6 |
| 230             | 250 | -15.3 | -15.6 | -15.9 | -16.6    | -17     | -17.3   | -17.5    | -18     | -18.3 | -18.6 |
| 230             | 500 | -17.3 | -17.6 | -17.9 | -18.6    | -19     | -19.3   | -19.5    | -20     | -20.3 | -20.6 |
| 400             | 75  | -5.3  | -5.6  | -5.9  | -6.6     | -7      | -7.3    | -7.5     | -8      | -8.3  | -8.6  |
| 400             | 250 | -10.3 | -10.6 | -10.9 | -11.6    | -12     | -12.3   | -12.5    | -13     | -13.3 | -13.6 |
| 400             | 500 | -12.3 | -12.6 | -12.9 | -13.6    | -14     | -14.3   | -14.5    | -15     | -15.3 | -15.6 |

| Table 7-7 | Noise levels (adverse weather acc. IEEE 643) for different DP Bandwidth part | 1 |
|-----------|------------------------------------------------------------------------------|---|

| Table 7-8 | Noise levels (adverse weather acc. IEEE 643) for different DP Bandwidth part 2 |
|-----------|--------------------------------------------------------------------------------|
|           | itolse levels (davelse meddler dee. iEEE o is) for amerene br banamati part 2  |

| High<br>voltage | CF  | l | DP Banc | lwidth i | n kHz ad | djustabl | e in the | Power | Link  |       |
|-----------------|-----|---|---------|----------|----------|----------|----------|-------|-------|-------|
| in kV           | kHz |   |         |          |          |          |          |       |       |       |
|                 |     |   |         |          |          |          | 31.5     | 23.5  | 15.5  | 11.5  |
| 110             | 75  |   |         |          |          |          | -8.9     | -9.3  | -11.2 | -12.4 |
| 110             | 250 |   |         |          |          |          | -14      | -15.3 | -17.4 | -18.4 |
| 110             | 500 |   |         |          |          |          | -16      | -17.3 | -19.1 | -20.4 |
| 230             | 75  |   |         |          |          |          | -4       | -5.3  | -7.1  | -8.4  |
| 230             | 250 |   |         |          |          |          | -9       | -10.3 | -12.1 | -13.4 |
| 230             | 500 |   |         |          |          |          | -11      | -12.3 | -14.1 | -15.4 |
| 400             | 75  |   |         |          |          |          | -0.9     | -0.3  | -2.1  | -3.4  |
| 400             | 250 |   |         |          |          |          | -4       | -5.3  | -7.1  | -8.4  |
| 400             | 500 |   |         |          |          |          | -6       | -7.3  | -9.1  | -10.4 |

The signal-to-noise ratio (SNR) is calculated with: SNR = receive level minus noise level. In this example, a noise level of -10.3 dBm is assumed. This results in an SNR from:

#### 22.6 dBm - (-10.3 dBm) = 32.9 dBm

The max. possible transmission rate for an SNR from 33 dBm is shown in the drawing below. The required bit rate of 42 000 bps needs an SNR of approx. 27 dB when using **non-adjacent** Tx and Rx bands resp. 29 dB when using adjacent Tx and Rx bands.

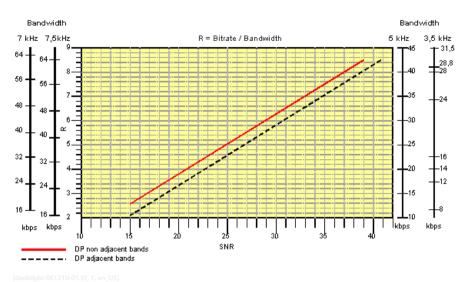



Figure 7-18 Derivation of the DP bit rate from the bandwidth and the information density

Conclusion: The transmission with the required bit rate can be performed.

### 7.4.2 PowerLink with Analog Services

The next example shows a PowerLink with the service voice (F2), data transmission (F3) using FSK channels, RM channel and protection signaling in the AMP mode with the service F2. The system has a 50 W amplifier, the line impedance is 75 Ohm.

### Service Configuration

The service configuration of the PowerLink is shown in the figure below:

| Service 1                 |                        |               | Service 2 | 2        |           |      |            |          |              |     |
|---------------------------|------------------------|---------------|-----------|----------|-----------|------|------------|----------|--------------|-----|
| F2 E&M 🔻 🗌                | SERTEL 🔽               | RM            | F3 data   |          | 🔻 🔲 si    | ERTE |            | RM       |              |     |
| I/O select                | Input level            | с             | F3        | E<br>354 | Bandwidth | 30   | Start      | Hz       | End<br>3840  | Hz  |
| VFM-1/P1<br>2 wire switch | -3.5<br>• 4 wire swite | dB -3.5<br>:h | 15        |          | O select  |      | Input leve |          | Output level | T12 |
| AMP                       |                        |               | P1        | FSK      | <b>•</b>  | 0.   | )          | dB       | 0.0          | dB  |
|                           |                        |               | P2        |          |           | 0.   | )          | dB       | 0.0          | dB  |
| I/O select<br>iSWT1       | Varian<br>VF1_CT_PL    | it 🔽 234      | P3        |          |           | 0.   | )          | dB       | 0.0          | dB  |
| <b>O</b> Guard 2615 H     | Hz 🔵 Guard             | 3810 Hz       | P4        |          |           | 0.   | )          | dB       | 0.0          | dB  |
|                           |                        |               |           |          |           |      | FSK        |          |              |     |
|                           |                        |               |           |          | Datarate  |      |            | Dat      | arate        |     |
| 76 kHz                    | +                      | CF            | C         | h1       | 600 Bd    | ▼    | Ch3        | 200 Bd N | B 🔻          |     |
|                           |                        |               | C         | h2       | 600 Bd    | ▼    | Ch4        |          | •            |     |
|                           |                        |               |           |          |           |      |            |          |              |     |
|                           |                        |               |           |          |           |      |            |          |              |     |
|                           |                        |               | 76 kHz    | 1        | + + +     |      |            | 1        | CF           | 1   |

[sc\_example\_f2\_amp\_3fsk, 1, --\_--]

Figure 7-19 Example PowerLink with F2, protection AMP, and 3 FSK data channels

### **Further particulars:**

| The required SNR is:                                    | 25 dB for voice and 15 dB for data |
|---------------------------------------------------------|------------------------------------|
| The total line attenuation including the coupling loss: | 17 dB                              |
| Noise level for 4 kHz bandwidth:                        | -20 dBm                            |

### **Output Level**

The transmit levels of voice, pilot, and protection are shown in the figure below

| System pilot (-) 7 | 78315 Hz  | -24.7 dB | System pilot(+) | 78375 Hz  | -24.7 dB      |              |
|--------------------|-----------|----------|-----------------|-----------|---------------|--------------|
| Service 1          | Service 2 |          | Service 3       | Service 4 |               |              |
| F2 E&M             | VF-Input  |          | VF-Level        | HF (Tx)   | HF-Level CSPi | HF-Level Out |
|                    | 800 Hz    |          | -3.5 dB         | 76560 Hz  | -24.7 dB      | 25.8 dB      |
| PILOT -            |           |          |                 | 78315 Hz  | -24.7 dB      | 25.8 dB      |
| PILOT +            |           |          |                 | 78375 Hz  | -24.7 dB      | 25.8 dB      |
| int.F6             | VF1_CT_PL |          |                 |           |               |              |
| Guard:             | 2615 Hz   |          |                 | 78375 Hz  | -24.7 dB      | 25.8 dB      |
| Fs:                | 1920 Hz   |          |                 | 77680 Hz  | -24.7 dB      | 25.8 dB      |
| F1:                | 1700 Hz   |          |                 | 77460 Hz  | -24.7 dB      | 25.8 dB      |
| F2:                | 1475 Hz   |          |                 | 77235 Hz  | -24.7 dB      | 25.8 dB      |
| F3:                | 1250 Hz   |          |                 | 77010 Hz  | -24.7 dB      | 25.8 dB      |
| F4:                | 1030 Hz   |          |                 | 76790 Hz  | -24.7 dB      | 25.8 dB      |
| F5:                | 810 Hz    |          |                 | 76570 Hz  | -24.7 dB      | 25.8 dB      |
| F6:                | 585 Hz    |          |                 | 76345 Hz  | -24.7 dB      | 25.8 dB      |
| F7:                | 365 Hz    |          |                 | 76125 Hz  | -24.7 dB      | 25.8 dB      |

[sc\_example\_hf\_voice\_pilot\_protection, 1, --\_--]

Figure 7-20 The HF level CSPi for voice, pilot, and protection

Due to the coded tripping variant the trip frequencies have the same level as voice and pilot The transmit levels of the FSK channels are shown in the figure below:

| System pilot (-) 78 | 315 Hz -24.7 | dB System pilot(+) | 78375 Hz  | -24.7 dB      |              |
|---------------------|--------------|--------------------|-----------|---------------|--------------|
| Service 1           | Service 2    | Service 3          | Service 4 |               |              |
| FSK                 | VF-Input     | VF-Level           | HF (Tx)   | HF-Level CSPi | HF-Level Out |
| FSK-1:-             |              |                    | 79345 Hz  | -41.8 dB      | 8.7 dB       |
| FSK-1:+             |              |                    | 79745 Hz  |               |              |
| FSK-2:-             |              |                    | 80485 Hz  | -41.8 dB      | 8.7 dB       |
| FSK-2:+             |              |                    | 80885 Hz  |               |              |
| FSK-3:-             |              |                    | 81345 Hz  | -44.7 dB      | 5.8 dB       |
| FSK-3:+             |              |                    | 81525 Hz  |               |              |

[sc\_example\_hf\_fsk, 1

Figure 7-21 The HF level CSPi for the FSK channels 600 Bd resp. 200 Bd

For the conversion from voltage to power level 9 dB have to be added. The HF output levels are shown in the table below.

#### Table 7-9HF output levels

| Service              | HF output voltage level dB | HF output power level dBm |  |  |
|----------------------|----------------------------|---------------------------|--|--|
| F2                   | 30.3                       | 39.3                      |  |  |
| Sys Pilot            | 30.3                       | 39.3                      |  |  |
| Protection trip tone | 30.3                       | 39.3                      |  |  |

#### Planning Guide 7.4 Planning Examples

ServiceHF output voltage level dBHF output power level dBmFSK 600 Bd13.222.2FSK 200 Bd10.219.2RM (50 Bd)4.313.3

### **Receive Level**

For calculating the receive level for the services a total line attenuation of 17 dB is assumed. The receive levels are shown in the table below.

| Table 7-10 | Receive levels |
|------------|----------------|
|            |                |

| Service              | Receive level in dBm |
|----------------------|----------------------|
| F2                   | 22.3                 |
| Sys Pilot            | 22.3                 |
| Protection trip tone | 22.3                 |
| FSK 600 Bd           | 5.2                  |
| FSK 200 Bd           | 2.2                  |
| RM (50 Bd)           | -3.7                 |

### Calculating the SNR

The noise level of -20 dBm is given for a bandwidth of 4 kHz. For a different bandwidth (BW) of the service a correction  $P_{cor}$  has to be added to this level.

| Pcor = 10* log | I (BW[kHz] | ] / 4[kHz]) |
|----------------|------------|-------------|
|----------------|------------|-------------|

[foclpcor-061210-01.tif, 1, en\_US]

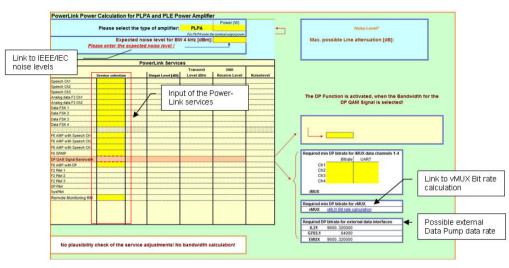
### SNR voice:

Correction for the voice BW = 2.1 kHz: Pcor =  $10*\log (2.1/4) = -2.8 \text{ dB}$ Noise level for voice = -20 dBm + (-2.8) = -22.8 dBmSNR <sub>voice</sub> = Rx level – noise level = 22.3 dB - (-22.8 dB) = 45.1 dB

When calculating the SNR for the FSK channels the following bandwidths have to be considered:

Table 7-11Definition of the FSK channel bandwidth

| No. | System       | Nominal  | max. Bit<br>rate | Grid distance<br>Hz | Bandwidth<br>Hz | FM              | Nominal<br>channel level<br>dBr |
|-----|--------------|----------|------------------|---------------------|-----------------|-----------------|---------------------------------|
|     |              | Bit rate |                  |                     |                 | deviation<br>Hz |                                 |
| 1   | FM 120       | 50       | 85               | 120                 | 100             | ±30             | -22.5                           |
| 2   | FM 240       | 100      | 170              | 240                 | 200             | ±60             | -19.5                           |
| 3   | FM 480       | 200      | 340              | 480                 | 400             | ±120            | -16.5                           |
| 4   | 50 Bd NB     | 50       | 60               | 90                  | 75              | ±22.5           | -24.5                           |
| 5   | 100 Bd<br>NB | 100      | 120              | 180                 | 150             | ±45             | -21.5                           |
| 6   | 200 Bd<br>NB | 200      | 240              | 360                 | 300             | ±90             | -18.5                           |
| 7   | 600 Bd       | 600      | 880              | 1140                | 1000            | ±200            | -13.5                           |
| 8   | 1200 Bd      | 1200     | 1300             | 1710                | 1440            | ±400            | -10.5                           |
| 9   | 2400 Bd      | 2400     | 2500             | 3400                | 2720            | ±800            | -7.5                            |


### SNR data 600 Bd:

Correction for the 600 Bd data BW =1 kHz:  $P_{cor} = 10*\log (1/4) = -6 dB$ Noise level for data = -20 dBm + (-6) = -26 dBm **SNR**<sub>data 600</sub> = **Rx level – noise level = 5.2 dB – (-26 dB) = 31.2 dB** Conclusion: The transmission with the required SNR can be performed.

# 7.5 PowerCalc\_xx\_xx.xls

### 7.5.1 Introduction

When the expected noise level is known, the tool PowerCalc.xls is calculating the max. line attenuation for the desired PowerLink connection. The tool is available on the CD-ROM in the PowerLink manual and described subsequently.



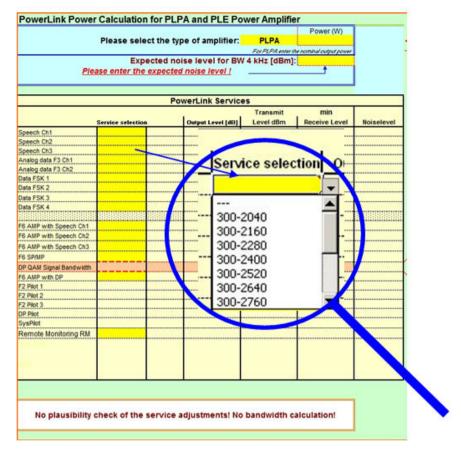
[scpctool-061210-01.tif, 1, en\_US

Figure 7-22 The tool PowerCalc\_xx\_xx.xls

PowerCalc\_xx\_xx.xls should be used when the equipment configuration is already completed with the Power-Conf program. This ensures, that the system is working and can be ordered.



### NOTE


In the PowerCalc\_xx\_xx.xls, **no plausibility check** of the service adjustments and **no bandwidth calculation** is performed!

The tool calculates the max. permissible line attenuation for this equipment configuration. This must be more than the attenuation calculated for the customer's high voltage line.

If it is less, either the PowerLink amplifier must be increased, or if not possible the services have to be reduced since the noise level and the transmission line cannot be changed.

### 7.5.2 Input of the PowerLink Services

The figure below shows the section for selecting the required PowerLink services. For the input only the **dark yellow fields** can be used. The **other fields** i.e. for the F2 or DP Pilot are completed automatically.

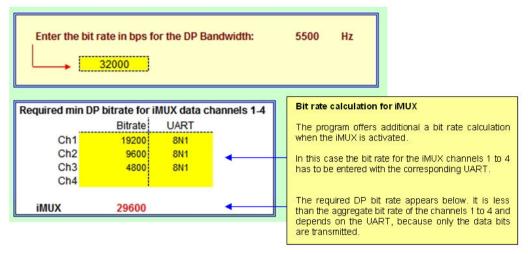


cslsvyl-061210-01.tif, 1, en\_US]



With click on a service an arrow appears for selecting the available input. For speech and analog data (F3) the bandwidth has to be selected. In case of using FSK channels the baud rate (50 up to 2400 Bd) appears. Protection signaling (F6) is possible in the single purpose (SP), multi purpose (MP) resp. in the al-ternate multi purpose (AMP) mode. The AMP mode is possible with a speech channel or Data Pump (DP). If both services are activated in the configuration, the AMP should be used with the speech channel because an interrupt of the DP is causing always the loss of several services. The service **DP is activated** with the **selection** of the used **bandwidth** (3500 Hz to 31 500 Hz).

After selecting the type of power amplifier PLPA or PLE and the output power the expected **noise level for a bandwidth of 4 kHz** has to be entered.


| PowerLink Power Calculation for PLPA and PLE Pow | er Amplifie    | er                       |   |   |
|--------------------------------------------------|----------------|--------------------------|---|---|
|                                                  |                | Power (W)                |   |   |
| Please select the type of amplifier:             | PLPA           |                          | + | - |
|                                                  | For PLPA enter | the nominal output power |   |   |
| Expected noise level for BW 4                    | 4 kHz [dBm]    | E                        |   |   |
| Please enter the expected noise level !          | 2 - 18 - 18    |                          |   |   |
|                                                  |                |                          |   |   |

[scinexnl-061210-01.tif, 1, en\_US]

Figure 7-24 Input of the expected noise level

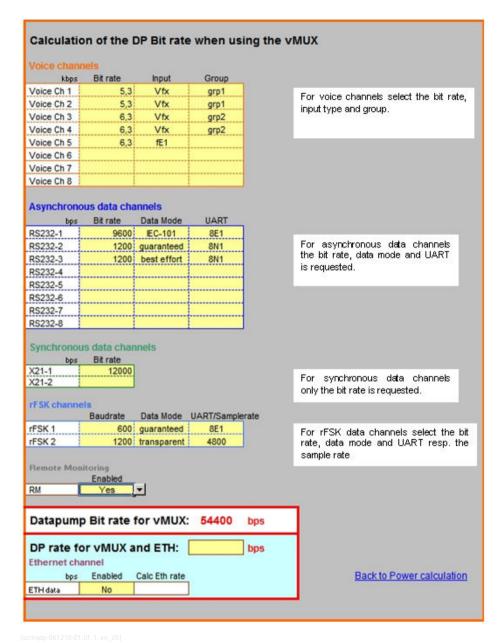
#### Using the Data Pump and iMUX

When using the service Data Pump, the necessary SNR depends on the **required bit rate**. This is requested from the program as soon as a DP bandwidth is adjusted:



[scadindp-061210-01.tif, 1, en\_US

Figure 7-25 Additional inputs for the DP

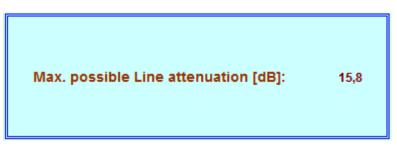

Max. possible line attenuation can't be calculated without noise level and in case of Data Pump without the required bit rate

| Noise Level?<br>Max. possible Line attenuation [dB]:                                |      |         |
|-------------------------------------------------------------------------------------|------|---------|
| The max. possible line attenuation for the s<br>calculated with the required bit ra |      | is only |
| Enter the bit rate in bps for the DP Bandwidth:                                     | 5500 | Hz      |

Figure 7-26 The tool shows missing requirements for calculation

### Using the Data Pump and vMUX without ETH

When using the vMUX a separate Excel sheet is available for calculating the necessary Data Pump bit rat. Click the hyperlink "vMUX Bit rate calculation" (refer to *Figure 7-22*) resp. the corresponding Excel sheet in PowerCalc\_xx\_xx.xls.






#### Max. Possible Line Attenuation

The tool calculates the max. possible line attenuation observing that the required SNR for the service with the lowest receive level is obtained. According IEC 60663 the required SNR for speech channels is 25 dB and for data channels 15 dB.

Under assumption of an expected noise level of -10 dB for 4 kHz bandwidth:



[scdsmpla-061210-01.tif, 1, en\_US]

Figure 7-28 Display of the max possible line attenuation

#### Using the Data Pump and vMUX with ETH

When using the vMUX a separate Excel sheet is available for calculating the necessary Data Pump bit rat. Click the hyperlink "vMUX Bit rate calculation" (refer to *Figure 7-22*) resp. the corresponding Excel sheet in PowerCalc\_xx\_xx.xls.

| kbos                                                                                  | Bit rate                                                      | Input                                  | Group                     |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|---------------------------|
| Voice Ch 1                                                                            | 5.3                                                           | Vfx                                    | grp1                      |
| Voice Ch 2                                                                            | 5,3                                                           | Vfx                                    | grp1                      |
| Voice Ch 2                                                                            | 6,3                                                           | Vfx                                    | grp1<br>grp2              |
| Voice Ch 3                                                                            | 6,3                                                           | Vfx                                    | grp2<br>grp2              |
| Voice Ch 5                                                                            | 6,3                                                           | fE1                                    | gipz                      |
| Voice Ch 6                                                                            | 0,3                                                           |                                        |                           |
| Voice Ch 7                                                                            |                                                               |                                        |                           |
| Voice Ch 8                                                                            |                                                               |                                        |                           |
| Asynchrono<br>bps<br>RS232-1                                                          | us data cha<br>Bit rate<br>9600                               | Data Mode                              | UART<br>8E1               |
| RS232-1                                                                               |                                                               | guaranteed                             | 8N1                       |
| RS232-2<br>RS232-3                                                                    |                                                               | best effort                            | 8N1                       |
| RS232-4                                                                               | 1200                                                          | Destenon                               | 0111                      |
| RS232-5                                                                               |                                                               |                                        |                           |
| RS232-6                                                                               |                                                               |                                        |                           |
| RS232-0                                                                               |                                                               |                                        |                           |
| RS232-8                                                                               |                                                               |                                        |                           |
| Synchronou<br>bps<br>X21-1<br>X21-2<br>rFSK channe<br>rFSK 1<br>rFSK 2<br>Remote Moni | Bit rate<br>12000<br>Is<br>Baudrate<br>600<br>1200<br>itoring | Data Mode<br>guaranteed<br>transparent | UART/Sampl<br>8E1<br>4800 |
| RM                                                                                    | Enabled<br>Yes                                                |                                        |                           |
| Datapump                                                                              | Bit rate 1                                                    | for vMUX:                              | 54800                     |
| DP rate fo<br>Ethernet cha<br>bps<br>ETH data                                         | nnel                                                          | nd ETH:                                | 128000                    |

#### [sccrqdp2-061210-01.tif, 1, en\_U

Figure 7-29 Calculating the required DP bit rate for vMUX and possible Ethernet data rate

### 7.5.3 Planning Examples with PowerCalc\_xx\_xx.xls

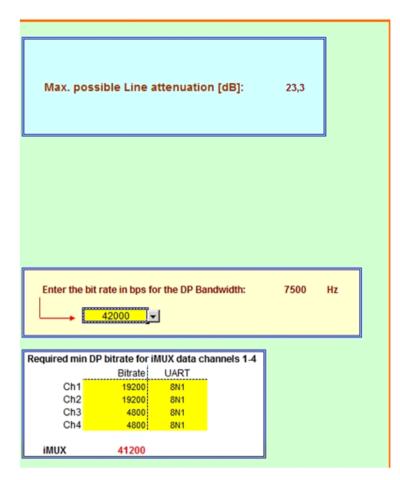
Subsequently the previous planning examples will be shown using the tool PowerCalc\_xx\_xx.xls.

### Example 1 Data Pump

The PowerLink configuration (refer to 7.4.1 PowerLink with Data Pump) was a Data Pump with 7.5 kHz bandwidth, and 100 W power amplifier. The required bit rate was 42 000 bps. For the line attenuation 12 dB and for the coupling loss 5 dB were assumed. The noise level for the DP bandwidth 7.5 kHz was assumed with -10,3 dB. The figure below shows the inputs for the tool PowerCalc\_xx\_xx.xls:

| PowerLink Power         | Calculation       | TIOPPLP     | A and PLE PC      | wer Ampline                                    |                        |            |
|-------------------------|-------------------|-------------|-------------------|------------------------------------------------|------------------------|------------|
|                         |                   |             |                   |                                                | Power (W)              |            |
|                         | Please sele       | ect the typ | e of amplifier:   | PLPA                                           | 100                    |            |
|                         |                   |             |                   | the same is not the same is the same is a sub- | e nominal output power |            |
|                         | Exp               | ected noi   | se level for BV   | V 4 kHz [dBm]:                                 | -13                    |            |
|                         |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |
|                         |                   | Pov         | verLink Servic    | es                                             |                        |            |
|                         |                   |             |                   | Transmit                                       | min                    |            |
|                         | Service selection |             | Output Level [dB] | Level dBm                                      | Receive Level          | Noiselevel |
| Speech Ch1              |                   |             |                   |                                                |                        |            |
| Speech Ch2              |                   |             |                   |                                                |                        |            |
| Speech Ch3              |                   |             |                   |                                                |                        |            |
| Analog data F3 Ch1      |                   |             |                   |                                                |                        |            |
| Analog data F3 Ch2      |                   |             |                   |                                                |                        |            |
| Data FSK 1              |                   |             |                   |                                                |                        |            |
| Data FSK 2              |                   |             |                   |                                                |                        |            |
| Data FSK 3              |                   |             |                   |                                                |                        |            |
| Data FSK 4              |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |
| F6 AMP with Speech Ch1  |                   |             |                   |                                                |                        |            |
| F6 AMP with Speech Ch2  |                   |             |                   |                                                |                        |            |
| F6 AMP with Speech Ch3  |                   |             |                   |                                                |                        |            |
| F6 SP/MP                |                   |             |                   |                                                |                        |            |
| DP QAM Signal Bandwidth | 7500              | 96          | 30,6              | 39,6                                           | 16,4                   | -10,3      |
| F6 AMP with DP          |                   |             |                   |                                                |                        |            |
| F2 Pilot 1              |                   |             |                   |                                                |                        |            |
| F2 Pilot 2              |                   |             |                   |                                                |                        |            |
| F2 Pilot 3              |                   |             |                   |                                                |                        |            |
| DP Pilot                | Yes               | 4           | 13,0              | 22,0                                           |                        |            |
| SysPilot                |                   |             |                   |                                                |                        |            |
| Remote Monitoring RM    |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |
| 100                     |                   |             |                   |                                                |                        |            |
|                         |                   |             |                   |                                                |                        |            |

cinexpc-061210-01.tif, 1, en\_L


Figure 7-30 Inputs from example 1 in PowerCalc\_xx\_xx.xls

# i

### NOTE

The input of the expected noise level must be entered now for the **bandwidth 4 kHz**! The corre-sponding conversion into the noise level of the used DP bandwidth is executed automatically from the tool.

The output of the tool PowerCalc\_xx\_xx.xls for the example 1 is shown in the next figure: The maximum line attenuation for the bit rate 42 000 bps is calculated with 23.3 dB



#### [scoutpcb-061210-01.tif, 1, en\_US]

Figure 7-31 Output of PowerCalc\_xx\_xx.sls for the bit rate 42 000 bps

The result of example 1 was an SNR from 32.9 dBm for a total line attenuation of 17 dB. The required bit rate of 42 000 bps needs an SNR of approx 27 dB (6 dB spare).

The tool PowerCalc\_xx\_xx.xls calculates the maximum line attenuation always for the desired bit rate. Related to the example 1 the tool shows the 6 dB spare plus the 17 dB line attenuation. The result is a maximum line attenuation of 23.3 dB.

### Example 2 PowerLink with Analog Services

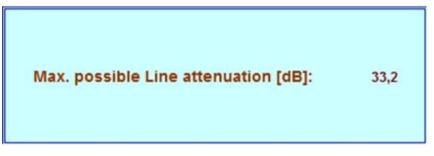
The configuration of the PowerLink was set with the service voice (F2), data transmission (F3) using FSK channels, RM channel and protection signaling in the AMP mode with the service F2. The system had a 50 W amplifier, the line impedance was 75 Ohm.

The assumed line attenuation including the coupling loss was 17 dB. The noise level for a band-width of 4 kHz was assumed with -20 dB.

The figure below shows the inputs from the configuration in example 2 (ref. to *Example PowerLink with F2*, *protection AMP*, and 3 FSK data channels).

|                         |                   |            |                   |             | Power (W)               |            |
|-------------------------|-------------------|------------|-------------------|-------------|-------------------------|------------|
|                         | Please sele       | ct the typ | e of amplifier:   | PLPA        | 50                      |            |
|                         |                   |            |                   |             | he nominal output power |            |
|                         | Exp               | ected noi  | se level for BW   | 4 kHz [dBm] | -20                     |            |
|                         |                   |            |                   | -           |                         |            |
|                         |                   | Boy        | verLink Service   |             |                         |            |
|                         |                   | FO         | VerLink Service   | Transmit    | min                     |            |
|                         | Service selection | -          | Output Level [dB] | Level dBm   | Receive Level           | Noiselevel |
| Speech Ch1              | 300-2400          | 20         | 30,2              | 39,3        | 2,2                     | -22,8      |
| Speech Ch2              |                   |            |                   |             |                         |            |
| Speech Ch3              |                   |            |                   |             |                         |            |
| Analog data F3 Ch1      |                   |            |                   |             |                         |            |
| Analog data F3 Ch2      |                   |            |                   |             |                         |            |
| Data FSK 1              | 600 Bd            | 2,8        | 13,2              | 22,2        | -11,0                   | -26,0      |
| Data FSK 2              | 600 Bd            | 2,8        | 13,2              | 22,2        | -11,0                   | -26,0      |
| Data FSK 3              | 200 Bd FM480      | 2          | 10,2              | 19,3        | -15,0                   | -30,0      |
| Data FSK 4              |                   |            |                   |             |                         |            |
|                         |                   |            |                   |             |                         |            |
| F6 AMP with Speech Ch1  | Yes               |            |                   |             |                         |            |
| F6 AMP with Speech Ch2  |                   |            |                   |             |                         |            |
| F6 AMP with Speech Ch3  |                   |            |                   |             |                         |            |
| F6 SP/MP                |                   |            |                   |             |                         |            |
| DP QAM Signal Bandwidth |                   |            |                   |             |                         |            |
| F6 AMP with DP          |                   |            |                   |             |                         |            |
| F2 Pilot 1              | Yes               | 20         | 30,2              | 39,3        |                         |            |
| F2 Pilot 2              |                   |            |                   |             |                         |            |
| F2 Pilot 3              |                   |            |                   |             |                         |            |
| DP Pilot                |                   |            |                   |             |                         |            |
| SysPilot                |                   |            |                   |             |                         |            |
| Remote Monitoring RM    | Yes               | 1          | 4,2               | 13,3        |                         | 36,0       |
|                         |                   | -          |                   |             |                         |            |
|                         |                   |            |                   |             |                         |            |
|                         |                   |            |                   |             |                         |            |

incne2-061210-01.tif, 1, en\_U


Figure 7-32 Input of the configuration from example 2

The result from example 2 assuming a line attenuation of 17 dB was an SNR for the voice chan-nel of: SNR <sub>voice</sub> = 45.1 dB (considering the required SNR of 25 dB this is 20.1 dB spare)

The SNR for the 600 Bd data channel was:

### SNR $_{data 600}$ = 31.2 dB (considering the required SNR of 15 dB this is 16.2 dB spare)

As described before the tool PowerCalc\_xx\_xx.xls calculates the max. possible line attenuation observing that the required SNR for the service with the lowest receive level is obtained. The result is shown in the figure below.



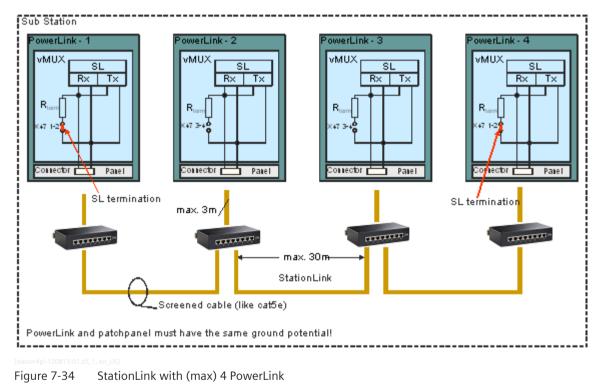
[scrse2pc-061210-01.tif, 1, en\_US

Figure 7-33 The result of example 2 displayed in PowerCalc\_xx\_xx.xls

Related to the example 2 the tool shows the 17 dB line attenuation plus the 16.2 dB spare from the data channel.

# 7.6 Examples of Using the vMUX and StationLink

### 7.6.1 In General


The StationLink (SL) offers the routing of channels between up to 4 different PowerLink equipment in 1 substation. The port mapping is carried out in the receiver. Local ports of the PowerLinks cannot be routed. The station link RJ45 connector is located on the PowerLink connector panel.



### NOTE

For more details of the PowerLink connector panel and the pinout of the connectors, we refer you to the chapter *Installation* in this manual.

The station link bus must be terminated on both ends (in 2 PowerLink equipment). For this purpose, a termination resistance  $R_{term}$  is available which is located on the vMUX board.



NOTE

For more details of the StationLink termination and the pinout of the connectors, we refer you to the chapter *Installation* in this manual.

### 7.6.2 The vMUX Node

The PowerLink terminals which are connected to a StationLink in a substation represent a "Node" which is defined in the he PowerLink terminals which are connected to a StationLink in a substation represent a "Node" which is defined in **<Configuration - vMUX - Station address**>.

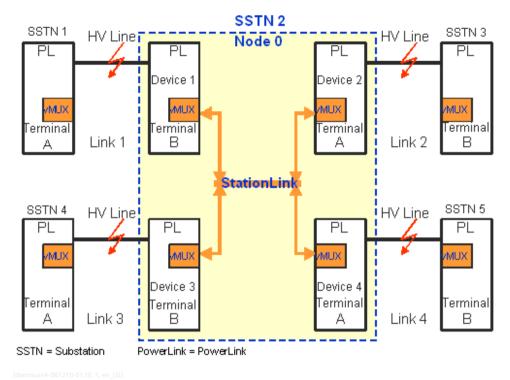



Figure 7-35 vMUX node with 4 PowerLinks

For **each** PowerLink 50/100 which is connected to a StationLink the **Link settings** (Link 0 to 2047), Terminal (A resp. B) and the **Node settings** (Node number 0 to 1023; Device 1 to 4) have to be defined in this form:

| Link     |             |
|----------|-------------|
| Link     | 1           |
| Terminal | A 🔹         |
|          |             |
| Node     |             |
| Node     | 22          |
| Device   | 1 💌         |
|          | 1<br>2<br>3 |
|          | 4           |

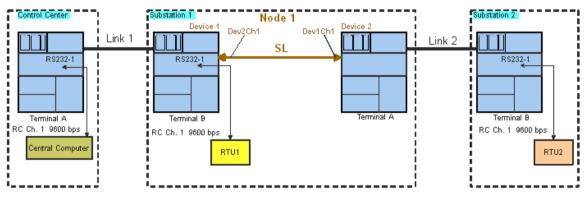

[sc\_vmux\_station\_address, 1,

Figure 7-36 Configuration of the vMUX Station Address

### 7.6.3 Example 1 Point-to-Multipoint Connection

The figure below shows a connection of two RTU's to a control center using the same data channel (RC Ch1). This is a point-to-multipoint connection. The channel is transmitted via Power-Link 50/100 and the vMUX with 9600 bps. The routing of the data channel between the 2 transmission links is carried out via StationLink. Further data for this example:

- data mode = IEC-101
- UART mode = 8E1
- PowerLine Ch 1



[cdptmcdc-120813-01.tif, 1, en

Figure 7-37 Point-to-multipoint connection of a data channel

The interface for this data channel is the RS 232-1 connector at the PowerLink connector panel. Link 1 is the connection between the control center and the substation 1. The RC Ch1 in Terminal B from this link is direct connected to the RTU1 and additional to the StationLink (SL) for routing to the Terminal A from Link 2. Via Link 2 the data channel is connected to the RTU2 in substation 2.



### NOTE

For more details of the PowerLink system resp service configuration, we refer you to the chapter 3 Installation and Commissioning in this manual.

Subsequent you'll find the **vMUX resp. SL configuration** for the 4 PowerLink terminals which is different for each device.

### vMUX Configuration for Link 1 Terminal A

Terminal A from Link 1 is connected to the central computer. In the figure below the vMUX con-figuration is shown:

| Label  | Port      | Datarate | Data mode   | UART mode | Cont. inv. | Port B | Channel        | Priority |
|--------|-----------|----------|-------------|-----------|------------|--------|----------------|----------|
| RC CH1 | RS232-1 🔻 | 9600 🔻   | IEC-101 🛛 🗨 | 8E1 🗨     |            |        | 1 🔷            | 0        |
|        | 🔻         |          |             | 7N1       |            | Contro | l Center       | 1        |
|        | 🔻         |          |             | 7N1       |            |        |                | Link 1   |
|        | 🖵         |          |             | 7N1       |            |        | R\$232-1       |          |
|        | 🔻         |          |             | 7N1       |            |        |                |          |
|        | 🔻         |          |             | 7N1       |            | Te     | minal A        |          |
|        | 🔻         |          |             | 7N1       |            |        | 1 9600 bps     |          |
|        | 🔻         |          |             | 7N1       |            | Ce     | ntral Computer |          |

#### [sc\_example\_vmux\_rc\_ch1, 1, --\_--]

Figure 7-38 vMUX settings for the RC Ch1 in Terminal A from Link 1

In Terminal A from Link 1 only the local port needs to be configured. Enter the Label, Port, Data rate, Data-Mode, UART Mode and the used channel for the transmission via the Power Line. The Prio setting is only available in case of the Data Pump mode dynamic.



### NOTE

For more details of the vMUX configuration, we refer you to the chapter 3 *Installation and Commissioning* in this manual.

#### vMUX Configuration for Link 1 Terminal B

Terminal B from Link 1 is connected on the one hand to the local RTU and on the other hand to the StationLink in substation 1.

The vMUX configuration is given below. First of all the <vMUX Station Address> has to be completed:

For each PowerLink 50/100 which is connected to a StationLink the

Link settings (Link 0...2047), Terminal (A resp. B)

and the

**Node settings** (Node number 0...1023; Device 1 to 4) have to be defined in this form:

| Link     |   |   |  |
|----------|---|---|--|
| Link     |   | 1 |  |
| Terminal | В | - |  |
|          |   |   |  |
| Node     |   |   |  |
| Node     |   | 1 |  |
| Device   | 1 | • |  |
|          |   |   |  |



Figure 7-39 vMUX Station address settings for Terminal B from Link 1

After the vMUX station address has been completed (refer also to 7.6.2 The vMUX Node) continue with the vMUX configuration for the data channel.

In our example the Terminal B from Link 1 needs the settings shown in the figure below:

7.6 Examples of Using the vMUX and StationLink

| Label  | Port      | Datarate | Data mode   | UART mode | Cont. inv. | Port B                  | Channel        | Priority      |
|--------|-----------|----------|-------------|-----------|------------|-------------------------|----------------|---------------|
| RC CH1 | RS232-1 🗡 | 9600 🔻   | IEC-101 🛛 🗨 | 8E1 🗨     |            |                         | 1 🗸            | 0             |
|        | 🔻         |          |             | 7N1       |            | Substation 1<br>De      | vice 1 Dev2Ch1 | Node 1<br>Dev |
|        | 🔻         |          |             | 7N1       |            |                         |                | SL            |
|        | 🖵         |          |             | 7N1       |            | R\$232                  |                |               |
|        | 🔻         |          |             | 7N1       |            |                         |                |               |
|        | 🔻         |          |             | 7N1       |            | Terminal<br>RC Ch. 1 96 | Steep          |               |
|        | 🔻         |          |             | 7N1       |            |                         | RTU1           |               |
|        | 🔻         |          |             | 7N1       |            |                         |                |               |

[sc\_example\_vmux\_rc\_ch1\_terminalb, 1, --\_--]

Figure 7-40 vMUX settings for the RC Ch1 in Terminal B from Link 1

Here the local port for the connection to the local RTU1, as well as the StationLink (SL) is configured.

| Label  | Channel             | Priority           | Dest. 1 dev. | Channel | Dest. 2 dev. | Channel | Dest. 3 dev. | Channel |
|--------|---------------------|--------------------|--------------|---------|--------------|---------|--------------|---------|
| RC CH1 | 1                   | 0                  | 2 🔻          | 1 🔷     | 2 🔻          | 🔻       | 2 🔻          | 🔻       |
|        | 0 <sup>Substa</sup> | tion 1<br>Device 1 | Node 1       | · ·     | 2            |         | 2            |         |
|        | 0                   | Ľ                  | Dev2Ch1      | Dev     | 2            |         | 2            |         |
|        | 0                   | R\$232-1           | 7            | -       | 2            |         | 2            |         |
|        | 0                   |                    |              | -       | 2            |         | 2            |         |
|        | 0 т                 | erminal B          |              | -       | 2            |         | 2            |         |
|        | 0 RC Ch             | n. 1 9600 bps      | +            | -       | 2            |         | 2            |         |
|        | 0                   |                    | RTU1         | -       | 2            |         | 2            |         |

[sc\_example\_vmux\_sl\_rc\_ch1, 1, --\_-

Figure 7-41 vMUX StationLink settings for the RC Ch1 in Terminal B from Link 1

The SL data describe the destination 1 (device 2 and channel 1). For the further transmission of this data channel via Link 2 the Power Line channel 1 has to be used as well. This has to be observed in the configuration of Terminal A and B in Link 2.



### NOTE

For more details of the vMUX configuration, refer to the chapter 3 Installation and Commissioning in this manual.

### vMUX Configuration for Link 2 Terminal A

Terminal A from Link 2 is connected to the StationLink. Also here we have to start with the vMUX station address settings like described before for Terminal B from Link 1.

| Link     |   |   |  |
|----------|---|---|--|
| Link     |   | 2 |  |
| Terminal | А | • |  |
|          |   |   |  |
| Node     |   |   |  |
| Node     |   | 1 |  |
| Device   | 2 | • |  |
|          |   |   |  |

sc\_example\_vmux\_stationaddress\_link2, 1, --\_-

Figure 7-42 vMUX Station address for Terminal A Link 2

The further configuration is shown in the figure below:

| Label  | Туре    | Channel | Priority | Dest. dev. | Dest. ch. | Datarate         | Datarate | Data mode   | UART mode |
|--------|---------|---------|----------|------------|-----------|------------------|----------|-------------|-----------|
| RC CH1 | RS232 🔫 | 1 🔻     | 0        | 1 🔷        | 1 🔷       | 9600 🗨           | 0        | IEC-101 🛛 🗨 | 8E1 🗨     |
|        | 🔻       | -       | 0        | 1          | ide 1     | Device 2         |          | Subst       | -         |
|        |         | -       | 0        | 1          | - SL      | Dev1Ch1 Device 2 | L L      | ink 2       |           |
|        |         | -       | 0        | 1          | -         |                  |          |             |           |
|        | 🔻       |         | 0        | 1          | -         |                  |          |             | -         |
|        | 🔻       | -       | 0        | 1          | -         | Termina          | al A     | ļ.          |           |
|        | 🔻       | -       | 0        | 1          | -         |                  | 1        | RC          | ~         |

Figure 7-43 StationLink configuration of Terminal A

For Link 2 Terminal A only the StationLink configuration is necessary. The StationLink destination in this device is Terminal B from Link 1 using the Power Line channel 1.

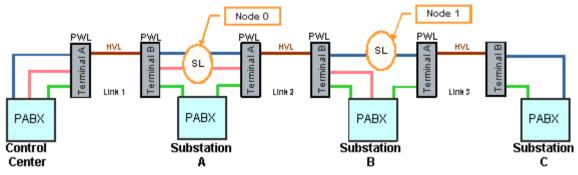
### vMUX Configuration for Link 2 Terminal B

In the example, the Terminal B from Link 2 is connected to the RTU2 in substation 2 without any StationLink ref. to *Figure 7-37*. Consequently the vMUX configuration is only concerning the local port for the data channel RC CH1.

| Label  | Port      | Datarate | Data mode   | UART mode | Cont. inv. | Port B | Channel       | Priority |
|--------|-----------|----------|-------------|-----------|------------|--------|---------------|----------|
| RC CH1 | RS232-1 🔻 | 9600 🔻   | IEC-101 🛛 🗨 | 8E1 🗨     |            |        | 1 🔻           | 0        |
|        | 💌         |          |             | 7N1       |            | S      | ubstation 2   |          |
|        | 🔻         |          |             | 7N1       |            | Link 2 |               | 1 1      |
|        | 💌         |          |             | 7N1       |            |        | R\$232-1      |          |
|        | 🔻         |          |             | 7N1       |            |        |               | 11       |
|        | 🔻         |          |             | 7N1       |            | [I     | Terminal B    | J        |
|        | 🔻         |          |             | 7N1       |            |        | RC Ch. 1 9600 | ops      |
|        | 🔻         |          |             | 7N1       |            |        |               | RTU2     |

Figure 7-44 vMUX settings for the RC Ch1 in Terminal B from Link 2




### NOTE

For more details of the vMUX configuration, we refer you to the chapter *3 Installation and Commissioning* in this manual.

### 7.6.4 Example 2 Routing of Voice Channels

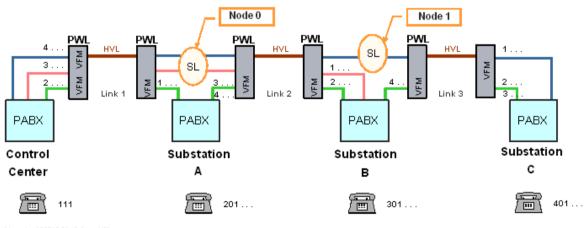
The figure below shows the voice transmission between a control center and 3 substations via vMUX. In the substations A (Node 0) and B (Node 1) the voice channels are routed (in compressed mode) to the next PLC Link via StationLink.

In this example, we assume a voice data rate from 6.3 Kbps.



[dwrvcdss-120813-01.tif, 1, en\_US]

Figure 7-45 Routing of voice channels between different substations


HVL High voltage line

PWL PowerLink

SL StationLink

In the substations, the voice channels are connected to PABX. Therefore the PowerLinks must be equipped with VFM modules. The PowerLink in the control center needs 2 VFM modules because 3 voice channels are connected.

The other PowerLinks need only one VFM module because of the channel routing in substation A resp. B. Details are shown in the figure below.



[dwvcalpx-120813-01.trf, 1, en\_US]

Figure 7-46 Voice channel allocation in the PABX

### vMUX Configuration for Link 1 Terminal A

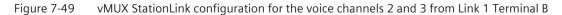
In this PowerLink, only the configuration of the vMUX for the 3 voice channels using the local ports is necessary.

| Label   | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level | 4 wire | LEC | VAD | Channel | Priority | Group |
|---------|------------|---------------|-------------------|-------------|----|--------------|--------|-----|-----|---------|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | -3.5 dB      |        |     |     | 1 🔷 🔻   | 0        | 🔻     |
| Voice 2 | VFx-1/P2 🔻 | G.723 (6.3) 🗨 | S2 🔻              | -3.5        | dB | -3.5 dB      |        |     |     | 2 🔻     | 0        | 🔻     |
| Voice 3 | VFx-2/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | 4 <b>PWL</b> |        | WL. |     | 3 🔻     | 0        | 🕶     |
|         | 🔻          |               | S2                | 0           | dB | 75           | HVA    |     |     |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 2 M          | Link 1 | W 1 |     |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | PABX         |        | ]   |     |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | Control      |        | ]   |     |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | Center       |        | ]   |     |         | 0        |       |
|         |            | 0             |                   |             |    | 111          |        |     |     |         | 0        |       |

sc\_example\_vmux\_3voice, 1,

Figure 7-47 vMUX configuration for the 3 voice channels in Terminal A from Link 1

### vMUX Configuration for Link 1 Terminal B


In Terminal B from Link 1, we find the voice channel 1 connected to the PABX and the voice channels 2 and 3 routed to the StationLink in Node 0. For the vMUX Station Address settings refer to the description, 7.6.2 The vMUX Node. The other settings are given below:

| Label   | Port       | Datarate      | Signalizati<br>on | Input level O   | utput level | 4 wire | LEC | VAD | Channel | Priority | Group |
|---------|------------|---------------|-------------------|-----------------|-------------|--------|-----|-----|---------|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5 dB         | -3.5 dB     |        |     |     | 1 🔷     | 0        | 🕶     |
|         | 🔻          |               | S2                | /- Node         | 0 0 dB      |        |     |     |         | 0        |       |
|         | - •        | -             | S2                |                 | 0 dB        |        |     |     |         | 0        |       |
|         | - •        |               | S2                | SL 3 W          | 0 dB        |        |     |     |         | 0        |       |
|         | 🔻          |               | S2                |                 | 0 dB        |        |     |     |         | 0        |       |
|         | 🔻          |               | S2                | PABX            | 0 dB        |        |     |     |         | 0        |       |
|         | 🔻          |               | S2                | Substation<br>A | 0 dB        |        |     |     |         | 0        |       |
|         | 🔻          |               | S2                | 0 dB            | 0 dB        |        |     |     |         | 0        |       |
|         |            | 0             |                   |                 |             |        |     |     |         | 0        |       |

sc\_example\_vmux\_voice\_ch1\_link1, 1, --\_--]

Figure 7-48 vMUX configuration for the voice channel 1 for Link1 Terminal B

| Label   | Туре    | Channel | Priority | Dest. dev. | Dest. ch. | Datarate      | Datarate Data mode |
|---------|---------|---------|----------|------------|-----------|---------------|--------------------|
| Voice 2 | Voice 🗨 | 2 🗸     | 0        | 2 🗸        | 2 🗸       | G.723 (6.3) 🔻 | Node 0             |
| Voice 3 | Voice 🗨 | 3 🗸     | 0        | 2 🗸        | 3 🔻       | G.723 (6.3) 🔻 | PWL PWL            |
|         | 🔻       |         | 0        | 2          |           |               |                    |
|         | 🔻       |         | 0        | 2          |           |               | M1 3               |
|         | 🔻       |         | 0        | 2          |           |               | PABX               |
|         | 🔻       |         | 0        | 2          |           |               |                    |
|         | 🔻       |         | 0        | 2          |           |               | Substation<br>A    |
|         |         |         |          |            |           |               |                    |



7.6 Examples of Using the vMUX and StationLink

### vMUX Configuration for Link 2 Terminal A

In Terminal A from Link 2, we find the voice channel 1 connected to the PABX and the voice channels 2 and 3 routed to the StationLink in Node 0. For the vMUX Station Address settings refer to the description, 7.6.2 The vMUX Node. The other settings are given below:

| Label   | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level | I  | 4 wire       | LEC  | VAD    | Channel | Priority | Group |
|---------|------------|---------------|-------------------|-------------|----|--------------|----|--------------|------|--------|---------|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | -3.5         | dB | $\checkmark$ |      |        | 1 🔷     | 0        | 🕶     |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB | /            | Nod  | e 0    |         | 0        |       |
|         | •          |               | S2                | 8           | dB | 0            | dB |              | PW   | HVL    |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | đB | SL           | 3    |        |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB | PABX         |      | Link 2 |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB |              |      |        |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB | Substa<br>A  | tion |        |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB |              |      |        |         | 0        |       |
|         |            | 0             |                   |             |    |              |    |              |      |        |         | 0        |       |

[sc\_example\_vmux\_voice1\_link2, 1, --\_--]

Figure 7-50 vMUX configuration for the voice channel 1 for Link 2 Terminal A

| Label   | Туре    | Channel | Priority | Dest. dev.      | Dest. ch. | Datarate      |
|---------|---------|---------|----------|-----------------|-----------|---------------|
| Voice 2 | Voice 🔻 | 2 🔻     | 0        | 1 🔻             | 2 🔻       | G.723 (6.3) 🔻 |
| Voice 3 | Voice 🗨 | 3       | 0        | 1 🔻             | 3 🔻       | G.723 (6.3) 🔻 |
|         | 🔻       |         | 0        | Node            |           |               |
|         | 🔻       |         | 0        |                 | HVL       |               |
|         | 🔻       |         | 0        |                 | Link 2    |               |
|         | 🔻       |         | 0        | PABX            |           |               |
|         | 🔻       |         | 0        | Substation<br>A |           |               |
|         | i       |         |          | A               |           |               |

Figure 7-51 vMUX StationLink configuration for the voice channels 2 and 3 for Link 2 Terminal A

### vMUX Configuration for Link 2 Terminal B

In Terminal B from Link 2, the voice channel 1 and 2 are connected to the PABX and the voice channel 3 is routed to the StationLink in Node 1. For the vMUX Station Address settings refer to the description, 7.6.2 The vMUX Node. The other settings are given below:

| Label   | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level |    | 4 wire  | LEC             | VAD | Channel | Priority | Group |
|---------|------------|---------------|-------------------|-------------|----|--------------|----|---------|-----------------|-----|---------|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | -3.5         | dB |         |                 |     | 1 🔷 🔻   | 0        | 🔻     |
| Voice 2 | VFx-1/P2 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | -3.5         | dB |         |                 |     | 2 🗸     | 0        | 🔻     |
|         | 🔻          | -             | S2                | 0           | dB | 0            | dB | HVL PWL | SL              | PWL |         | 0        |       |
|         | 🔻          |               | <u>82</u>         | 0           | dB | 0            | dB | Link 2  | Ţ               | VEW |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB |         | PABX            |     |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0            | dB |         | Substation<br>B | 1   |         | 0        |       |

Figure 7-52 vMUX configuration for the voice channels 1 and 2 for Link 2 Terminal B

| Label   | Туре    | Channel | Priority | Dest. dev. | Dest. ch.  | Datarate      |
|---------|---------|---------|----------|------------|------------|---------------|
| Voice 3 | Voice 🗸 | 3 🔻     | 0        | 2 🔻        | 2 🗸        | G.723 (6.3) 🔻 |
|         | 🔻       | -       | 0        | 1          | PV         |               |
|         | 🔻       |         | 0        | 1          | <br>Link 2 | 2 4 ¥         |
|         | 🔻       |         | 0        | 1          | Link 2     |               |
|         | 🔻       |         | 0        | 1          |            | Substation    |
|         | 🔻       |         | 0        | 1          |            | В             |
|         | 🔻       |         | 0        | 1          |            |               |
|         | 🔻       |         | 0        | 1          |            |               |

[sc\_example\_vmux\_v3\_link2, 1, --\_

```
Figure 7-53 vMUX StationLink configuration for the voice channel 3 from Link 2 Terminal B
```

### vMUX Configuration for Link 3 Terminal A

In Terminal A from Link 3, the voice channel 1 is connected to the PABX and the voice channel 2 routed to the StationLink in Node 1. For the vMUX Station Address settings refer to the description, 7.6.2 The vMUX Node. The other settings are given below:

| Label   | Port       | Datarate      | Signalizati<br>on | Input level |    | Output level |    | 4 wire        | LEC                                          | VAD    | Channel | Priority | Group |
|---------|------------|---------------|-------------------|-------------|----|--------------|----|---------------|----------------------------------------------|--------|---------|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5        | dB | -3.5         | dB |               |                                              |        | 1 🔷     | 0        | 🔻     |
|         | 🔻          | F             | S2                | 0           | dB | 0 (          | dB |               | <u>,                                    </u> | Node 1 |         | 0        |       |
|         | 🔻          | -             | S2                | 0           | dB | 0 0          | dB | SL            |                                              |        |         | 0        |       |
|         | 🔻          | - \           | S2                | 0           | dB | 0 0          | dB |               | 42                                           | E      |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0 (          | dB |               | コフ                                           | Link 3 |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0 0          | dB | PABX          |                                              |        |         | 0        |       |
|         | 🔻          |               | S2                | 0           | dB | 0 0          | dB | Substati<br>B | on                                           |        |         | 0        |       |

sc\_example\_vmux\_v1\_link3, 1,

Figure 7-54 vMUX configuration for the voice channel 1 for Link3 Terminal A

7.6 Examples of Using the vMUX and StationLink

| Label   | Туре    | Channel | Priority | Dest. dev. | Dest. ch. | Datarate      |
|---------|---------|---------|----------|------------|-----------|---------------|
| Voice 3 | Voice 🗸 | 3 🔻     | 0        | 1 🔷        | 3 🔻       | G.723 (6.3) 🔻 |
|         | 🔻       |         | 0        | 1          |           | Node 1        |
|         | 🔻       |         | 0        | 1          |           | SL PWL HVL    |
|         | 🔻       |         | 0        | 1          | - 1       | 4¥            |
|         | 🔻       |         | 0        | 1          | F         | PABX          |
|         | 🔻       |         | 0        | 1          | Sul       | ostation      |
|         |         |         |          |            |           | В             |

Figure 7-55 vMUX StationLink configuration for the voice channel 3 from Link 3 Terminal A

### vMUX Configuration for Link 3 Terminal B

Both voice channels from the PowerLink in substation C are connected to the PABX. Therefore only the local port configuration in the vMUX is necessary. The settings are given below:

| Label   | Port       | Datarate      | Signalizati<br>on | Input level | Output level | 4 wire | LEC    | VAD | Chann         | el | Priority | Group |
|---------|------------|---------------|-------------------|-------------|--------------|--------|--------|-----|---------------|----|----------|-------|
| Voice 1 | VFx-1/P1 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5 dB     | -3.5 dB      |        |        |     | 1             | •  | 0        | 🕶     |
| Voice 3 | VFx-1/P2 🔻 | G.723 (6.3) 🔻 | S2 🔻              | -3.5 dB     | -3.5 dB      |        |        |     | 2 .           | •  | 0        | 🕶     |
|         | 🔻          | F             | S2                | 6 dB        | 6 dB         | - Node | 1      |     |               |    | 0        |       |
|         | 🔻          | -             | S2                | 0 dB        | 0 dB         |        |        | 1   | $ \leq $      |    | 0        |       |
|         | 🔻          |               | S2                | 0 dB        | 0 dB         | · 6    | nk 3   | 2   | $\mathcal{I}$ |    | 0        |       |
|         | 🔻          |               | S2                | 0 dB        | 0 dB         | _      | пк з 🛄 |     | ABX           |    | 0        |       |
|         | 🔻          |               | S2                | 0 dB        | 0 dB         |        |        |     | tation        |    | 0        |       |
|         | 🔻          |               | S2                | 0 dB        | 0 dB         |        |        |     | C             |    | 0        |       |

sc\_example\_vmux\_terminalb\_link3, 1, --\_

Figure 7-56 vMUX configuration for the Terminal B from Link 3

# 8 Diagnostics and Error Handling

| 8.1  | Overview                                                     | 534 |
|------|--------------------------------------------------------------|-----|
| 8.2  | Control and Signaling Elements on the CSPi Module            | 535 |
| 8.3  | Control and Signaling Elements on the vMUX                   | 552 |
| 8.4  | Control and Signaling Elements on the PU4 module (iSWT 3000) | 560 |
| 8.5  | Control and Signaling Element on the Power Supply            | 563 |
| 8.6  | System Information                                           | 565 |
| 8.7  | Test Modes                                                   | 567 |
| 8.8  | CSPi Diagnostic Mode                                         | 568 |
| 8.9  | Commands and Test Loops                                      | 569 |
| 8.10 | Quality Data QD                                              | 576 |
| 8.11 | Data Pump Block Error                                        | 578 |
| 8.12 | Diagnosis of Ethernet EN100 Module                           | 581 |
| 8.13 | Problem Tracking                                             | 584 |
| 8.14 | Recommended Handling of Power Cycle                          | 590 |

### 8.1 Overview

At the beginning of this chapter, you'll find a figure showing the **control and signaling elements** of the CSPi module. Subsequently the function of the buttons and LED significations are described.

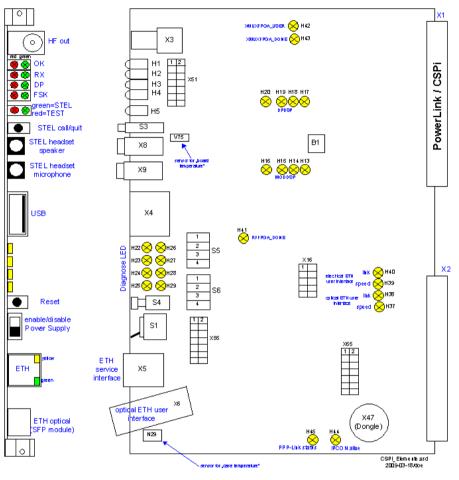
The PowerLink system provides a diagnostic function displayed on 8 LED at the CSPi and vMUX module. They can be activated in the service program PowerSys with selecting various diagnostic modes. The significance of the LED in the corresponding modes is described in the section **Diagnostic LED H10 – H17 (CSPi) and H1 – H8 (vMUX)**.

For the SWT 3000 integrated in PowerLink the **control and signaling elements** of the PU4 module and diagnosis functions of the EN100 module are described.

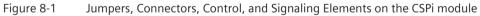
Alarms occurring in PowerLink are displayed in the PowerSys form <**Information / Alarms / Errors**>. The corresponding system reaction is shown in the section **System Alarm Display**.

Additional to the diagnostic LED also test modes can be selected in the service program. A corresponding description is available in the section **Test modes**.

The section **Data Pump block error** provides information about the display of block errors and useful adjustments for Data Pump block error supervision, in case of using the service Data Pump in the PowerLink.


In the section Quality Data (QD) information for the Quality Data records can be found.

The section **Problem Tracking** answers frequently asked questions (FAQ) about the PowerLink and the integrated protection signaling equipment iSWT 3000 and provides operating instructions for possible system reactions in case of disturbances resp. operating errors.


The function and contents of PowerLink Eventlog and iSWT 3000 Eventrecorders are described in chapter Service Program PowerSys and MemTool.

# 8.2 Control and Signaling Elements on the CSPi Module

### 8.2.1 General



[tdplcspi-031210-45.tif, 1, en\_US]



### Dongle (X47)

The dongle contains the information about enabled resp. possible services. An operation of the system without dongle is not possible.



### NOTE

Removing and inserting the dongle is only allowed, when the power is off!

The dongle can be (re)programmed on-board with the service program PowerSys. Therefore an applicable "dongle file" is needed. For further information see chapter *Commissioning* of this manual.

### 8.2.2 CSPi Input Elements in the Front Cover

### Service Telephone Button (S3)

S3 is used to control the function "Service Telephone" (STEL, EOW). You find further information about the service telephone function in chapter *Commissioning* 

### Service Telephone – Connectors for Headset (X8, X9)

At these two 3.5-mm stereo jacks, the upper one (X8) for the earpieces and the lower one (X9) for the microphone, a headset can be connected.

#### Reset Button (S4)

Pushing the reset button restarts the PowerLink, the integrated SWT 3000 and all functions. The reset button is located behind the front cover and cannot be pushed purposeless.



### ATTENTION:

NOTE

Reset interrupts also tele-protection operation! In case of integrated SWT 3000, a reset for SWT 3000 has to be only generated from CSPi module!

### Service Interface Connector (X5)

Ethernet connector for the Service PC. This interface can be switched between DHCP Server on (default setting) or DHCP Server off.

### Slot for SFP Module (X6)

Slot for an SFP module for the optical Ethernet user interface.

### 8.2.3 Input Elements Behind the Front Cover

### 8.2.3.1 Power Inhibit (Switch S1)

Table 8-1 CSPi-Switch S1

| Position |                         |
|----------|-------------------------|
| Down     | Power supply disabled   |
| Up       | Power supply is enabled |

#### 8.2.3.2 DIL-Switches

#### **DIL-Switch S5**

Table 8-2 DIL-Switches S5/1 to 4

| S5 | Pos | Explanation                                                                           |                                                               |  |  |
|----|-----|---------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| 1  | On  | MemTool operation (read/write CSPiFPR                                                 | DM)                                                           |  |  |
|    | Off | No MemTool operation                                                                  |                                                               |  |  |
| 2  | On  | Monitor active (for programming iSWT 3                                                | 000 with MemTool)                                             |  |  |
|    | Off | Monitor inactive                                                                      |                                                               |  |  |
| 3  | On  | Enable Debugger (Auto Reset is prevented, even if Auto Reset activated with PowerSys) |                                                               |  |  |
|    | Off | Disable Debugger                                                                      |                                                               |  |  |
| 4  | On  | S5/2 = off (monitor mode inactive)                                                    | S5/2 = on (monitor mode active)                               |  |  |
|    | Off | Diagnose mode after reset                                                             | CSPi initialization and self test only for use in the factory |  |  |
|    |     | Normal operation after reset                                                          | CSPi initialization only for use in the factory               |  |  |

Note-1: Changes are only recognized after Reset

In normal operation of the PowerLink, all switches have to be in "OFF" position!

### **DIL-Switch S6**

Table 8-3

| <b>S6</b> | Pos | Explanation                                                                                                     |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------|
| 1         | On  | Interface RM-1/SSM is used for IPCON terminal connection (needed for programming the IPCON FPROM).              |
|           | Off | Interface RM-1/SSM is used for CSPCON terminal (for CSPCON Monitor) or PowerSys (Applica-<br>tion)              |
| 2         | On  | CSPCON-Boot-Loader does not load CSPCON-Monitor resp. CSPCON-Application. Only for test purposes in the factory |
|           | Off | normal mode                                                                                                     |
| 3         | On  | n.u.                                                                                                            |
|           | Off | n.u.                                                                                                            |
| 4         | On  | n.u.                                                                                                            |
|           | Off | n.u.                                                                                                            |

In normal operation of the PowerLink, all switches have to be in "OFF" position!

### 8.2.3.3 CSPi Connector X3 (BNC)

This connector is used for measuring the HF transmit level of the configured services at the CSPi output. The level as well as the HF frequency is shown in the PowerSys service program in the form **<Information** – **Services**>.

### 8.2.3.4 CSPi Connector X4 (USB)

The USB connector X4 is for future use.

### 8.2.4 CSPi Operation Signaling LED in the Front Cover

DIL-Switches S6/1 to 4

The CSPi LED OK, RX, DP, FSK and STEL consist of 2 LED, a red one (Hx-1) and a green one (Hx-2), to inform the user about the actual state of PowerLink.

### The LED "OK"

|  | Table 8-4 | The LED "OK" (H1-1, H1-2) |
|--|-----------|---------------------------|
|--|-----------|---------------------------|

| State               | Reasons                                                             |
|---------------------|---------------------------------------------------------------------|
| Off                 | a) Power off or                                                     |
|                     | b) System failure!                                                  |
| green               | System is OK and no test mode or temporary setting is active        |
| green slow blinking | System is OK but a test mode or temporary setting is active.        |
| green fast blinking | System is OK but IPCON is not yet ready for operation               |
| red                 | Board alarm (BGAL) and no test mode or temporary setting is active  |
| red slow blinking   | Board alarm (BGAL) but any test mode or temporary setting is active |
| red fast blinking   | Board alarm (BGAL) and IPCON is not yet ready for operation         |

### The LED RX

| Table 8-5 The LED ' | "RX" (H2-1, H2-2)                                                                                                                                                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State               | Reasons                                                                                                                                                                                                                              |
| Off                 | a) Power off or                                                                                                                                                                                                                      |
|                     | b) System failure                                                                                                                                                                                                                    |
| green               | Receiver OK. Pilot alarm is off. AGC alarm is off, Signal to Noise alarm is off                                                                                                                                                      |
| green slow blinking | AGC limit reached (AGC alarm is on alarm relay NU) or AGC not locked                                                                                                                                                                 |
|                     | Overload in receive path – input level to high                                                                                                                                                                                       |
| green fast blinking | Signal to Noise alarm                                                                                                                                                                                                                |
| red                 | Error service 1 to 4                                                                                                                                                                                                                 |
| red slow blinking   | Pilot level to low                                                                                                                                                                                                                   |
| red fast blinking   | Receive level to high. ADC overflow, see also display overflow in the form <b><adjust-< b=""><br/><b>ment-RX leveling&gt;</b>. For further adjustment from the ADC ref. to chapter <i>Commis-</i><br/><i>sioning</i>.</adjust-<></b> |

### The LED DP

Table 8-6 The LED "DP" (H3-1, H3-2)

| State               | Reasons                                                           |
|---------------------|-------------------------------------------------------------------|
| Off                 | a) Power off or                                                   |
|                     | b) Service DP inactive (not configured) or                        |
|                     | c) Error occurred before starting service DP                      |
| green               | Data Pump has synchronized; xMUX has synchronized                 |
| green slow blinking | Data Pump has synchronized; xMUX has not synchronized             |
| green fast blinking | DP Configuration Alarm (Master-Master warning), xMUX Alarm        |
| red                 | Data Pump error (causes Auto Reset)                               |
| red slow blinking   | Data Pump not synchronized                                        |
| red fast blinking   | Signal Generator ON resp. Test configuration (e.g. xMUX Loop back |

xMUX = iMUX or SMUX

### The LED FSK

Table 8-7 The LED "FSK" (H4-1, H4-2)

| State               | Reasons                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| Off                 | a) Power off or                                                                                                              |
|                     | b) Service inactive (not configured) or                                                                                      |
|                     | c) Error occurred before starting service iFSK                                                                               |
| green               | iFSK 1 to 4 OK                                                                                                               |
| green slow blinking | "RX supervision alarm" or "signal quality alarm" or "TX signal overflow" in iFSK-1 and/or iFSK-2 and/or iFSK-3 and or iFSK-4 |
| green fast blinking | At least one iFSK channel not in normal operation (test mode)                                                                |
| red                 | Service iFSK error                                                                                                           |
| red slow blinking   | iFSK Level alarm (PAL)                                                                                                       |
| red fast blinking   | iFSK Configuration alarm (at least 1 parameter in a iFSK channel out of range)                                               |

### The LED STEL

Table 8-8

| State               | Reasons                                    |
|---------------------|--------------------------------------------|
| Off                 | Service telephone inactive                 |
| green               | STEL active                                |
| green slow blinking |                                            |
| green fast blinking | Signaling (Service telephone call request) |

### The LED TEST

| Table 8-9 | The LED "TEST" (H5-2) |
|-----------|-----------------------|
|-----------|-----------------------|

| State             | Reasons                                                |
|-------------------|--------------------------------------------------------|
| Off               | Service telephone inactive                             |
| red               | not used                                               |
| red slow blinking | Any Test mode is active (GENALR active with Test mode) |
| red fast blinking | Diagnose mode is active                                |

#### The LED in ETH RJ45 Connector C5

| Table 8-10 Th | ne LED in the ETH RJ45 | connector |
|---------------|------------------------|-----------|
|---------------|------------------------|-----------|

The LED "STEL" (H5-1)

| LED            | State/Explanation                                |
|----------------|--------------------------------------------------|
| yellow (top)   | off: Ethernet Service Interface is not connected |
|                | on: Ethernet Service Interface is connected      |
| green (bottom) | off: Ethernet Service Interface with 10 Mbps     |
|                | • on: Ethernet Service Interface with 100 Mbps   |

#### Signaling during Firmware Download

During firmware download with PowerSys the 4 LED "OK", "RX", "DP" and "FSK" are used for signaling download activities. Firmware download means that data are loaded into FPROM on board CSPi. During download the LED "OK", "RX", "DP" and "FSK" are flashing "crosswise", what means that LED are flashing alternating:

- OK = red and RX = off and DP = off and FSK = red or
- OK = off and RX = red and DP = red and FSK = off

#### Signaling during VFx Programming

The firmware for the controllers of the VFX boards are stored in the CSPi FPROM. During system startup CSPi compares the version and the revision of the VFX controllers with the version and revision stored in the CSPi. Disparity between the version causes:

- In the case of normal operation:
   PowerLink is generating an error which causes auto reset
- In the case that a test mode is active: PowerLink is generating a warning (non urgent alarm)
- In the case of diagnose mode is active: Those VFX boards that needs a firmware update are programmed

During programming firmware for VFx controllers the 4 LED "OK", "RX", "DP" and "FSK" are used for signaling programming activities.

The Firmware for the controller on boards VFx-1 to 3 is loaded from CSPi\_FPROM to VFXCON\_FPROM only in the diagnostic mode. To switch into this mode DIL switch S5/4 is set to "On" before the restart of the

system. Before a VFx programming sequence is started, the LED "OK", "RX", "DP" and "FSK" are flashing 5 times "parallel". During download the LED "OK", "RX", "DP" and "FSK" are flashing "crosswise", what means that LED are flashing alternating.

- OK = red and DP = red and RX = off and FSK = off or
- OK = off and DP = off and RX = **red** and FSK = **red**

The firmware download is finished with a reset. This causes PowerLink to restart in the diagnostic mode (LED "OK" is green fast blinking).

Then the diagnostic mode is finished manually as described in *Diagnostic Mode*.

#### **Signaling Auto Reset**

Auto-Reset is executed by internal watchdog. Before the watchdog timer expires LED "OK", "RX", "DP" and "FSK" are flashing 5 times between states "red" and "off".

### 8.2.5 CSPi LED Behind the Front Cover

### 8.2.5.1 MODDSP LED H13 to H16

Only for factory use

### 8.2.5.2 Data Pump LED H17 to H20

Only for factory use

### 8.2.5.3 ETH User Interfaces LED H37 to H40

Table 8-11 The ETH User Interface LED

| LED | State | Explanation                                         |
|-----|-------|-----------------------------------------------------|
| H37 | off   | Electrical Ethernet User Interface is not connected |
|     | on    | Electrical Ethernet User Interface is connected     |
| H38 | off   | Electrical Ethernet User Interface with 10 Mbps     |
|     | on    | Electrical Ethernet User Interface with 100 Mbps    |
| H39 | off   | Optical Ethernet User Interface is not connected    |
|     | on    | Optical Ethernet User Interface is connected        |
| H40 | off   | Optical Ethernet User Interface with 10 Mbps        |
|     | on    | Optical Ethernet User Interface with 100 Mbps       |

#### 8.2.5.4 RFFPGA\_DONE LED H41

Table 8-12The RFFPGA DONE LED

| LED | State | Explanation            |
|-----|-------|------------------------|
| H41 | off   | RFFPGA initialized     |
|     | on    | RFFPGA not initialized |

#### 8.2.5.5 MUXFPGA\_USER LED H42

Only for factory use

#### 8.2.5.6 MUXFPGA\_Done LED H43

| Table 8-13 | The MUXFPGA | DonalED  |
|------------|-------------|----------|
|            |             | DONE LED |

| LED | State | Explanation             |
|-----|-------|-------------------------|
| H43 | off   | MUXFPGA initialized     |
|     | on    | MUXFPGA not initialized |

#### 8.2.5.7 IPCON LED H44 to H45

Table 8-14 The RFFPGA LED

| LED | States               | Explanation        |
|-----|----------------------|--------------------|
| H44 | off                  | power off          |
|     | blinking < 1 s cycle | Boot loader active |
|     | blinking 1 s cycle   | Linux alive        |
| H45 | off                  | PPP not active     |
|     | on                   | PPP active         |

#### 8.2.5.8 Diagnostic LED H22 to H29

For diagnostics purposes, 8 LED (H22 to H29) are available on the CSPi module. The LED are located behind the front cover. The significance depends on the diagnostic mode which is selected in the service program PowerSys in the form: **<Configuration – Option**>.

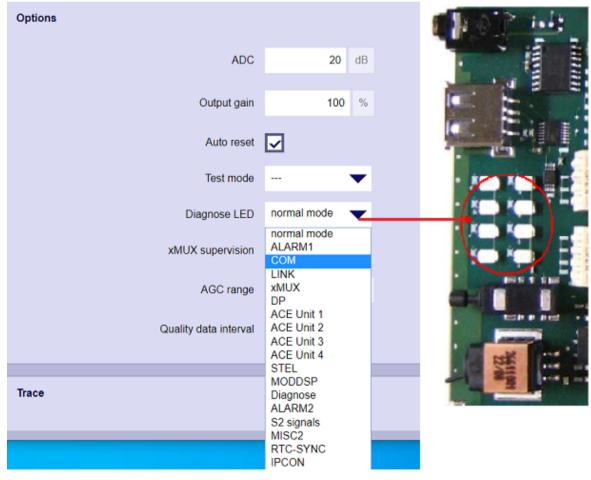



Figure 8-2 The adjust

The adjustment of the diagnostic LED display

#### Normal Operating Mode (Status of Equalizer)

The significance of the LED H22 to H29 in the normal operating mode is shown in the following table.

| Table 8-15 | Diagnostic LED in the "normal mode" |
|------------|-------------------------------------|
| Table o-15 | Diagnostic LED in the normal mode   |

| Status               | LED   | Explanation                   | LED   | Explanation                   |
|----------------------|-------|-------------------------------|-------|-------------------------------|
| off                  | DIAG1 | ACE for Service-1 is disabled | DIAG5 | ACE for Service-1 is disabled |
| yellow               | (H22) | ACE TX state is "ready"       | (H26) | ACE RX state is "ready"       |
| yellow slow blinking |       | ACE TX is "busy" or "locked"  |       | ACE RX is "busy"              |
| yellow fast blinking |       | ACE TX failed (TO or S6)      |       | ACE RX failed (TO or FAILED)  |
| off                  | DIAG2 | ACE for Service-2 is disabled | DIAG6 | ACE for Service-2 is disabled |
| yellow               | (H23) | ACE TX state is "ready"       | (H27) | ACE RX state is "ready"       |
| yellow slow blinking |       | ACE TX is "busy" or "locked"  |       | ACE RX is "busy"              |
| yellow fast blinking |       | ACE TX failed (TO or S6)      |       | ACE RX failed (TO or FAILED)  |
| off                  | DIAG3 | ACE for Service-3 is disabled | DIAG7 | ACE for Service-3 is disabled |
| yellow               | (H24) | ACE TX state is "ready"       | (H28) | ACE RX state is "ready"       |
| yellow slow blinking |       | ACE TX is "busy" or "locked"  |       | ACE RX is "busy"              |
| yellow fast blinking |       | ACE TX failed (TO or S6)      |       | ACE RX failed (TO or FAILED)  |
| off                  | DIAG4 | ACE for Service-4 is disabled | DIAG8 | ACE for Service-4 is disabled |
| yellow               | (H25) | ACE TX state is "ready"       | (H29) | ACE RX state is "ready"       |
| yellow slow blinking |       | ACE TX is "busy" or "locked"  |       | ACE RX is "busy"              |
| yellow fast blinking |       | ACE TX failed (TO or S6)      |       | ACE RX failed (TO or FAILED)  |

ACE RX state is set to "failed" after start-up TO = timeout

#### ALARM 1 Mode (Status of Alarm Relays)

The significance of the LED H22 to H29 in the alarm 1 mode is shown in the following table.

| Status               | LED   | Explanation      | LED   | Explanation           |
|----------------------|-------|------------------|-------|-----------------------|
| off                  | DIAG1 | Alarm GENALR off | DIAG5 | Alarm NDALR off       |
| yellow               | (H22) | Alarm GENALR on  | (H26) | Alarm NDALR on        |
| yellow slow blinking |       |                  |       |                       |
| yellow fast blinking |       |                  |       |                       |
| off                  | DIAG2 | Alarm SALR off   | DIAG6 | Alarm REMALR off      |
| yellow               | (H23) | Alarm SALR on    | (H27) | Alarm REMALR on       |
| yellow slow blinking |       |                  |       |                       |
| yellow fast blinking |       |                  |       |                       |
| off                  | DIAG3 | Alarm EALR off   | DIAG7 | Alarm DPALR off       |
| yellow               | (H24) | Alarm EALR on    | (H28) | Alarm DPALR on        |
| yellow slow blinking |       |                  |       |                       |
| yellow fast blinking |       |                  |       |                       |
| off                  | DIAG4 | Alarm SNALR off  | DIAG8 | FSK1, 2, 3, 4 ALR off |
| yellow               | (H25) | Alarm SNALR on   | (H29) | FSK1, 2, 3, 4 ALR on  |
| yellow slow blinking |       |                  |       |                       |
| yellow fast blinking |       |                  |       |                       |

Table 8-16 Diagnostic LED in the "ALARM1" mode

#### COM Mode

The significance of the LED H22 to H29 in the com mode is shown in the following table.

| Status               | LED   | Explanation        | LED   | Explanation            |
|----------------------|-------|--------------------|-------|------------------------|
| Off                  | DIAG1 | Rx: iLAN (toggle ) | DIAG5 | Tx: iLAN (toggle )     |
| Yellow               | (H22) | Rx: iLAN (toggle ) | (H26) | Tx: iLAN (toggle )     |
| yellow slow blinking |       |                    |       |                        |
| yellow fast blinking |       |                    |       |                        |
| Off                  | DIAG2 | Rx: RM- (toggle )  | DIAG6 | Tx: RM (toggle )       |
| Yellow               | (H23) | Rx: RM (toggle )   | (H27) | Tx: RM (toggle )       |
| yellow slow blinking |       |                    |       |                        |
| yellow fast blinking |       |                    |       |                        |
| Off                  | DIAG3 | Rx: RM-2 (toggle ) | DIAG7 | Tx: RM-2 (toggle )     |
| Yellow               | (H24) | Rx: RM-2 (toggle ) | (H28) | Tx: RM-2 (toggle )     |
| yellow slow blinking |       |                    |       |                        |
| yellow fast blinking |       |                    |       |                        |
|                      |       | Rx: SSM/RM-1       |       |                        |
| Off                  | DIAG4 | (toggle )          | DIAG8 | Tx: SSM/RM-1 (toggle ) |
|                      |       | Rx: SSM/RM-1       |       |                        |
| Yellow               | (H25  | (toggle )          | (H29) | Tx: SSM/RM-1 (toggle ) |
| yellow slow blinking |       |                    |       |                        |
| yellow fast blinking |       |                    |       |                        |

Table 8-17 Diagnostic LED in the "COM" mode

iLAN = internal connection between CSPi, iSWT, and VFx. Must toggle if iSWT or VFx is used RM = Remote Monitoring channel communication via line

RM-1 = PowerSys communication or IPCON console via connector panel

RM-2 = RM channel communication via RM-2 interface (route communication

#### LINK Mode (Status of RM Channel

The significance of the LED H22 to H29 in the link mode is shown in the following table.

Table 8-18 Diagnostic LED in the "LINK" mode

| Status               | LED   | Explanation                       | LED   | Explanation |
|----------------------|-------|-----------------------------------|-------|-------------|
| off                  | DIAG1 | DDI Layer2 disconnected           | DIAG5 |             |
| yellow               | (H22) | DDI Layer2 connected              | (H26) |             |
| yellow slow blinking |       |                                   |       |             |
| yellow fast blinking |       |                                   |       |             |
| off                  | DIAG2 | RM-Layer2 disconnected            | DIAG6 |             |
| yellow               | (H23) | RM-Layer2 connected               | (H27) |             |
| yellow slow blinking |       |                                   |       |             |
| yellow fast blinking |       |                                   |       |             |
| off                  | DIAG3 | SSB/RM-2 Layer2 discon-<br>nected | DIAG7 |             |
| yellow               | (H24) | SSB/RM-2 Layer2<br>connected      | (H28) |             |
| yellow slow blinking |       |                                   |       |             |
| yellow fast blinking |       |                                   |       |             |

| Status               | LED   | Explanation                       | LED   | Explanation |
|----------------------|-------|-----------------------------------|-------|-------------|
| off                  | DIAG4 | SSM/RM-1 Layer2 discon-<br>nected | DIAG8 |             |
| yellow               | (H25) | SSM/RM-1 Layer2<br>connected      | (H29) |             |
| yellow slow blinking |       |                                   |       |             |
| yellow fast blinking |       |                                   |       |             |

DDI: Interface between IPCON and CSPCON RM-Layer2 = RM connection via the line RM-1-Layer2 = RM connection via the RM-1 interface RM-2-Layer2 = RM connection via the RM-2 interface

#### xMUX Mode (xMUX is working as vMUX)

The significance of the LED H22 to H29 in the vMUX mode is shown in the following table.

| Status               | LED   | Explanation           | LED   | Explanation                              |
|----------------------|-------|-----------------------|-------|------------------------------------------|
| off                  | DIAG1 | Alarm VMUXGENALR off  | DIAG5 | Alarm VMUXFLSYNC off                     |
| yellow               | (H22) | Alarm VMUXGENALR on   | (H26) | Alarm VMUXFLSYNC on                      |
| yellow slow blinking |       |                       |       |                                          |
| yellow fast blinking |       |                       |       |                                          |
| off                  | DIAG2 | Alarm VMUXEALR off    | DIAG6 | Alarm VMUXBLSYNC off                     |
| yellow               | (H23) | Alarm VMUXEALR on     | (H27) | Alarm VMUXBLSYNC on                      |
| yellow slow blinking |       |                       |       |                                          |
| yellow fast blinking |       |                       |       |                                          |
| off                  | DIAG3 | Alarm VMUXNDALR off   | DIAG7 | Alarm VMUXRDY2GO off                     |
| yellow               | (H24) | Alarm VMUXNDALR on    | (H28) | Alarm VMUXRDY2GO on                      |
| yellow slow blinking |       |                       |       |                                          |
| yellow fast blinking |       |                       |       |                                          |
| off                  | DIAG4 | vMUX not synchronized | DIAG8 | Alarm VMUXRMFOVR and VMUXRMFOVT off      |
| yellow               | (H25) | vMUX synchronized     | (H29) | Alarm VMUXRMFOVR and/or<br>VMUXRMFOVT on |
| yellow slow blinking |       |                       |       |                                          |
| yellow fast blinking |       |                       |       |                                          |

| Table 8-19 | Diagnostic LED in the "vMUX" mode |
|------------|-----------------------------------|

## xMUX Mode (xMUX is working as SMUX)

The significance of the LED H22 to H29 in the SMUX mode is shown in the following table.

| Status               | LED   | Explanation                                 | LED   | Explanation        |
|----------------------|-------|---------------------------------------------|-------|--------------------|
| off                  | DIAG1 | SMUX not synchronized                       | DIAG5 | RESYNC off         |
| yellow               | (H22) | SMUX synchronized, SYNC supervision off     | (H26) | RESYNC on          |
| yellow slow blinking |       | SMUX synchronized, SYNC supervision started |       |                    |
| yellow fast blinking |       |                                             |       |                    |
| off                  | DIAG2 | Alarm SMUXALA off                           | DIAG6 | Bit Error Rate = 0 |

Table 8-20Diagnostic LED in the "vMUX" mode

| Status               | LED   | Explanation                | LED   | Explanation           |
|----------------------|-------|----------------------------|-------|-----------------------|
| yellow               | (H23) | Alarm SMUXALA on           | (H27) | Bit Error Rate > 0 *) |
| yellow slow blinking |       |                            |       |                       |
| yellow fast blinking |       |                            |       |                       |
| off                  | DIAG3 | Alarm RX FIFO Overflow off | DIAG7 | STOPRX and STOPTX off |
| yellow               | (H24) | Alarm RX FIFO Overflow on  | (H28) | STOPRX and STOPTX on  |
| yellow slow blinking |       |                            |       |                       |
| yellow fast blinking |       |                            |       |                       |
| off                  | DIAG4 | Alarm TX FIFO Overflow off | DIAG8 | PLL locked            |
| yellow               | (H25) | Alarm TX FIFO Overflow on  | (H29) | PLL unlocked          |
| yellow slow blinking |       |                            |       |                       |
| yellow fast blinking |       |                            |       |                       |

\*) is on when a Bit Error is detected during the 5 second integration interval

#### xMUX Mode (xMUX is working as EMUX)

The significance of the LED H22 to H29 in the EMUX mode is shown in the following table.

| Status               | LED   | Explanation                | LED   | Explanation                                     |
|----------------------|-------|----------------------------|-------|-------------------------------------------------|
| off                  | DIAG1 | EMUX not synchronized      | DIAG5 | DP Local Loop off                               |
| yellow               | (H22) | EMUX synchronized          | (H26) |                                                 |
| yellow slow blinking |       |                            |       |                                                 |
| yellow fast blinking |       | EMUX Sync Timeout          |       | DP Local Loop on                                |
| off                  | DIAG2 | Alarm EMUXALA off          | DIAG6 | PPP UART Loop off                               |
| yellow               | (H23) | Alarm EMUXALA on           | (H27) |                                                 |
| yellow slow blinking |       |                            |       |                                                 |
| yellow fast blinking |       |                            |       | PPP UART Loop on                                |
| off                  | DIAG3 | Alarm RX FIFO Overflow off | DIAG7 | EMUX supervision off                            |
| yellow               | (H24) | Alarm RX FIFO Overflow on  | (H28) | EMUX supervision finished                       |
| yellow slow blinking |       |                            |       | EMUX supervision running                        |
| yellow fast blinking |       |                            |       | Sync Lost during EMUX supervi-<br>sion interval |
| off                  | DIAG4 | Alarm TX FIFO Overflow off | DIAG8 |                                                 |
| yellow               | (H25) | Alarm TX FIFO Overflow on  | (H29) | IPCON ready and DP synchron-<br>ized            |
| yellow slow blinking |       |                            |       | Wait for DP synchronization                     |
| yellow fast blinking |       |                            |       | Wait for IPCON ready                            |

| Table 8-21 Diagnostic LED in the "EMUX" mo | de |
|--------------------------------------------|----|
|--------------------------------------------|----|

#### Data Pump Mode

The significance of the LED H22 to H29 in the Data Pump mode is shown in the following table.

| Status               | LED   | Explanation                      | LED   | Explanation                                  |
|----------------------|-------|----------------------------------|-------|----------------------------------------------|
| off                  | DIAG1 | DP Measurement data not<br>ready | DIAG5 | Data Pump not synchronized                   |
| yellow               | (H22) | DP Measurement data ready        | (H26) | DP synchronized with<br>primary bit rate     |
| yellow slow blinking |       |                                  |       | DP synchronized with secon-<br>dary bit rate |
| yellow fast blinking |       | DP Measurement data<br>readout   |       |                                              |
| off                  | DIAG2 |                                  | DIAG6 | Not ready to up switch local                 |
| yellow               | (H23) | Block error                      | (H27) | Ready to up switch local                     |
|                      |       | (display time at least 1 second) |       |                                              |
| yellow slow blinking |       |                                  |       |                                              |
| yellow fast blinking |       |                                  |       |                                              |
| off                  | DIAG3 | xMUX not synchronized            | DIAG7 | Not ready to up switch remote                |
| yellow               | (H24) | xMUX synchronized                | (H28) | Ready to up switch remote                    |
| yellow slow blinking |       |                                  |       |                                              |
| yellow fast blinking |       |                                  |       |                                              |
| off                  | DIAG4 | Alarm xMUX off                   | DIAG8 | Bit Error Rate < 10-3                        |
| yellow               | (H25) |                                  | (H29) | Bit Error Rate ≥ 10-3                        |
| yellow slow blinking |       |                                  |       |                                              |
| yellow fast blinking |       | Alarm xMUX on                    |       |                                              |

| Table 8-22Diagnostic LED in the "DP" Data Pump mode |
|-----------------------------------------------------|
|-----------------------------------------------------|

xMUX = EMUX, iMUX, iMUXIEC, SMUX (G703.1), SMUX (X.21) or vMUX

#### ACE Unit (Automatic Channel Equalizer)

The significance of the LED H22 to H29 in the automatic channel equalization mode (ACE) is shown in the following table.

| Status               | LED   | Explanation                   | LED   | Explanation                                                        |
|----------------------|-------|-------------------------------|-------|--------------------------------------------------------------------|
| off                  | DIAG1 | ACE disabled                  | DIAG5 | Unidirectional                                                     |
| yellow               | (H22) | ACE enabled                   | (H26) | Bidirectional (always set)                                         |
| yellow slow blinking |       |                               |       |                                                                    |
| yellow fast blinking |       |                               |       |                                                                    |
| off                  | DIAG2 | Not ready to start cyclic ACE | DIAG6 | F2 level < threshold and S2IN and S2OUT signal unchanged           |
| yellow               | (H23) | Ready to start cyclic ACE     | (H27) | F2 level > threshold and/or<br>S2IN and/or S2OUT signal<br>changed |
| yellow slow blinking |       |                               |       |                                                                    |
| yellow fast blinking |       |                               |       |                                                                    |
| off                  | DIAG3 | ACE Tx not started            | DIAG7 | No ACE start sequence received                                     |
| yellow               | (H24) | ACE Tx started                | (H28) | ACE start sequence received                                        |
| yellow slow blinking |       |                               |       |                                                                    |
| yellow fast blinking |       |                               |       |                                                                    |

Table 8-23 Diagnostic LED in the "ACE Unit 1 to 4" mode

| Status               | LED   | Explanation                    | LED   | Explanation       |
|----------------------|-------|--------------------------------|-------|-------------------|
| off                  | DIAG4 | ACE inactive                   | DIAG8 |                   |
| yellow               | (H25) | ACE Tx successful              | (H29) | ACE Rx successful |
| yellow slow blinking |       | ACE Tx start failed (timeout)  |       |                   |
| yellow fast blinking |       | ACE Tx start failed (S6 break) |       | ACE Rx failed     |

#### Service Telephone Mode STEL

The significance of the LED H22 to H29 in the service telephone mode (STEL) is shown in the following table.

| Table 8-24 | Diagnostic LED in the "STEL" mode |
|------------|-----------------------------------|
|            |                                   |

| Status               | LED   | Explanation             | LED   | Explanation |
|----------------------|-------|-------------------------|-------|-------------|
| off                  | DIAG1 | Button STEL not pressed | DIAG5 | Not used    |
| yellow               | (H22) | Button STEL pressed     | (H26) |             |
| yellow slow blinking |       |                         |       |             |
| yellow fast blinking |       |                         |       |             |
| off                  | DIAG2 | Not used                | DIAG6 | Not used    |
| yellow               | (H23) |                         | (H27) |             |
| yellow slow blinking |       |                         |       |             |
| yellow fast blinking |       |                         |       |             |
| off                  | DIAG3 | Buttons unlocked        | DIAG7 | Not used    |
| yellow               | (H24) | Buttons locked          | (H28) |             |
| yellow slow blinking |       |                         |       |             |
| yellow fast blinking |       |                         |       |             |
| off                  | DIAG4 | STEL signaling disabled | DIAG8 | Not used    |
| yellow               | (H25) | STEL signaling enabled  | (H29) |             |
| yellow slow blinking |       |                         |       |             |
| yellow fast blinking |       |                         |       |             |

#### MODDSP Mode

The significance of the LED H22 to H29 in the MODDSP mode is shown in the following table.

Table 8-25 Diagnostic LED in the "MODDSP" mode

| Status               | LED   | Explanation           | LED   | Explanation |
|----------------------|-------|-----------------------|-------|-------------|
| off                  | DIAG1 | AGC not locked        | DIAG5 |             |
| yellow               | (H22) | AGC locked            | (H26) |             |
| yellow slow blinking |       |                       |       |             |
| yellow fast blinking |       |                       |       |             |
| off                  | DIAG2 | RF loop open          | DIAG6 |             |
| yellow               | (H23) | RF loop closed        | (H27) |             |
| yellow slow blinking |       |                       |       |             |
| yellow fast blinking |       |                       |       |             |
| off                  | DIAG3 | No RF clipping        | DIAG7 |             |
| yellow               | (H24) | RF clipping *)        | (H28) |             |
| yellow slow blinking |       |                       |       |             |
| yellow fast blinking |       |                       |       |             |
| off                  | DIAG4 | S2 signaling disabled | DIAG8 |             |
| yellow               | (H25) | S2 signaling enabled  | (H29) |             |

| Status               | LED | Explanation | LED | Explanation |
|----------------------|-----|-------------|-----|-------------|
| yellow slow blinking |     |             |     |             |
| yellow fast blinking |     |             |     |             |

\*) LED on is extended for 2 seconds

#### **Diagnose Mode**

The significance of the LED H22 to H29 in the Diagnose mode is shown in the following table.

| Status               | LED   | Explanation     | LED   | Explanation     |
|----------------------|-------|-----------------|-------|-----------------|
| off                  | DIAG1 |                 | DIAG5 |                 |
| yellow               | (H22) | Test VFX Port-0 | (H26) | Test VFX Port-4 |
| yellow slow blinking |       |                 |       |                 |
| yellow fast blinking |       |                 |       |                 |
| off                  | DIAG2 |                 | DIAG6 |                 |
| yellow               | (H23) | Test VFX Port-1 | (H27) | Test VFX Port-5 |
| yellow slow blinking |       |                 |       |                 |
| yellow fast blinking |       |                 |       |                 |
| off                  | DIAG3 |                 | DIAG7 |                 |
| yellow               | (H24) | Test VFX Port-2 | (H28) | Test VFX Port-6 |
| yellow slow blinking |       |                 |       |                 |
| yellow fast blinking |       |                 |       |                 |
| off                  | DIAG4 |                 | DIAG8 |                 |
| yellow               | (H25) | Test VFX Port-3 | (H29) | Test VFX Port-7 |
| yellow slow blinking |       |                 |       |                 |
| yellow fast blinking |       |                 |       |                 |

| Table 8-26 | Diagnostic LED i | n the Diagnose mode  |
|------------|------------------|----------------------|
| 10010 0 20 | Diagnobile LLD I | in the Braghose meas |

#### Alarm2 Mode (ALA2 Alarm Amplifier and F6 Supervision)

The significance of the LED H22 to H29 in the ALARM2 mode is shown in the following table.

| Table 8-27 | Diagnostic | LED in th | e "ALARM2" | mode |
|------------|------------|-----------|------------|------|
|            | Diagnostic |           | e Alaniviz | moue |

| Status               | LED   | Explanation                    | LED   | Explanation                |
|----------------------|-------|--------------------------------|-------|----------------------------|
| off                  | DIAG1 | Tx Alarm PLPA-1 off            | DIAG5 | Alarm F6 superv. Serv1 off |
| yellow               | (H22) |                                | (H26) | Alarm F6 superv. Serv1 on  |
| yellow slow blinking |       | Tx Alarm PLPA-1 on             |       |                            |
| yellow fast blinking |       |                                |       |                            |
| off                  | DIAG2 | Tx Alarm PLPA-2 off            | DIAG6 | Alarm F6 superv. Serv2 off |
| yellow               | (H23) |                                | (H27) | Alarm F6 superv. Serv2 on  |
| yellow slow blinking |       | Tx Alarm PLPA-2 on             |       |                            |
| yellow fast blinking |       |                                |       |                            |
| off                  | DIAG3 | PLPA dynamic control alarm off | DIAG7 | Alarm F6 superv. Serv3 off |
| yellow               | (H24) |                                | (H28) | Alarm F6 superv. Serv3 on  |
| yellow slow blinking |       | PLPA dynamic control alarm on  |       |                            |
| yellow fast blinking |       |                                |       |                            |
| off                  | DIAG4 |                                | DIAG8 | Alarm F6 superv. Serv4 off |

#### S2 Signals Mode

The significance of the LED H22 to H29 in the S2 signals mode is shown in the following table.

| Status               | LED   | Explanation                   | LED   | Explanation                    |
|----------------------|-------|-------------------------------|-------|--------------------------------|
| off                  | DIAG1 | Signal S2IN (unit-1) inactive | DIAG5 | Signal S2OUT (unit-1) inactive |
| yellow               | (H22) | Signal S2IN (unit-1) active   | (H26) | Signal S2OUT (unit-1) active   |
| yellow slow blinking |       |                               |       |                                |
| yellow fast blinking |       |                               |       |                                |
| off                  | DIAG2 | Signal S2IN (unit-2) inactive | DIAG6 | Signal S2OUT (unit-2) inactive |
| yellow               | (H23) | Signal S2IN (unit-2) active   | (H27) | Signal S2OUT (unit-2) active   |
| yellow slow blinking |       |                               |       |                                |
| yellow fast blinking |       |                               |       |                                |
| off                  | DIAG3 | Signal S2IN (unit-3) inactive | DIAG7 | Signal S2OUT (unit-3) inactive |
| yellow               | (H24) | Signal S2IN (unit-3) active   | (H28) | Signal S2OUT (unit-3) active   |
| yellow slow blinking |       |                               |       |                                |
| yellow fast blinking |       |                               |       |                                |
| off                  | DIAG4 | Signal S2IN (unit-4) inactive | DIAG8 | Signal S2OUT (unit-4) inactive |
| yellow               | (H25) | Signal S2IN (unit-4) active   | (H29) | Signal S2OUT (unit-4) active   |
| yellow slow blinking |       |                               |       |                                |
| yellow fast blinking |       |                               |       |                                |

Table 8-28 Diagnostic LED in the "S2 Signals" mode

Indicated S2 signal state is not influenced by setting "PowerLink/Adjustment/Options/Service-x/invert S2". The refresh cycle of the display is 1 second, therefore fast changes of S2 signal cannot be displayed.

#### MISC2 Mode (Status of Connection)

The significance of the LED H22 to H29 in the MISC2 mode is shown in the following table.

| Table 8-29 | Diagnostic | LED in the | "MISC2" | mode |
|------------|------------|------------|---------|------|
|            |            |            |         |      |

| Status               | LED   | Explanation              | LED   | Explanation               |
|----------------------|-------|--------------------------|-------|---------------------------|
| off                  | DIAG1 | Local iLAN communication | DIAG5 | Remote iLAN communication |
|                      |       | Receiver ready           |       | Receiver ready            |
| yellow               | (H22) | Local iLAN communication | (H26) | Remote iLAN communication |
|                      |       | Receiver not ready       |       | Receiver not ready        |
| yellow slow blinking |       |                          |       |                           |
| yellow fast blinking |       |                          |       |                           |
| off                  | DIAG2 | Local RM communication   | DIAG6 | Remote RM communication   |
|                      |       | Receiver ready           |       | Receiver ready            |
| yellow               | (H23) | Local RM communication   | (H27) | Remote RM communication   |
|                      |       | Receiver not ready       |       | Receiver not ready        |
| yellow slow blinking |       |                          |       |                           |
| yellow fast blinking |       |                          |       |                           |

| Status               | LED   | Explanation                       | LED   | Explanation          |
|----------------------|-------|-----------------------------------|-------|----------------------|
| off                  | DIAG3 | Local SSB/RM-2 communica-<br>tion | DIAG7 | Remote SSB/RM-2 com. |
|                      |       | Receiver ready                    |       | Receiver ready       |
| yellow               | (H24) | Local SSB/RM-2 com.               | (H28) | Remote SSB/RM-2 com. |
|                      |       | Receiver not ready                |       | Receiver not ready   |
| yellow slow blinking |       |                                   |       |                      |
| yellow fast blinking |       |                                   |       |                      |
| off                  | DIAG4 | Local SSM/RM-1 communica-<br>tion | DIAG8 | Remote SSM/RM-1 com. |
|                      |       | Receiver ready                    |       | Receiver ready       |
| yellow               | (H25) | Local SSM/RM-1 com.               | (H29) | Remote SSM/RM-1 com. |
|                      |       | Receiver not ready                | 1     | Receiver not ready   |
| yellow slow blinking |       |                                   |       |                      |
| yellow fast blinking |       |                                   |       |                      |

#### **RTCSYN Mode**

The significance of the LED H22 to H29 in the RTCSYNC mode is shown in the following table.

| Status               | LED   | Explanation                 | LED   | Explanation             |
|----------------------|-------|-----------------------------|-------|-------------------------|
| off                  | DIAG1 | Without RTC synchronization | DIAG5 | IRIG-B not used         |
| yellow               | (H22) | With RTC synchronization    | (H26) | IRIG-B synchronized     |
| yellow slow blinking |       |                             |       | IRIG-B not synchronized |
| yellow fast blinking |       |                             |       | IRIG-B no signal        |
| off                  | DIAG2 |                             | DIAG6 |                         |
| yellow               | (H23) | NTP time and date valid     | (H27) | USYNC missing           |
| yellow slow blinking |       | NTP time and date not valid |       |                         |
| yellow fast blinking |       | NTP server missing          |       |                         |
| off                  | DIAG3 | Without iUSYNC              | DIAG7 | USYNC successful        |
| yellow               | (H24) | With iUSYNC                 | (H28) | USYNC failed            |
| yellow slow blinking |       |                             |       |                         |
| yellow fast blinking |       |                             |       |                         |
| off                  | DIAG4 |                             | DIAG8 | USYNC alarm off         |
| yellow               | (H25) | USYNC Done (duration ~1 s)  | (H29) | USYNC alarm on          |
| yellow slow blinking |       |                             |       |                         |
| yellow fast blinking |       |                             |       |                         |

#### Table 8-30 Diagnostic LED in the "RTCSYN" mode

NTP: Network Time Protocol

iUSYNC: internal clock synchronization between CSPi and iSWT (NTP sync in CSPi and USYNC in iSWT has to be configured) USYNC: Clock synchronization general

#### **IPCON Mode**

The significance of the LED H22 to H29 in the IPCON mode is shown in the following table

| 0.2 CONTION | and Signaling | Liements on |
|-------------|---------------|-------------|
|             |               |             |
|             |               |             |
|             |               |             |

| Status               | LED   | Explanation                       | LED   | Explanation                            |
|----------------------|-------|-----------------------------------|-------|----------------------------------------|
| off                  | DIAG1 | ICC from IPCON not yet detected   | DIAG5 | IPCON not ready                        |
| yellow               | (H22) | ICC from IPCON detected           | (H26) | IPCON ready detected                   |
| yellow slow blinking |       | ICC from IPCON timeout            |       | IPCON ready timeout                    |
| yellow fast blinking |       | ICC from IPCON lost               |       | IPCON ready lost                       |
| off                  | DIAG2 | IPCON alive = 0                   | DIAG6 | ETH service interface inactive         |
| yellow               | (H23) | IPCON alive = 1                   | (H27) | ETH service interface active           |
| yellow slow blinking |       |                                   |       |                                        |
| yellow fast blinking |       | IPCON alive counter timeout       |       |                                        |
|                      |       | (error)                           |       |                                        |
| off                  | DIAG3 | No PowerSys session               | DIAG7 | at least one ETH user interface active |
| yellow               | (H24) | PowerSys session active           | (H28) | ETH user interfaces down               |
| yellow slow blinking |       |                                   |       |                                        |
| yellow fast blinking |       |                                   |       |                                        |
| off                  | DIAG4 | no IPCON error and PPP not active | DIAG8 |                                        |
| yellow               | (H25) | PPP active, primary data rate     | (H29) |                                        |
| yellow slow blinking |       | PPP active, secondary data rate   |       |                                        |
| yellow fast blinking |       | IPCON error                       |       | NTP server cannot be<br>connected      |

| Table 8-31 | Diagnostic LED in the "IPCON" mode |
|------------|------------------------------------|
|------------|------------------------------------|

ICC: Internal Communication Control between IPCON and CSPiCON

## 8.3.1 Overview

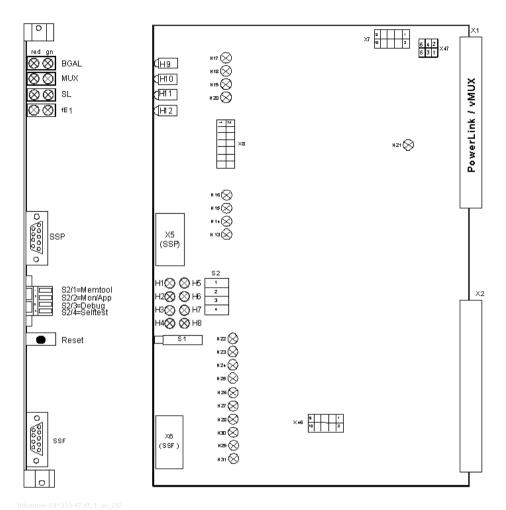



Figure 8-3 Jumpers, Connectors, Control, and Signaling-Elements on the vMUX

## 8.3.2 LED during Operation

The vMUX LED OK/BGAL, MUX, SL and fE1 consist of 2 LED, a red one (Hx-1) and a green one (Hx-2), to inform the user about the actual state of vMUX.

| State               | Reason(s)                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------|
| Off                 | a) Power off or                                                                                            |
|                     | b) System failure                                                                                          |
| green               | System is OK and no test mode or temporary settings are active                                             |
| green slow blinking | System is OK but any test mode or temporary setting is active.                                             |
|                     | Note: at least GENALR is also active in this case!                                                         |
| green fast blinking |                                                                                                            |
| red                 | a) Board vMUX is in reset state or b) Board alarm (BGAL) and no test mode or temporary settings are active |

| Table 8-32 | LED "OK/BGAL" (H9-1, H9-2)              |
|------------|-----------------------------------------|
|            | LLD UN/DUAL ( $119^{-1}$ , $119^{-2}$ ) |

| State             | Reason(s)                                                         |
|-------------------|-------------------------------------------------------------------|
| red slow blinking | Board alarm (BGAL) and test mode or temporary settings are active |
| red fast blinking |                                                                   |

#### Table 8-33 LED "MUX" (H10-1, H10-2)

| State                                                                | Reason(s)                                                                                                                                      |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Off                                                                  | a) Power off or                                                                                                                                |  |
|                                                                      | b) System failure or                                                                                                                           |  |
|                                                                      | c) Error occurred before starting MUX.                                                                                                         |  |
| green                                                                | vMUX-Link is synchronized, all configured services are available.                                                                              |  |
| green slow blinking                                                  | vMUX-Link is synchronized with secondary data rate, only the prioritized services are available (DP is synchronized with secondary data rate). |  |
| green fast blinking                                                  | One ore more configured CV's (compressed voice) are not locked                                                                                 |  |
| red a) Board vMUX is in reset state or b) vMUX-Link not synchronized |                                                                                                                                                |  |
| red slow blinking                                                    | vMUX-Link is disturbed                                                                                                                         |  |
| red fast blinking Overflow on VL-Input/Output buffer                 |                                                                                                                                                |  |

#### Table 8-34 LED "SL" (H11-1, H11-2)

| State Reason(s)                                                                                                |                                                                      |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Off                                                                                                            | a) Power off or                                                      |  |
|                                                                                                                | b) StationLink (SL) is inactive or                                   |  |
|                                                                                                                | c) Error occurred before starting StationLink.                       |  |
| green                                                                                                          | SL is OK (communication without errors with all configured stations) |  |
| green slow blinking                                                                                            | SL loop active                                                       |  |
| green fast blinking Device is configured but not detected (no communication with more than configured station) |                                                                      |  |
| red a) Board vMUX is in reset state or b) Own Node-index detected on SL                                        |                                                                      |  |
| red slow blinking                                                                                              | Failures detected on SL                                              |  |
| red fast blinking Collision detected on SL                                                                     |                                                                      |  |

#### Table 8-35 LED "fE1" (H12-1, H12-2)

| State                                                                                                               | Reason(s)                                                                      |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Off                                                                                                                 | a) Power off or                                                                |  |
|                                                                                                                     | b) fE1 inactive or                                                             |  |
|                                                                                                                     | c) Error occurred before starting fE1                                          |  |
| green                                                                                                               | fE1-interface is enabled and locked                                            |  |
| green slow blinking                                                                                                 | Transmit current limit exceeded in the E1 Interface                            |  |
| green fast blinking                                                                                                 | E1-Remote alarm present (being generated by the system connected to PowerLink) |  |
| red                                                                                                                 | a) Board vMUX is in reset state or                                             |  |
|                                                                                                                     | b) fE1-interface is enabled and unlocked                                       |  |
| red slow blinking ,Loss of transmit clock' or 'Receive carrier loss' or 'Receive all ones' detected<br>E1 interface |                                                                                |  |
| red fast blinking                                                                                                   | king Transmit open circuit detected on the E1 interface                        |  |

## 8.3.3 vMUX Input Elements and Connectors

#### 8.3.3.1 vMUX Connectors

| Nr | Name | Connector          | Interface | Explanation                                                                                                                                                                                                                |
|----|------|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X5 | SSP  | 9-pin sub-D female | RS232     | Programming the vMUX with MemTool. For this the<br>switch S2/1 on vMUX and S2/2 on the CSPi must<br>be in ON position (see chapter PowerLink Web Inter-<br>face Service Program PowerSys and MemTool Flash<br>Programming. |
| X6 | SSF  | 9-pin sub-D female | RS232     | vMUX-Monitor: Terminal resp. Terminal emulation (for test department only)                                                                                                                                                 |

#### 8.3.3.2 StationLink Termination

Table 8-37 Jumper position X47

| Jumper position X47 | Function                                                   |
|---------------------|------------------------------------------------------------|
| 1-2                 | StationLink terminated                                     |
| 3-4                 | StationLink not terminated Park position (default setting) |
| 5-6                 | Not used                                                   |

#### 8.3.3.3 Reset Button S1

NOTE

When S1 is pressed and released the vMUX restarts



#### ATTENTION:

In the PowerLink system only the reset button of board CSPi should be used!

#### 8.3.3.4 vMUX DIL Switch S2/1 to.4

Table 8-38 DIL-Switches S2/1 to 4

| <b>S2</b> | Pos. | Explanation                                                                                                                             |  |  |  |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|           | On   | MemTool operation (read/write VMUXFPROM, see chapter PowerLink Web Interface<br>Service Program PowerSys and MemTool Flash Programming) |  |  |  |
| 1         | Off  | No MemTool operation                                                                                                                    |  |  |  |
|           | On   | VMUXCON-Monitor after reset (monitor mode)                                                                                              |  |  |  |
| 2         | Off  | Normal mode after reset                                                                                                                 |  |  |  |
|           | On   | VMUXCON Debugger is enabled after reset                                                                                                 |  |  |  |
| 3         | Off  | Normal mode after reset                                                                                                                 |  |  |  |
|           | On   | vMUX initialization and self test                                                                                                       |  |  |  |
| 4         | Off  | Normal mode after Reset                                                                                                                 |  |  |  |

Note: Changes are only recognized after Reset

In normal operation of the PowerLink, all switches have to be in "OFF" position!

## 8.3.4 vMUX Diagnostic LED H1 to H8

For diagnostics purposes 8 LED (H1 to H8) are available on the vMUX module. The LED are located behind the front cover. The significance depends on the diagnostic mode which is selected in the service program PowerSys form: **<PowerLink – Configuration – vMUX - Options>**.

| Options |              |                                                                                                                                                                             |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Test mode    | off 🔷 🗸                                                                                                                                                                     |
|         | Diagnose LED | normal mode 🛛 🗸                                                                                                                                                             |
|         |              | normal mode<br>ALARM1                                                                                                                                                       |
| Debug   |              | COM<br>LINK<br>MUX<br>COD<br>DATA<br>CV<br>SL<br>Diagnose LED 5<br>Diagnose LED 5<br>Diagnose LED 6<br>Diagnose LED 7<br>Diagnose LED 8<br>Diagnose LED 9<br>MISC1<br>MISC2 |
|         |              | D4                                                                                                                                                                          |
|         |              | D5                                                                                                                                                                          |

Figure 8-4 Selecti

Selecting the diagnostic mode for the vMUX

| state | LED   | explanation         | LED   | explanation |
|-------|-------|---------------------|-------|-------------|
| off   | DIAG1 | VL not synchronized | DIAG5 |             |
| on    | (H1)  | VL synchronized     | (H5)  |             |
| slow  |       |                     |       |             |
| fast  |       |                     |       |             |
| off   | DIAG2 | SL inactive         | DIAG6 |             |
| on    | (H2)  | SL OK               | (H6)  |             |
| slow  |       |                     |       |             |

| state | LED   | explanation | LED   | explanation |
|-------|-------|-------------|-------|-------------|
| fast  |       |             |       |             |
| off   | DIAG3 |             | DIAG7 |             |
| on    | (H3)  |             | (H7)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |
| off   | DIAG4 |             | DIAG8 |             |
| on    | (H4)  |             | (H8)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |

Table 8-40Diagnostic LED in the "Alarm1" mode

| State | LED   | explanation      | LED   | Explanation |
|-------|-------|------------------|-------|-------------|
| off   | DIAG1 | Alarm GENALR off | DIAG5 |             |
| on    | (H1)  | Alarm GENALR on  | (H5)  |             |
| slow  |       |                  |       |             |
| fast  |       |                  |       |             |
| off   | DIAG2 | Alarm EALR off   | DIAG6 |             |
| on    | (H2)  | Alarm EALR on    | (H6)  |             |
| slow  |       |                  |       |             |
| fast  |       |                  |       |             |
| off   | DIAG3 | Alarm NDALR off  | DIAG7 |             |
| on    | (H3)  | Alarm NDALR on   | (H7)  |             |
| slow  |       |                  |       |             |
| fast  |       |                  |       |             |
| off   | DIAG4 |                  | DIAG8 |             |
| on    | (H4)  |                  | (H8)  |             |
| slow  |       |                  |       |             |
| fast  |       |                  |       |             |

Table 8-41 Diagnostic LED in the "COM" mode

| State | LED   | explanation                 | LED   | explanation                 |
|-------|-------|-----------------------------|-------|-----------------------------|
| off   | DIAG1 | Rx: iLAN-Telegram (toggle ) | DIAG5 | Tx: iLAN-Telegram (toggle ) |
| on    | (H10) | Rx: iLAN-Telegram (toggle ) | (H14) | Tx: iLAN-Telegram (toggle ) |
| slow  |       |                             |       |                             |
| fast  |       |                             |       |                             |
| off   | DIAG2 |                             | DIAG6 |                             |
| on    | (H11) |                             | (H15) |                             |
| slow  |       |                             |       |                             |
| fast  |       |                             |       |                             |
| off   | DIAG3 |                             | DIAG7 |                             |
| on    | (H12) |                             | (H16) |                             |
| slow  |       |                             |       |                             |
| fast  |       |                             |       |                             |
| off   | DIAG4 |                             | DIAG8 |                             |
| on    | (H13) |                             | (H17) |                             |

| State | LED | explanation | LED | explanation |
|-------|-----|-------------|-----|-------------|
| slow  |     |             |     |             |
| fast  |     |             |     |             |

| Table 8-42 | Diagnostic LED in the "LINK" mode |
|------------|-----------------------------------|
|------------|-----------------------------------|

| State | LED   | explanation | LED   | explanation |
|-------|-------|-------------|-------|-------------|
| off   | DIAG1 |             | DIAG5 |             |
| on    | (H10) |             | (H5)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |
| off   | DIAG2 |             | DIAG6 |             |
| on    | (H11) |             | (H6)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |
| off   | DIAG3 |             | DIAG7 |             |
| on    | (H12) |             | (H7)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |
| off   | DIAG4 |             | DIAG8 |             |
| on    | (H13) |             | (H8)  |             |
| slow  |       |             |       |             |
| fast  |       |             |       |             |

The LINK mode is for future use and not yet activated.

| State | LED   | explanation            | LED   | explanation                |
|-------|-------|------------------------|-------|----------------------------|
| off   | DIAG1 |                        | DIAG5 | unexpected MUXDSP state    |
| on    | (H10) |                        | (H5)  | MUXDSP state is "ERROR"    |
| slow  |       |                        |       | MUXDSP state is "IDLE"     |
| fast  |       |                        |       | MUXDSP state is "RUN"      |
| off   | DIAG2 |                        | DIAG6 | DP not ready for uplink    |
| on    | (H11) |                        | (H6)  | DP ready for uplink        |
| slow  |       |                        |       |                            |
| fast  |       |                        |       |                            |
| off   | DIAG3 |                        | DIAG7 | DP has secondary data rate |
| on    | (H12) |                        | (H7)  | DP has primary data rate   |
| slow  |       |                        |       |                            |
| fast  |       |                        |       |                            |
| off   | DIAG4 | BL is not synchronized | DIAG8 | DP is not synchronized     |
| on    | (H13) | BL is synchronized     | (H8)  | DP is synchronized         |
| slow  |       |                        |       |                            |
| fast  |       |                        |       |                            |

#### Table 8-43Diagnostic LED in the "MUX" mode

| State | LED   | explanation | LED   | explanation             |
|-------|-------|-------------|-------|-------------------------|
| off   | DIAG1 |             | DIAG5 | unexpected CODDSP state |
| on    | (H10) |             | (H5)  | CODDSP state is "ERROR" |
| slow  |       |             |       | CODDSP state is "IDLE"  |
| fast  |       |             |       | CODDSP state is "RUN"   |
| off   | DIAG2 |             | DIAG6 |                         |
| on    | (H11) |             | (H6)  |                         |
| slow  |       |             |       |                         |
| fast  |       |             |       |                         |
| off   | DIAG3 |             | DIAG7 |                         |
| on    | (H12) |             | (H7)  |                         |
| slow  |       |             |       |                         |
| fast  |       |             |       |                         |
| off   | DIAG4 |             | DIAG8 |                         |
| on    | (H13) |             | (H8)  |                         |
| slow  |       |             |       |                         |
| fast  |       |             |       |                         |

#### Table 8-44Diagnostic LED in the "COD" mode

Table 8-45Diagnostic LED in the "DATA" mode

| State | LED   | explanation                    | LED   | explanation                    |
|-------|-------|--------------------------------|-------|--------------------------------|
| off   | DIAG1 | RS232 channel 1 not<br>enabled | DIAG5 | RS232 channel 5 not<br>enabled |
| on    | (H10) | RS232 channel 1 enabled        | (H5)  | RS232 channel 5 enabled        |
| slow  |       |                                |       |                                |
| fast  |       |                                |       |                                |
| off   | DIAG2 | RS232 channel 2 not<br>enabled | DIAG6 | RS232 channel 6 not<br>enabled |
| on    | (H11) | RS232 channel 2 enabled        | (H6)  | RS232 channel 6 enabled        |
| slow  |       |                                |       |                                |
| fast  |       |                                |       |                                |
| off   | DIAG3 | RS232 channel 3 not<br>enabled | DIAG7 | RS232 channel 7 not<br>enabled |
| on    | (H12) | RS232 channel 3 enabled        | (H7)  | RS232 channel 7 enabled        |
| slow  |       |                                |       |                                |
| fast  |       |                                |       |                                |
| off   | DIAG4 | RS232 channel 4 not<br>enabled | DIAG8 | RS232 channel 8 not<br>enabled |
| on    | (H13) | RS232 channel 4 enabled        | (H8)  | RS232 channel 8 enabled        |
| slow  |       |                                |       |                                |
| fast  |       |                                |       |                                |

#### Table 8-46Diagnostic LED in the "CV" mode

| State | LED   | explanation              | LED   | explanation              |
|-------|-------|--------------------------|-------|--------------------------|
| off   | DIAG1 | CV channel 1 not enabled | DIAG5 | CV channel 5 not enabled |
| on    | (H10) | CV channel 1 enabled     | (H5)  | CV channel 5 enabled     |
| slow  |       |                          |       |                          |
| fast  |       |                          |       |                          |

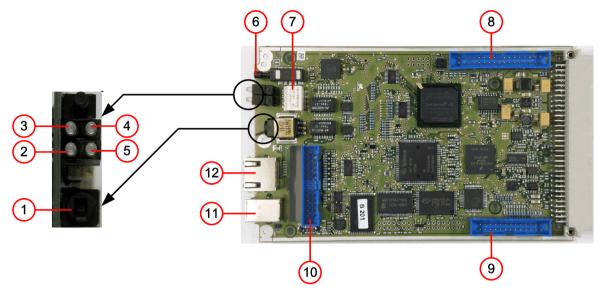
| State | LED   | explanation              | LED   | explanation              |
|-------|-------|--------------------------|-------|--------------------------|
| off   | DIAG2 | CV channel 2 not enabled | DIAG6 | CV channel 6 not enabled |
| on    | (H11) | CV channel 2 enabled     | (H6)  | CV channel 6 enabled     |
| slow  |       |                          |       |                          |
| fast  |       |                          |       |                          |
| off   | DIAG3 | CV channel 3 not enabled | DIAG7 | CV channel 7 not enabled |
| on    | (H12) | CV channel 3 enabled     | (H7)  | CV channel 7 enabled     |
| slow  |       |                          |       |                          |
| fast  |       |                          |       |                          |
| off   | DIAG4 | CV channel 4 not enabled | DIAG8 | CV channel 8 not enabled |
| on    | (H13) | CV channel 4 enabled     | (H8)  | CV channel 8 enabled     |
| slow  |       |                          |       |                          |
| fast  |       |                          |       |                          |

CV: Coded voice

| Table 8-47 | Diagnostic LED in the "SL" mode |
|------------|---------------------------------|
|------------|---------------------------------|

| State | LED   | explanation                           | LED   | explanation              |
|-------|-------|---------------------------------------|-------|--------------------------|
| off   | DIAG1 | SL Node #0 not present                | DIAG5 | SL Node #0 not disturbed |
| on    | (H10) | SL Node #0 present                    | (H5)  | SL Node #0 disturbed     |
| slow  |       |                                       |       |                          |
| fast  |       | SL Node #0 configured and not present |       | SL Node #0 has collision |
| off   | DIAG2 | SL Node #1 not present                | DIAG6 | SL Node #1 not disturbed |
| on    | (H11) | SL Node #1 present                    | (H6)  | SL Node #1 disturbed     |
| slow  |       |                                       |       |                          |
| fast  |       | SL Node #1 configured and not present |       | SL Node #1 has collision |
| off   | DIAG3 | SL Node #2 not present                | DIAG7 | SL Node #2 not disturbed |
| on    | (H12) | SL Node #2 present                    | (H7)  | SL Node #2 disturbed     |
| slow  |       |                                       |       |                          |
| fast  |       | SL Node #2 configured and not present |       | SL Node #2 has collision |
| off   | DIAG4 | SL Node #3 not present                | DIAG8 | SL Node #3 not disturbed |
| on    | (H13) | SL Node #3 present                    | (H8)  | SL Node #3 disturbed     |
| slow  |       |                                       |       |                          |
| fast  |       | SL Node #3 configured and not present |       | SL Node #3 has collision |

SL: StationLink




## NOTE

The other diagnostic modes are for future use and not yet activated. The LED 22 to 31 are used only for development purposes.

# 8.4 Control and Signaling Elements on the PU4 module (iSWT 3000)

## 8.4.1 Overview PU4, LED and Input Elements



[le\_pu4jum, 1, en\_U9

Figure 8-5 Position of Jumpers, Input and Signaling Elements on the PU4 Module

- 1 S2: Power ON/OFF
- 2 LED OK/GBAL
- 3 LED Status Interface LID-2
- 4 LED Status Interface LID-1
- 5 LED Status Interface LIA
- 6 S1: Reset button
- 7 S3 (3.1 to 3.4)
- 8 Connection on DLE
- 9 Connection on DLE
- 10 Connection of the IFC Modules
- 11 LCT: Service Interface (USB)
- 12 NMS: Ethernet Interface

The Digital line equipment is not applicable for PowerLink 50.

#### Table 8-48Function of the S3 DIP Switch on the PU4 Module

| Switch Number | Position | Function                          |
|---------------|----------|-----------------------------------|
| \$3.1         | OFF      | Normal operation                  |
|               | ON       | Programming with Memtool          |
| \$3.2         | OFF      | Monitor inactive                  |
|               | ON       | Monitor active                    |
| \$3.3         | OFF      | Disable debugger                  |
|               | ON       | Enable debugger                   |
| \$3.4         | OFF      | Disable initialization in monitor |
|               | ON       | Enable initialization in monitor  |

### NOTE

For normal operation all switches must be in the OFF-position.

## 8.4.2 Significance of LEDs on the PU4 Module

• The 2-color LIA LED is needed for displaying the status of the LIA. The following states can be displayed:

| Table 0.40 | C:           | - 6 + 1 1 |        | Disularia |
|------------|--------------|-----------|--------|-----------|
| Table 8-49 | Significance | of the L  | IA LED | Displays  |

| State          | Significance                                                                             |
|----------------|------------------------------------------------------------------------------------------|
| Off            | LIA is not configured                                                                    |
| Red static     | LIA is not ready for operation (for example, primary path receiver alarm)                |
| Red flashing   | LIA is only operational to a limited extent (for example, secondary path receiver alarm) |
| Green static   | LIA is working correctly and used as main path.                                          |
| Green flashing | LIA is working correctly and used as secondary path.                                     |



#### NOTE

Red flashing always means that the secondary path is not working correctly.

• The 2-color LID-1 LED is used for displaying the status of the LID-1. The following states can be displayed:

| Table 8-50 | Significance of the LED LID-1 | Displays |
|------------|-------------------------------|----------|
|------------|-------------------------------|----------|

| State          | Significance                                                                |
|----------------|-----------------------------------------------------------------------------|
| Off            | LID-1 is not configured                                                     |
| Red static     | LID-1 is not ready for operation                                            |
| Red flashing   | LID-1 is only operational to a limited extent (for example, receiver alarm) |
| Green static   | LID-1 is functioning correctly                                              |
| Green flashing | Secondary path                                                              |

• The 2-color LID-2 LED is used for displaying the status of the LID-2. The following states can be displayed:

| Table 8-51 | Significance of the LID-2 LE | ) Displays |
|------------|------------------------------|------------|
|------------|------------------------------|------------|

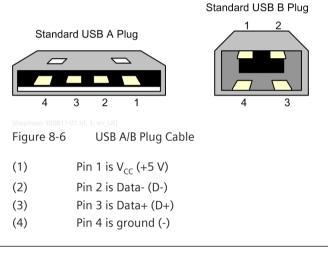
| State          | Significance                                                                |
|----------------|-----------------------------------------------------------------------------|
| Off            | LID-2 is not configured                                                     |
| Red static     | LID-2 is not ready for operation                                            |
| Red flashing   | LID-2 is only operational to a limited extent (for example, receiver alarm) |
| Green static   | LID-2 is functioning correctly                                              |
| Green flashing | Secondary path                                                              |

 The 2-color OK/BGAL LED is needed for displaying the PU4 module status. The following states can be displayed:

Table 8-52Significance of the OK/BGAL LED Displays

| State        | Significance                                                 |  |
|--------------|--------------------------------------------------------------|--|
| Off          | Power supply is disconnected or faulty                       |  |
| Red static   | Module is not ready for operation                            |  |
| Red flashing | General alarm module is only operational to a limited extent |  |

| State               | Significance                                    |
|---------------------|-------------------------------------------------|
| Green static        | Normal operation                                |
| Green slow flashing | Test operation or remote alarm active           |
| Green fast flashing | Ethernet port of PU4 is not ready for operation |


## 8.4.3 PU4 Connectors

The IP (Ethernet) interface of the PU4 module is used for:

- The communication between the NMS and SWT 3000
- Remote PowerSys session

The Ethernet interface (as RJ45 socket) can also be used for local Web login. It is located at the front of the PU4 module.

A USB local (service) interface in form of a standard USB B plug is fitted at the PU4 for the communication between the service PC and SWT 3000. The service PC is connected to the USB socket on the front panel of the PU4 module with a USB A/B plug cable.





#### NOTE

An SWT 3000 integrated in PowerLink is accessed via the service interfaces of the PowerLink device. The USB interface of the PU4 in iSWT 3000 is used only for the firmware upgrade via MemTool.

# 8.5 Control and Signaling Element on the Power Supply

## 8.5.1 Displays

LEDs on Power Supply Unit, visible after removal of the front panel.



[ph\_power\_supply\_leds, 1, --\_

Figure 8-7 Front view of the power supply (stand alone device, power supply connected via FOM to PowerLink)

| Table 8-53 | Significance of the LEDs on the Power Supply Unit |
|------------|---------------------------------------------------|
|------------|---------------------------------------------------|

| LED                    | Conditions                          | Significance                                 |
|------------------------|-------------------------------------|----------------------------------------------|
| Operate                | $U_{i\min} \le U_i \le U_{i\max}$   | Unit in normal operation                     |
|                        | $I_{o} \leq I_{o nom}$              |                                              |
|                        | $T_{c} \leq T_{cmax}$               |                                              |
|                        | $U_{inh} \leq 0.8 V$                |                                              |
| Operate and            | $U_{i \min} \le U_i \le U_{i \max}$ | Current at output Uout1, Uout2, or Uout3 too |
| overload 1, 2,<br>or 3 | $TC \le T_{cmax}$                   | high                                         |
|                        | $U_{inh} \le 0.8 V$                 |                                              |
| Disable                | $U_{i \min} \le U_i \le U_{i \max}$ | U <sub>inh</sub> > 0.8 V                     |
|                        | $ I_0 \leq I_0 $ nom                | Unit switched off or PU4 or CLE not inserted |
|                        | $T_{C} \leq T_{cmax}$               |                                              |

| LED     | Conditions                                  | Significance                               |
|---------|---------------------------------------------|--------------------------------------------|
| Disable | $U_{i \min} \le U_i \le U_{i \max}$         | Temperature monitoring has operated        |
|         | $I_{o} \leq I_{o nom}$                      |                                            |
|         | $I_o \le I_{o nom}$<br>$U_{inh} \le 0.8 V$  |                                            |
| Disable | l <sub>o</sub> ≤ l <sub>o nom</sub>         | Undervoltage or overvoltage monitoring has |
|         | $T_{C} \le T_{cmax}$                        | operated                                   |
|         | $T_{C} \le T_{cmax}$<br>$U_{inh} \le 0.8 V$ |                                            |

U<sub>i</sub> = Input voltage

## 8.6 System Information

## 8.6.1 System Alarm Display

|          | Alarm    |                     |
|----------|----------|---------------------|
| 0        |          |                     |
| Severity | Label    | Description         |
| INF      | PD_ALRS1 | ALR-1 present       |
| INF      | PD_VFX1  | VFX-1 present       |
| INF      | PD_ISWT1 | iSWT-1 present      |
| INF      | RM_L2    | RM layer2 connected |

sc\_alarm, 1, --\_

Figure 8-8 Alarm/Errors display in the PowerSys service program (example)

Faults, that have an impact to the normal system operation, are displayed in **<Alarm>** . The display is refreshed with the button **<Read>**.

## 8.6.2 Dongle Info

<Device information – Dongle Information> shows the number of services released in the systems dongle. The figure below shows the max. of released services. This form appears when the dongle default values are loaded.

#### Diagnostics and Error Handling

8.6 System Information

| General       | Update<br>information in   | Dongle<br>formation |                               |         |                      |        |
|---------------|----------------------------|---------------------|-------------------------------|---------|----------------------|--------|
| CSPi features |                            |                     |                               |         |                      |        |
|               | Basic features             |                     | Add-on features               |         | vMUX features        |        |
|               | Voice channel F2 (0-<br>3) | 3                   | Max. HF bandwidth             | 32 kHz  | Voice channels (0-8) | 1      |
|               | Data channel F3 (0-2)      | 2                   | SNMP agent                    | enabled | rFSK channels (0-2)  |        |
|               | Teleprotection F6          | enabled             | Ethernet (remote<br>bridging) | enabled | X.21 channels (0-2)  |        |
|               | Datapump                   | enabled             | Service telephon              | enabled | fE1 Interface        | enable |
|               | iFSK (0-4)                 | 4                   | Remote maintenance            | enabled | FAX channels (0-2)   |        |
|               | iMUX (0/4/8)               | 8                   | Dynamic datapump              | enabled |                      |        |



#### NOTE

The configuration of services is only possible when they are released in the dongle.

#### 8.7 **Test Modes**

| Options               |                                                                                                                     |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|--|
| ADC                   | <b>20</b> dB                                                                                                        |  |
| Output gain           | 100 %                                                                                                               |  |
| Auto reset            |                                                                                                                     |  |
| Test mode             | 🔻                                                                                                                   |  |
| Diagnose LED          | General<br>iLAN-Tracer<br>RM-Tracer<br>X21-Bypass<br>DP-General<br>DP-iMUX-Reflect<br>DP-MasterLoop<br>ACE testmode |  |
| xMUX supervision      |                                                                                                                     |  |
| AGC range             |                                                                                                                     |  |
| Quality data interval | XMUX test<br>RTC-sync<br>SSX-disable timeout<br>RM-disable timeout                                                  |  |
|                       | XMUX-disable sync                                                                                                   |  |
| Trace                 | RM to SSR<br>L2 - Tracer<br>NTP - Simulation<br>ALR - Test<br>Reserve 18<br>Reserve 19                              |  |
|                       |                                                                                                                     |  |

Test modes can be selected in <Configuration – Options>.

Figure 8-10 Test mode selection in the form PowerLink Configuration Options



#### NOTE

Test modes are for internal use only!

# 8.8 CSPi Diagnostic Mode



#### NOTE

Diagnostic mode interrupts normal operation and causes General Alarm

Diagnostic mode can be started with DIL switch S5/4 on and S5/2 off (see also *Table 8-2*) followed by a reset or switching on of PowerLink. As long as diagnostic mode is active the LED "OK" is in state "green fast flashing", the configured functions of the PowerLink are tested and supervised. Diagnostic mode is used for:

- Checking of CFS
- To update VFX firmware (refer to chapter Signaling during VFx Programming , Page 539
- Testing PowerLink after replacing hardware components
- For problem fixing

For diagnose mode, the PowerLink configuration data are changed temporary

- HF Loop (see Figure 8-12) stays closed after start-up so that no signal is transmitted via the amplifier!
- HF receive and transmit frequencies are set with the same frequency
- VFx signal outputs are muted
- Data Pump is operating as "loop master"



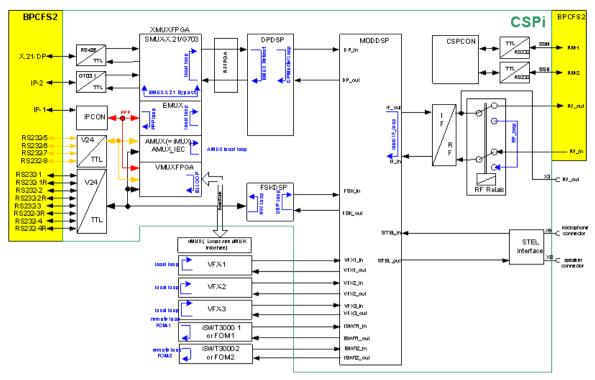
#### NOTE

To quit the diagnostic mode, switch off PowerLink and the set DIL switch S5/4 to off. After switching on the PowerLink, the user configuration is restored automatically. Alternatively S5/4 is set to off during diagnostic mode is active and push the reset button.

## 8.9 Commands and Test Loops

## 8.9.1 Overview

In <Test>, it is possible to activate the Data Pump signal generator or to switch test loops.

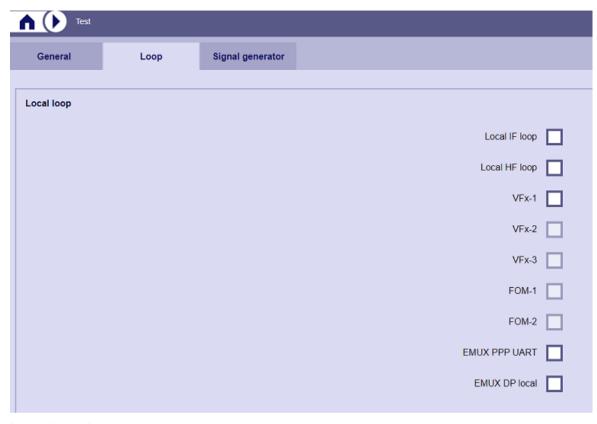

#### General

| Test    |      |                  |                      |             |        |
|---------|------|------------------|----------------------|-------------|--------|
| General | Loop | Signal generator |                      |             |        |
|         |      |                  |                      |             |        |
|         |      |                  | Res                  | set device  |        |
|         |      |                  | Clear devi           | ice setting |        |
|         |      |                  | Reset                | IP setting  |        |
|         |      |                  | Reset SN             | MPv3 key    |        |
|         |      |                  | STEL (te             | est socket) | •      |
|         |      |                  | Activate STEL on TP- | -Repeater 🜔 |        |
|         |      |                  | ,                    | Start AXC   | done 3 |
|         |      |                  | AX                   | (C bypass   |        |
|         |      |                  |                      | AFC off     |        |
|         |      |                  |                      | AGC off     |        |
|         |      |                  |                      | AGC hold    |        |

Figure 8-11 Test - General

- Local HF loop: Transmitter and receiver have to be adjusted to the same frequency and are looped with this command (see figure below). The transmission via the PLE (and via the line) is interrupted.
- **Clear device setting**: The command **clears the complete configuration (!)** stored in the CSPi resp. PU4 module (in a stand alone SWT 3000).
- **Reset IP setting**: Reset of the PowerLink via the service PC. After the reset the service program is automatically connected back to the PowerLink.
- **Start AXC** start of the AXC function (if enabled). This may cause an interrupt of the PowerLink receive signal. The AXC is adjusted automatically after restart of the PowerLink.
- Possibility to switch a local IF loop. AGC resp. AFC switch OFF for test purposes only! Activation of the AGC hold for switching the AGC to a fixed value.

8.9 Commands and Test Loops




[cdtestlp-120813-53.tif, 1, en\_US

Figure 8-12 Test loop overview in the PowerLink 100 system

#### Loop

Remote test loops VFx, FOM, resp. EMUX if the service is enabled:





• Reflection of the received signals from the corresponding service to the transmission line.

DP commands xMUX:

| DP loop      |                                        |
|--------------|----------------------------------------|
| XMUX         | oop                                    |
| Station link | oop off 🛛 🔻                            |
| Force DP s   | off<br>SL local loop<br>SL remote loop |

Figure 8-14 DP loop

- Setting a local test loop for the iMUX
- SL Loops, setting StationLink loops (off, local loop, remote loop) ref. also to chapter Commissioning.

8.9 Commands and Test Loops

#### Signal generator

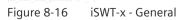

| Test    |           |              |                              |
|---------|-----------|--------------|------------------------------|
| General | Loop      | Signal ge    | enerator                     |
|         |           |              |                              |
|         | s         | ignal mode   | off 🛛 🔻                      |
|         | Frequer   | ncy position | Lower band Center Upper band |
|         | Frequency | adjustment   | O 1000 Hz O 100 Hz O 10 Hz   |
|         |           |              | Down Dup                     |
|         |           |              |                              |

Figure 8-15 Test - Signal generator

• Activation of the DP signal generator when selecting "on[sine]" and pushing the button "center". The corresponding HF frequency is displayed in the PowerSys form <**Information/Services**>. For more details refer to chapter *Commissioning*. With the button "Upper band" resp. "Lower band", the signal generator is adjusted to the upper resp. lower band limit of the DP. With the buttons <**Up**> resp. <**Down**>, the signal generator can be adjusted upwards resp. downwards in steps of 10 Hz, 100 Hz, or 1000 Hz.

#### SWT 3000 Commands

| iswī-   | 1 D Test              |                                      |                               |           |           |
|---------|-----------------------|--------------------------------------|-------------------------------|-----------|-----------|
| General | Command input<br>test |                                      |                               |           |           |
|         |                       |                                      |                               |           |           |
|         |                       | Line select                          | <ul> <li>Automatic</li> </ul> | O Primary | Secondary |
|         |                       | LID / FOM loop                       | All loops off                 |           |           |
|         |                       | AMP measurement mode                 | off                           |           | •         |
|         |                       | Command transmission time mesurement |                               | $\odot$   |           |
|         |                       | Test mode                            | Off                           |           | -         |
|         |                       | Reset SNMPv3 key                     | 0                             |           |           |
|         |                       | Reset device                         | 8                             |           |           |
|         |                       | Clear device setting                 |                               |           |           |
|         |                       |                                      |                               |           |           |



- Line selection automatic (only if 2 transmission links are activated): Automatic selection of the (primary) transmission line. If there is a fault, switchover to the alternative (secondary) line.
- Primary (only if 2 transmission links are activated): The SWT 3000 receiver is fixed to the primary transmission line. No switchover in case of line interrupt.
   This setting is causing general alarm!
- Secondary (only if 2 transmission links are activated): The SWT 3000 receiver is fixed to the secondary transmission line. No switchover in case of line interrupt.
   This setting is causing general alarm!
- AMP Meas Off/On: Disables the input limitation from the binary inputs (which is automatically activated in the AMP mode of the (i)SWT 3000) when adjusted to On. It is now possible to send continuous commands for measuring the trip frequencies.

The general alarm is activated in case of AMP Meas On!

• **Command transmission time measurement**: Single test provides a method to measure command transmission time over the current active line. It is available for both analog and digital transmission lines, but not for Ethernet transmission line (TPOP).

#### **Command Input Test**

Command input test is a test function to verify command input / output during the commissioning phase. It must be switched off in normal operation. To avoid unwanted command by incident, the command input test can only be enabled when:

- IFC-Test mode configured (GEN alarm activated)
- PU4 switch S3.4 is enabled for test purpose

If the command input test is enabled, command input from IFC or EN100 port is ignored. Instead, the input from the test page is assigned to a protection frequency and transmitted as in normal operation.

The command input test page is only available when iSWT is active. Any command input combinations can be triggered on by enabling the corresponding inputs and then clicking 'Activate command input' button. Disable all command inputs and click 'Activate command input' button will trigger all commands off.

|       |        |       |        |       |        | Activate command input |
|-------|--------|-------|--------|-------|--------|------------------------|
| Input | Enable | Input | Enable | Input | Enable |                        |
| 1     |        | 9     |        | 17    |        |                        |
| 2     |        | 10    |        | 18    |        |                        |
| 3     |        | 11    |        | 19    |        |                        |
| 4     |        | 12    |        | 20    |        |                        |
| 5     |        | 13    |        | 21    |        |                        |
| 6     |        | 14    |        | 22    |        |                        |
| 7     |        | 15    |        | 23    |        |                        |
| 8     |        | 16    |        | 24    |        |                        |

[sc\_command\_input\_test, 1, --\_--]



### NOTE

Any test command input should work according to the actual configuration. For example, if mode 3a is selected, only input 1 to 4 can be transmitted.

Another example, if command 1 is not assigned to a valid input port in input command allocation, command 1 will never be sent.

## 8.9.2 Periodic transmission time test configuration

The periodic command transmission time test works for the digital transmission line only. It triggers command transmission time tests at a configurable interval. The actual command transmission is not affected. The test result (OK/fail) is recorded in event log.

| SWT3000 > Configuration > System > Line interface |                                                                                                |  |  |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Connection: digital 1/2                           | At least one digital is selected                                                               |  |  |  |  |  |
| Address                                           | Transmitter/Receiver < 128                                                                     |  |  |  |  |  |
| SWT3000 > Configuration > Clock Synchronisation   |                                                                                                |  |  |  |  |  |
| Command periodic transmission time test mode      | One side is master, the other side is slave                                                    |  |  |  |  |  |
| Command periodic transmission time test interval  | Not OFF at the master side (If interval is off, no auto-<br>matically loop test is triggered ) |  |  |  |  |  |

## 8.9.3 StationLink Test Loops

It is possible to switch StationLink test loops (local loop resp. remote loop). The data traffic via StationLink is interrupted in this case.

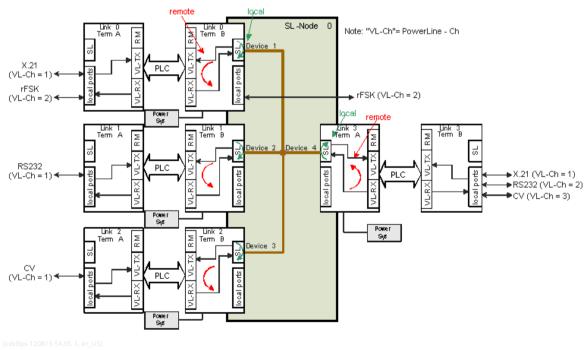



Figure 8-17 StationLink Loops

The test loops are activated in <**Test - Loop - DP loop**>. The adjustments are taken over online.

|         | Diagno            | stics and Error Handling               |
|---------|-------------------|----------------------------------------|
|         | 8.9 Co            | mmands and Test Loops                  |
| DP loop |                   |                                        |
|         | xMUX loop         |                                        |
|         | Station link loop | off 🛛 🗨                                |
|         | Force DP sync     | off<br>SL local loop<br>SL remote loop |

Figure 8-18 Test - Loop - DP loop

If "StationLink local loop" is selected the data are not sent to the StationLink but back.

Example from *Figure 8-17*: If **local loop** is selected in Device 1 the data of the X.21 channel are sent back to Terminal A Link 0.

If "StationLink **remote loop**" is selected the received data are sent back with its own device address. In this case the corresponding device can receive the data and it is proved that the StationLink is working properly. Example from *Figure 8-17*: If **remote loop** is selected in Device 1 the data of the X.21 channel are sent back via the StationLink to Device 4 Terminal A.

To test several connections at the same time, the test loops are **not automatically canceled** after the connection to the service PC is interrupted.

# 8.10 Quality Data QD

## 8.10.1 Overview

With <**Quality Data**> the quality of a Data Pump connection can be recorded for a defined time interval.

| <b>(</b> |            |            |          |        |     |     |     |     |     |     |     |      |     |      |
|----------|------------|------------|----------|--------|-----|-----|-----|-----|-----|-----|-----|------|-----|------|
| 0        |            | 2352 of 10 | 000 logs | loaded |     |     |     |     |     |     |     |      |     |      |
| No.      | Date       | Time       | UT       | ES     | SES | DPS | SBR | ХМ  | PAL | AGC | BLK | CLIP | SNR | TEMP |
| 1        | 2021-08-04 | 14:38:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 45  | 36   |
| 2        | 2021-08-04 | 14:23:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 43  | 36   |
| 3        | 2021-08-04 | 14:08:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 42  | 36   |
| 4        | 2021-08-04 | 13:53:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 45  | 36   |
| 5        | 2021-08-04 | 13:38:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 44  | 36   |
| 6        | 2021-08-04 | 13:23:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 44  | 36   |
| 7        | 2021-08-04 | 13:08:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 44  | 35   |
| 8        | 2021-08-04 | 12:53:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 44  | 35   |
| 9        | 2021-08-04 | 12:38:43   | 553      | 553    | 553 | 553 | 0   | 553 | 543 | 544 | 0   | 0    | 45  | 35   |
| 10       | 2021-08-04 | 12:23:43   | 589      | 589    | 588 | 587 | 0   | 586 | 589 | 589 | 62  | 3    | 0   | 35   |
| 11       | 2021-08-04 | 12:08:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 44  | 35   |
| 12       | 2021-08-04 | 11:53:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 46  | 36   |
| 13       | 2021-08-04 | 11:38:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 45  | 36   |
| 14       | 2021-08-04 | 11:23:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 45  | 36   |
| 15       | 2021-08-04 | 11:08:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 45  | 36   |
| 16       | 2021-08-04 | 10:53:43   | 0        | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 43  | 36   |

[sc\_quality\_data, 1, --\_--]

Figure 8-19 Quality Data

#### • Button "Read"/"Stop":

Starts reading QD records. Reading begins at Start time stamp and ends at Stop time stamp. During reading of QD records, "Read" button is changed to "Stop" button. Clicking this button causes end of reading QD records (Attention: Readout of maximum number of QD records can take several minutes!)

#### • Button "Delete":

All QD records are deleted.

| Table 8-54 | Explanation of a Quality Data QD record |
|------------|-----------------------------------------|
|------------|-----------------------------------------|

| Row text | Explanation                                                | Format                           |
|----------|------------------------------------------------------------|----------------------------------|
| Date     | Time Stamp of QD record                                    | Year, Month, Day of Month, Hour, |
| Time     |                                                            | Minute, Second                   |
| UT       | Unavailable time in the last QD interval                   | 0 to 900 seconds [decimal]       |
| ES       | Number of errored seconds in the last QD interval          | 0 to 900 seconds [decimal]       |
| SES      | Number of severely errored seconds in the last QD interval | 0 to 900 seconds [decimal]       |

| Row text | Explanation                                                              | Format                     |
|----------|--------------------------------------------------------------------------|----------------------------|
| DPS      | Number of non-synchronized seconds of DP link in the last QD interval    | 0 to 900 seconds [decimal] |
| SBR      | Number of seconds with secondary data rate of DP in the last QD interval | 0 to 900 seconds [decimal] |
| XMUX     | Number of non-synchronized seconds of xMUX link in the last QD interval  | 0 to 900 seconds [decimal] |
| PAL      | Duration of PAL (level alarm) in the last QD interval                    | 0 to 900 seconds [decimal] |
| AGC      | Duration of AGC (automatic gain control) alarm in the last QD interval   | 0 to 900 seconds [decimal] |
| BLK      | Number of block errors in the last QD interval                           | 0 to 255 BLKERR [decimal]  |
| CLIP     | Number of RF100CLIPs in the last QD interval                             | 0 to 255 clips [decimal]   |
| SNR      | Minimum SNR value in the last QD interval                                | 0 dB to 127 dB [decimal]   |
| TEMP     | Temperature measured on the CSPi                                         | Degree celsius             |

Adjustment of the QD interval in <**Configuration – Option**>.

Changes in the adjustment of the QD interval will be effective immediately. You do not have to reset the PowerLink device.

| Quality data interval | 15 minutes 🛛 🗨 |
|-----------------------|----------------|
|                       | off            |
|                       | 1 second       |
|                       | 1 minute       |
|                       | 15 minutes     |

[sc\_option\_quality\_data\_interval, 1, --\_--]

Figure 8-20 Configuration Quality data interval

#### Table 8-55 Quality Data Interval

| Settings              | Comments                                                                                       |  |
|-----------------------|------------------------------------------------------------------------------------------------|--|
| Quality Data Interval | When the setting interval time is elapsed, a new entry will be added in the qualit data table. |  |
|                       | The possible internal values are:                                                              |  |
|                       | • off                                                                                          |  |
|                       | • 1 second                                                                                     |  |
|                       | • 1 minute                                                                                     |  |
|                       | • 15 minutes                                                                                   |  |
|                       | The default value is <b>15 minutes</b> .                                                       |  |

# 8.11 Data Pump Block Error

### 8.11.1 Information

The Content of Data Pump Block Error FIFO is displayed as an 240-byte array, arranged in 15 lines (numbered 1 to 15) and 16 columns (numbered A to P). The newest entry is displayed in line 15/row P, the oldest entry is displayed in line 1/row A.

|    | Α        | В   | С   | D   | E   | F   | G   | Н   | 1   | J   | K   | L   | М   | Ν   | 0   | Р          |
|----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|
| 1  | olde     |     | -23 | -23 | -23 | -23 | -23 | -23 | -23 | -23 | -22 | -22 | -22 | -22 | -22 | -224       |
|    | st       | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 1   | 0   | 9   | 8   | 7   | 6   | 5   |            |
| 2  | -22<br>3 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -208       |
| 3  | -20<br>7 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -192       |
| 4  | -19<br>1 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -176       |
| 5  | -17<br>5 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -160       |
| 6  | -15<br>9 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -144       |
| 7  | -14<br>3 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -128       |
| 8  | -12<br>7 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -112       |
| 9  | -11<br>1 |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -96        |
| 10 | -95      |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -80        |
| 11 | -79      |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -64        |
| 12 | -63      |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -48        |
| 13 | -47      |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -32        |
| 14 | -31      |     |     |     |     |     |     |     |     |     |     |     |     |     |     | -16        |
| 15 | -15      | -14 | -13 | -12 | -11 | -10 | -9  | -8  | -7  | -6  | -5  | -4  | -3  | -2  | -1  | new<br>est |

Table 8-56 Display of Data Pump block error

Block errors are displayed as hex values from 0 to 0xEF (0 to 239), 2-character-combinations as described in table below are used to mark events.

The "Block Error Rate" is calculated from all visible block error numbers (0 to 239) in the Block Error display.

| Entry | Explanation                                       |
|-------|---------------------------------------------------|
| Space | Entry not yet used                                |
| RB    | Restart caused by "block error threshold" BLKANZ  |
| RF    | Restart caused by "block error sequence" BLKFOL   |
| RE    | Restart caused by error from Data Pump DSP        |
| RA    | Restart requested by Data Pump DSP                |
| RS    | Restart requested by PowerSys command             |
| RR    | Restart because synchronized with false data rate |
| RP    | Restart caused by PAL (too many block errors)     |

Table 8-57List of block error entries

| Entry     | Explanation                                                 |
|-----------|-------------------------------------------------------------|
| DW        | Restart to switchover to secondary bit rate ("down switch") |
| ТО        | Timeout while waiting for sync                              |
| ST        | Data Pump DSP started                                       |
| SY        | Synchronized                                                |
| LO        | Sync lost                                                   |
| UP        | Restart to switchover to primary bit rate ("up switch")     |
| PB        | Data Pump synchronized with primary bit rate                |
| SB        | Data Pump synchronized with secondary bit rate              |
| 0 to 0xEF | Hexadecimal number of block errors in this window           |

### 8.11.2 Supervision

To ensure Data Pump operation re-synchronization after line disturbance block error supervision functions are implemented. All Data Pump supervision features (**<Configuration - DP**>) depend on analyzing block errors. The following supervision functions can be used:

- Block error sequence
- Block error threshold
- disturbed blocks (hold function)

| Alarm                |     |
|----------------------|-----|
| Block error sequence | 100 |
| Block window size    | 50  |
| Threshold            | 30  |
|                      |     |

c\_configuration\_dp\_alarm, 1, -\_--]

Figure 8-21 Configuration of the DP block error supervisory

#### Supervision of the "Block Error Sequence" (Configuration)

When the Data Pump recognizes more disturbed blocks in sequence as defined by "Block error sequence", the Data Pump will be restarted automatically.



### NOTE

This supervision does not use "Block window size"!



#### NOTE

When "Block error sequence" is set to 0 supervision is disabled!

#### Block Window Size (Configuration)

Defines the number of blocks (10 to 239) needed for supervision block error threshold and disturbed windows in sequence.

#### Supervision "Block Error Threshold" (Configuration):

When Data Pump recognizes more disturbed blocks within a "Block window" as defined by **Block error threshold**, the Data Pump will be restarted automatically after 3 consecutive errored win-dows.



#### NOTE

When "Block error threshold" is set to 0 supervision is disabled!

#### Supervision DPHOLD:

Depending on the standard function "DPHOLD" the DP tries to hold the connection during "block error bursts" caused by switching procedures on the transmission line. Under worst case conditions (= all blocks disturbed), DP is waiting 1800 ms.



#### NOTE

It is recommended not to change the standard values.

## 8.12 Diagnosis of Ethernet EN100 Module

#### EN100 Information in PowerSys

If an Ethernet module EN100 for IEC 61850 is configured with the iSWT, the PowerSys menu **iSWT-x > EN100 > Module info** displays the most important information about addresses and connection status of the module. The EN100 information can only be read when the PowerSys program is connected to the device (stand-alone SWT 3000 or iSWT in PowerLink).

| 6 () iSWT-1 () EN100 |                        |  |  |  |  |  |
|----------------------|------------------------|--|--|--|--|--|
| Mode                 | Module info            |  |  |  |  |  |
| 0                    |                        |  |  |  |  |  |
| Index                | Value                  |  |  |  |  |  |
| 1                    | CRC value= 9e f0 64 19 |  |  |  |  |  |
| 2                    | EN100_O IEC61850       |  |  |  |  |  |
| 3                    | MAC 00098effbf98       |  |  |  |  |  |
| 4                    | IP 192.168.020.213     |  |  |  |  |  |
| 5                    | NM 255.255.255.000     |  |  |  |  |  |
| 6                    | GW 000.000.000         |  |  |  |  |  |
| 7                    | Corrupt parameter      |  |  |  |  |  |
| 8                    | Chan1/2=Down /Down     |  |  |  |  |  |
| 9                    | Rx/TxCnt=00000/01569   |  |  |  |  |  |
| 10                   | Rx/TxErr=00000/00000   |  |  |  |  |  |
| 11                   | Rx/Tx10s=0000/0020     |  |  |  |  |  |
| 12                   | CPU load= 6%           |  |  |  |  |  |
| 13                   | LRx1/LTx1=/norm        |  |  |  |  |  |
| 14                   | LRx2/LTx2=/            |  |  |  |  |  |
| 15                   | Line                   |  |  |  |  |  |

c\_diagnosis\_EN100, 1, --\_--]

Figure 8-22 iSWT-x > EN100 > Module info

The following EN100 information is displayed:

| Line/IDX              | Information                                                                   |
|-----------------------|-------------------------------------------------------------------------------|
| IDX 1                 | CRC value (EN100 BIN parameter file checksum)                                 |
| IDX 2                 | Module type                                                                   |
| IDX 3                 | Hardware address (MAC)                                                        |
| IDX 4, IDX 5, IDX 6   | Ethernet channel adresses: IP address, Network mask, Gateway address          |
| IDX 7                 | EN100 clock synchronisation status (NTP1/2)                                   |
| IDX 8                 | Physical link status and data rate of connected Ethernet channel (Phy1/ Phy2) |
| IDX 9, IDX 10, IDX 11 | Communication status: Statistics and error counters                           |
| IDX 12                | CPU load rate                                                                 |

Table 8-58 EN100 Information

The status information is updated by pressing the Read button.

8.12 Diagnosis of Ethernet EN100 Module

#### **EN100** Firmware Version Information

You can check the firmware version of the Ethernet module EN100 in the PowerSys menus **iSWT-x** - **Device** - **General**.

| <b>1</b> () iswt-1 | Device    |          |          |            |                  |
|--------------------|-----------|----------|----------|------------|------------------|
| General            |           |          |          |            |                  |
|                    |           |          |          |            |                  |
| PU4 CON            | 01.11.01  | PU4 BOOT | 01.04.01 | PU4 HW     | 00.00.01         |
| PU4 MON            | 01.04.00  | DLE HW   |          | DLE Type   |                  |
| DLE FPGA           |           | PU4 FPGA | 02.00.17 | PU4 DSP    | 01.03.01         |
| PU4 DSP Variant    | VF1_CT_PL | EN100    | 04.20.04 | EN100 Type | IEC61850 optical |
| IFC-1 FW           | 00.00.00  | IFC-1 HW | 01.00.06 | IFC-1 Type | IFC-D/P          |
| IFC-2 FW           |           | IFC-2 HW |          | IFC-2 Type |                  |
| IFC-3 FW           |           | IFC-3 HW |          | IFC-3 Type |                  |
| IFC-4 FW           |           | IFC-4 HW |          | IFC-4 Type |                  |
| FOM-1 FW           |           | FOM-1 HW |          | FOM-1 Type |                  |
| FOM-2 FW           |           | FOM-2 HW |          | FOM-2 Type |                  |

[sc\_EN100\_firmwarversion\_info, 1, --\_

Figure 8-23 EN100 FW version information in iSWT-x > Device > General

#### EN100 Module Homepage

The EN100 modules are provided with a homepage, which can be invoked on all devices using the respective IP address. Fig. 9-2 shows an example of a homepage. The homepage is invoked by entering the IP address of the device combined with home in the address line of the browser on the PC (e.g.: https:// 192.168.0.55/home for the EN100 default IP address)

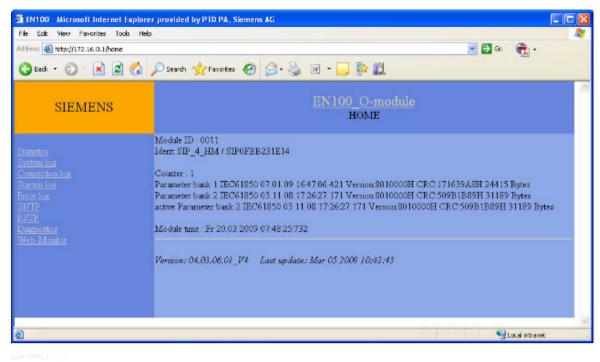



Figure 8-24 Homepage of the EN100 modules

i

#### NOTE

With a factory pre-configuration of EN100 in SWT 3000 devices the following generic IP addresses are programmed to the module: 192.168.100.11 and 192.168.100.12.

You can check the actual IP address of the EN100 module in PowerSys menu SWT 3000 > Information > EN100 Info (refer to EN100 Information in PowerSys).

The EN100 module homepage always shows at its end the version and creation date of the software version loaded on the module. With the links on the left area of the EN100 homepage you can browse to following subpages, which contain information for commissioning, operational information and internal error messages.

| Table 8-59 | Linked pages of the EN100 m | nodule homepage |
|------------|-----------------------------|-----------------|
|            |                             |                 |

| Page                | Description                                                                                                    |
|---------------------|----------------------------------------------------------------------------------------------------------------|
| Statistics-page     | shows relevant information of Ethernet                                                                         |
| System log-page     | shows information of system behavior, being produced from operation time                                       |
| Connection log-page | contains information about Client-Server-Connection and DIGSI-Accesses                                         |
| Startup-page        | contains information about run-up behavior and configuration settings respecting network- and GOOSE-Parameters |
| Error log-page      | contains internal error messages                                                                               |

Refer to SIPROTEC 4 EN100-Module - Manual IEC 61850 for description of the pages.

You may find a copy of the manual on the PowerSys package in folder /IEC61850/Manual.

Check the SIPROTEC webpage for the latest manual version:

Internet: www.siprotec.com

# 8.13 Problem Tracking

This chapter answers frequently asked questions (FAQ) about the PowerLink and the integrated protection signaling equipment iSWT 3000 and provides operating instructions for possible system reactions in case of disturbances resp. operating errors.

| Problem concerning:                                                                                        | Reason/Solution                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PowerLink without Function                                                                                 |                                                                                                                                                                                                                                                                  |
| The system has no function, the red LED "i" on the PSPA2 is OFF                                            | Check the external supply voltage.                                                                                                                                                                                                                               |
| The system has no function, the red <b>LED "i"</b> on the <b>PSPA2</b> is <b>ON</b> all other LED are OFF. | The switch S1 for the power supply enable/disable is in the lower position. S1 is behind the front cover on the module CSPi above the Service Interface connector.                                                                                               |
| PowerSys                                                                                                   |                                                                                                                                                                                                                                                                  |
| Not possible to establish a <b>connection</b> between                                                      | Wrong IP address selected?                                                                                                                                                                                                                                       |
| PowerLink and PowerSys                                                                                     | Adjustment with < <b>Connection setup</b> >.                                                                                                                                                                                                                     |
|                                                                                                            | Check cable configuration (for more information ref. to chapter <i>Commissioning</i> ).                                                                                                                                                                          |
|                                                                                                            | Check the PowerSys release                                                                                                                                                                                                                                       |
| <b>No</b> further <b>service can be added</b> in the system configuration                                  | The services must be <b>enabled in the dongle</b> . It can be checked in the menu <b><device -="" b="" dongle="" information<="">&gt;. Note: For reading the dongle information of the equipment, the connection to PowerSys has to be established.</device></b> |
|                                                                                                            | For upgrade contact your responsible SIEMENS department.                                                                                                                                                                                                         |
| Create System Log                                                                                          |                                                                                                                                                                                                                                                                  |
| Create system log                                                                                          | The function may be used in case of problems occurring in a Power-<br>Link resp. SWT 3000 connection.                                                                                                                                                            |
|                                                                                                            | It creates an <b>encoded</b> zip file containing important system informa-<br>tion including the whole database of the equipment and the event<br>memory of the equipment.                                                                                       |
|                                                                                                            | Send the zip file to your responsible SIEMENS department for evalua-<br>tion.                                                                                                                                                                                    |
| Clear CDB Command                                                                                          |                                                                                                                                                                                                                                                                  |
| Clear CDB<br>The command is available in <b>Test - General</b>                                             | The command "Clear device setting" (Configuration Database) clears<br>the complete configuration (!), stored in any active module (CSPi,<br>vMUX, PU4). It is recommended to store a safety copy from the<br>device before executing this command.               |
|                                                                                                            | After the command has been executed, <b>you may receive hardware</b><br><b>and/or configuration fault alarm</b> because the CSPi has no valid data-<br>base.                                                                                                     |
|                                                                                                            | The function has to be executed after firmware upgrade/downgrade,<br>or in case of a <b>new configuration</b> of an existing PowerLink resp. if<br>problems occur after changing an PowerLink configuration.                                                     |
| Connecting Cables                                                                                          |                                                                                                                                                                                                                                                                  |
| Service PC to PowerLink                                                                                    | Standard CAT5e patch cable. A shielded cable is recommended.<br>Refer to chapter <i>Commissioning: Configuration with the Service PC</i>                                                                                                                         |
|                                                                                                            | Cable for Software download with MemTool refer to chapter Commis-<br>sioning: RS232 Connection Cable for the Service PC.                                                                                                                                         |
| SWT 3000 to PowerLink via VFx modules                                                                      | Refer to chapter Installation: Connection of an external SWT 3000 to the VFx modules.                                                                                                                                                                            |
| PMX 3000 resp. PMX 2100 MUX to PowerLink                                                                   | Refer to chapter Installation and chapter Commissioning: Synchronous interface X.21                                                                                                                                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                  |

| Problem concerning:                                                                   | Reason/Solution                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACE                                                                                   | 1                                                                                                                                                                                                                                                                                                 |
| ACE for Service F3 is selected but is never executed                                  | ACE can only work properly when the bandwidth of the service is equal or bigger than 600 Hz.                                                                                                                                                                                                      |
| ACE after start-up                                                                    | ACE for services F2x and F3x is started automatically. To prevent a concurrence of ACE when both devices of a line are started at the same time, different start-up delays are used in "ACE-Master" and "ACE-Slave" device.                                                                       |
|                                                                                       | A device is " <b>ACE-Slave</b> " when the HF-TX-Frequency is less than HF-RX-<br>Frequency, otherwise the device is "ACE-Master"                                                                                                                                                                  |
| ACE start-up delay                                                                    | The Start-up delay used by "ACE-Master" is 12 seconds. The Start-up delay used by "ACE-Slave" is the delay of "ACE-Master" + 60 seconds                                                                                                                                                           |
| HF Configuration                                                                      |                                                                                                                                                                                                                                                                                                   |
| Definition of "Frequency order" for receive and transmit frequency                    | Refer to chapter Commissioning": Frequency pattern using adjacent Tx- and Rx-bands                                                                                                                                                                                                                |
| Frequency adjustment                                                                  | The frequency adjustment is depending on the setting of the frequency grid. In case of 4-kHz grid the smallest possible frequency step is 2 kHz. In case of 2.5-kHz grid the smallest possible step is 1.25 kHz.                                                                                  |
| HF Frequencies from 24 up to 500 kHz                                                  | For using these frequencies LB versions of the AMP50, LT100, TXF1, TXF2 resp. RXF modules in the PLPA are required.                                                                                                                                                                               |
| HF Frequencies from 500 up to 1000 kHz                                                | For using these frequencies HB versions of the AMP50, LT100, TXF1, TXF2 resp. RXF modules in the PLPA are required.                                                                                                                                                                               |
| AXC activation                                                                        | The AXC function must be activated when using adjacent Tx and Rx bands or if the gap between the Tx and Rx bands is less a defined value. For more details refer to chapter <i>Commissioning: Definition of the adjacent mode.</i>                                                                |
| Receive Alarm                                                                         |                                                                                                                                                                                                                                                                                                   |
| Receive alarm and general alarm is activated.<br>The LED RX is red slow blinking.     | Check the complete cable connection between the HF output PLPA and the HF connection board.                                                                                                                                                                                                       |
|                                                                                       | Adjustment of the RXF? HF configuration?                                                                                                                                                                                                                                                          |
| Receive Alarm in case of adjacent Tx and Rx ba                                        | nds                                                                                                                                                                                                                                                                                               |
| The PowerLink receive level cannot be properly adjusted with adjacent Tx and Rx bands | Check the setting for the ADC in the <b><configuration b="" option<="" –="">&gt;. The default setting is 12 dB. If the line attenuation (from Tx output to Rx input) is more than 15 dB this value has to be changed. Refer to chapter <i>Commissioning: ADC Adjustments</i>.</configuration></b> |
| iSWT Module Type                                                                      |                                                                                                                                                                                                                                                                                                   |
| Type of PU4 module for iSWT                                                           | In the PowerLink system the module type <b>PU4</b> is required for the integrated SWT 3000.                                                                                                                                                                                                       |
|                                                                                       | In case of connecting an external SWT 3000 via fiber optic module <b>FOM</b> , the module type for the PU4 in the external SWT 3000 and PowerLink must be <b>PU4</b> .                                                                                                                            |
| iSWT                                                                                  | 1                                                                                                                                                                                                                                                                                                 |
| PU4 is equipped and configured but all LED are                                        | PU4x power supply enable switch is in position OFF!                                                                                                                                                                                                                                               |
| staying red after power up                                                            | Check jumper X17 on the PU4 module it must be in position 1-2. Refer to chapter <i>Commissioning: Integrated SWT 3000</i> .                                                                                                                                                                       |
| <b>PU4</b> LED <b>OK</b> is green <b>flashing</b> and general alarm is activated.     | The test mode of the iSWT is activated. Deactivation with PowerSys <iswt-x -="" test=""></iswt-x>                                                                                                                                                                                                 |
| <b>PU4</b> LED <b>LIA</b> is red (flashing)                                           | The module shows guard alarm. The guard frequency must be received at least for 150 ms to unlock the LIA receiver. No connection via PowerLink. Check the receive level of the PowerLink. PowerLink connected to dummy load?                                                                      |

8.13 Problem Tracking

| Problem concerning:                                                                            | Reason/Solution                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No trip signal is transmitted from the connected                                               |                                                                                                                                                                                                                                                                           |
| protection device                                                                              | the binary inputs. The settings are shown in chapter <i>Commissioning</i> : Jumper settings for the IFC modules.                                                                                                                                                          |
|                                                                                                | Make sure that the "Test mode IFC" is not activated.                                                                                                                                                                                                                      |
|                                                                                                | Check the input configuration of the iSWT 3000(< <b>Configura-</b><br>tion-iSWT-x-Input allocation >). The inputs must be enabled.                                                                                                                                        |
| IFC-Test inputs do not work although IFC-test                                                  | After enabling "Test mode-IFC" by configuration, all test-switches must<br>be once in <b>off</b> -position before on-position of any switch is accepted<br>(warning: switch-off-position depends on IFC-hardware-release!)                                                |
|                                                                                                | During IFC-Test mode, the signals via binary inputs are disabled!                                                                                                                                                                                                         |
|                                                                                                | Binary inputs activated with the test-switch in the test mode, are causing command outputs in the remote station                                                                                                                                                          |
| <b>Command transmission time</b> via Line- Inter-<br>face-Analog (LIA) is longer than expected | Adjustment "Application" in the PowerSys-Form <b><configuration< b=""> – <b>iSWT-x</b> – <b>System-Line interface&gt;</b> is set to "direct tripping"</configuration<></b>                                                                                                |
| iSWT with LID (for PowerLink 100)                                                              |                                                                                                                                                                                                                                                                           |
| Line-Interface-Digital (LID) does not<br>synchronize (respective LED is indicated red)         | Check if all jumpers on board DLE are set to the right position for<br>the desired interface. The settings are shown in chapter <i>Commis-</i><br><i>sioning</i> . The jumper settings are shown also in the SWTStraps program<br>installed with the PowerSys.            |
|                                                                                                | Check if LID-configuration is OK, especially <b>DCE/DTE</b> -settings. False connection(s) in the cables?                                                                                                                                                                 |
|                                                                                                | Check if "Address settings for Transmitter and Receiver in <b><configura-< b=""><br/>tion – iSWT-x – System&gt; corresponds within the SWT 3000 link.</configura-<></b>                                                                                                   |
|                                                                                                | More information can be found in chapter Commissioning.                                                                                                                                                                                                                   |
| <b>Test loops</b> for the Line-Interface-Digital ( <b>LID</b> ) are not working                | Check the address settings for the transmitter and receiver in the iSWT 3000 system configuration. For switching remote or local loop, it must be the same address.                                                                                                       |
| iSWT Event Recorder PowerLink Event Log                                                        |                                                                                                                                                                                                                                                                           |
| Saving the event log                                                                           | Open the event recorder and read the number of events. Then select the < <b>save</b> > button.                                                                                                                                                                            |
| Clock Adjustment                                                                               |                                                                                                                                                                                                                                                                           |
| Time and date is not taken over from the service PC                                            | Check the regional settings of the service PC. It must be set to "German" or "English (UK)"                                                                                                                                                                               |
| RS232 Splitter                                                                                 |                                                                                                                                                                                                                                                                           |
| Interfaces for the RS232 splitter                                                              | The RS 232 splitter is available for the interfaces RS232-1 up to 4. For using the splitter function connect the RTU to the port B. In this case the RTS signal is needed for the data transmission.                                                                      |
|                                                                                                | For detailed information refer to chapter System description.                                                                                                                                                                                                             |
| iFSK Channels                                                                                  |                                                                                                                                                                                                                                                                           |
| Interfaces for the iFSK channels                                                               | Up to 4 iFSK channels are available in the PowerLink. They have to be connected at the RS232-1 up to 4 interfaces. For using the splitter function connect the RTU to the port <b>B</b> . In this case the <b>RTS</b> signal is needed for the <b>data transmission</b> . |
| VFx Firmware Update                                                                            |                                                                                                                                                                                                                                                                           |
| Updating Firmware of <b>VFx</b> module                                                         | For updating the firmware of the VFx modules, the PowerLink must<br>be switched to the diagnostic mode (refer to chapter <i>Diagnostic and</i><br><i>error handlings</i> .                                                                                                |

| Problem concerning:                                                                                                              | Reason/Solution                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measuring Voice Frequencies via VFx Modules                                                                                      | in the HF Range                                                                                                                                                                                                                                                                                                             |
| The HF level of the fed data frequency is less<br>than the HF level CSPi displayed in the PowerLink<br>information services form | The feeding data channel is working with the <b>nominal</b> level. The displayed HF CSPi level is the <b>peak</b> level. The difference between the VF peak level and the channel level is also measured in the HF range. You find more information in chapter Commissioning <i>Considerations About Level Adjustment</i> . |
| VFM Module                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| <b>No</b> S2 Signals from/to VFx                                                                                                 | No supply voltage for S2 receiver/transmitter, check <b>connection</b> of the <b>PS E&amp;M</b> terminal. For detailed information refer to chapter <i>Installation</i> .                                                                                                                                                   |
| State of S2/S6 Signal                                                                                                            |                                                                                                                                                                                                                                                                                                                             |
| State of control signals <b>S2</b> and/or <b>S6</b> of user interface must be changed                                            | To adapt PowerLink interfaces to user demands the states of all S2 and S6 input signals can be used "normal" or "inverse". The states of S2 and S6 signals can be changed in the PowerSys form <b><adjustment b="" –<=""> <b>Service option - Service x</b>&gt;.</adjustment></b>                                           |
| DP Data Rate                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |
| Primary data rate adjustment                                                                                                     | The primary data rate cannot be higher adjusted than the max bit rate calculated with the <b>bit rate estimation</b> .                                                                                                                                                                                                      |
| Secondary data rate                                                                                                              | The secondary data rate is only adjustable in the synch. mode dynamic.<br>The synch. mode dynamic must be enabled in the dongle!                                                                                                                                                                                            |
| DP is not synchronizing                                                                                                          | Check the ADC adjustment of the <b><configuration b="" option<="" –="">&gt;. It must be 20 dB when the line attenuation is 25 dB. Refer also to the chapter <i>Commissioning: ADC adjustments</i>.</configuration></b>                                                                                                      |
| DP and X.21-DP Interface                                                                                                         |                                                                                                                                                                                                                                                                                                                             |
| The connected PMX3000 is not working properly                                                                                    | Check the setting DCE/DTE for the MUX and DP.                                                                                                                                                                                                                                                                               |
|                                                                                                                                  | Check the connecting cable. For detailed information refer to chapter <i>Commissioning: Synchronous Interface X.21-DP</i> : .                                                                                                                                                                                               |
| X.21 clock mode is not adjustable                                                                                                | The X.21 clock mode is fixed to DCE for the <b>DP-Mode</b> "Slave". Only the " <b>Master</b> " can be adjusted to <b>DTE</b> .                                                                                                                                                                                              |
| The connected MUX is not working properly in                                                                                     | Only the PMX3000 can be connected in this synch. mode.                                                                                                                                                                                                                                                                      |
| the synch. mode <b>dynamic</b>                                                                                                   | Make sure that the connected <b>PMX3000</b> is set to the clock mode <b>DTE</b> and the <b>DP</b> to <b>DCE</b> .                                                                                                                                                                                                           |
| DP and iMUX                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |
| Setting the bit rate of the channels 1 to 4 in the synch. mode <b>dynamic</b>                                                    | The bit rate adjusted for the channels 1 to 4 has to be transmitted with the primary <b>and</b> secondary bit rate of the DP.                                                                                                                                                                                               |
| iMUX data channels 1 up to 4 are not trans-<br>mitted.                                                                           | Make sure that the channels are connected to the RS232-1A to 4A interfaces. If connected to the 1B to 4B interfaces the RTS signal is needed for the transmission.                                                                                                                                                          |
|                                                                                                                                  | In case of connection to the 1A to 4A interfaces make sure, that the contact polarity inversion ( <b>Cont inv</b> in the PowerSys service configura-<br>tion) is not activated.                                                                                                                                             |
|                                                                                                                                  | Check the connecting cable to the RTU! <b>Do not use crossed wires</b> .                                                                                                                                                                                                                                                    |
| iMUX data channels 5 up to 8 are not trans-<br>mitted.                                                                           | The data channels are exceeding the aggregate bit rate of the Data Pump.                                                                                                                                                                                                                                                    |
| DP and vMUX                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |
| vMUX Board Link error                                                                                                            | 15-pin Sub-D-Connecter "X.21-DP" on PowerLink 50/100 connector panel is wired!                                                                                                                                                                                                                                              |
| Transmission errors on non guaranteed ("best effort") RS232 channels of vMUX                                                     | Hardware handshake must be used to stop transmission when the transmission channel is not available. Handshake signals at the RS232-1 up to 4 interfaces are available on the B ports.                                                                                                                                      |

8.13 Problem Tracking

| Problem concerning:                                                                                | Reason/Solution                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File transfer via RS232 channel with <b>HyperTer-</b><br>minal .                                   | For file transfer, always UART-Format 8N1 is used!                                                                                                                                                                                                                                                                                    |
| DP and adjacent Tx/Rx Bands                                                                        |                                                                                                                                                                                                                                                                                                                                       |
| HF configuration of the frequency order                                                            | In case of using DP only, the lower frequency band must be adjusted regular and the upper frequency band inversed.                                                                                                                                                                                                                    |
|                                                                                                    | If using DP and voice transmission the lower frequency band must be<br>adjusted inversed and the upper frequency band regular. Refer also to<br>chapter <i>Commissioning</i> .                                                                                                                                                        |
| DP is not synchronizing and RX-AL LED is green flashing                                            | The receive level is to high! Correct it with PowerSys program < Adjust-<br>ments – Leveling - RX-Leveling>                                                                                                                                                                                                                           |
| PLPA                                                                                               |                                                                                                                                                                                                                                                                                                                                       |
| The transmit line filter cannot be adjusted                                                        | Check the straps on the TXF module according the PLPA program.<br>Refer also to chapter <i>Commissioning: Tuning of the transmit line filter</i> .<br>If all jumpers are correct, and there are still problems change the<br>module.                                                                                                  |
| No output power after filter adjustment                                                            | Make sure that the straps on the TXF and LT100 modules are in normal operating position.                                                                                                                                                                                                                                              |
|                                                                                                    | Refer also to chapter Commissioning: Tuning of the transmit line filter, or to the PLPA program.                                                                                                                                                                                                                                      |
| Service Telephone STEL                                                                             |                                                                                                                                                                                                                                                                                                                                       |
| Activation                                                                                         | For activating the service telephone, the SERVICE- button on the CSPi has to be pressed for at least 5 seconds. At the local station, this is indicated by slow blinking of the LED SERVICE-TEL. The remote station receives a call signal. The STEL is working, if the STEL button is pressed in the remote station within 1 minute. |
|                                                                                                    | The corresponding service is interrupted and general alarm is activated during the STEL activation.                                                                                                                                                                                                                                   |
| Calling the remote station during the STEL oper-<br>ation                                          | To call the remote station during the STEL operation, press the SERVICE-TEL button for min 1 second.                                                                                                                                                                                                                                  |
|                                                                                                    | In the remote station, the STEL button has to be pressed within 1 minute in order to switch off the buzzer.                                                                                                                                                                                                                           |
| Exit the STEL                                                                                      | To exit the SERVICE-TEL operation, press the SERVICE-TEL button for min 5 seconds.                                                                                                                                                                                                                                                    |
| Service telephone activation is working but no voice is transmitted                                | Check the head set of the service telephone. Both jacks must be stereo type.                                                                                                                                                                                                                                                          |
| RM Service                                                                                         |                                                                                                                                                                                                                                                                                                                                       |
| The RM service is configured but a connection to                                                   | Check that no service PC is connected in the remote station.                                                                                                                                                                                                                                                                          |
| the remote station is not possible                                                                 | For the remote channel, a Master – Slave connection is necessary.<br>Check the corresponding settings in the RM Configuration.                                                                                                                                                                                                        |
|                                                                                                    | The remote station is connected via route communication and RM-1 interface. RM-1 is blocked if a Service PC is connected to the device. Connect the service PC to the other PowerLink.                                                                                                                                                |
| The RM service is configured a connection to the remote station is established but a configuration | Additional the configuration of the device has to be enabled in the RM configuration form. For more details refer to chapter <i>Commissioning</i> to this assumed.                                                                                                                                                                    |
| of the remote device is not permitted Remote Access to the PowerLink                               | in this manual.                                                                                                                                                                                                                                                                                                                       |
|                                                                                                    | For detailed information refer to chapter SNMP and Permete Access                                                                                                                                                                                                                                                                     |
| Description about remote access                                                                    | For detailed information refer to chapter SNMP and Remote Access.                                                                                                                                                                                                                                                                     |
| Firmware upgrade of PowerLink                                                                      | For firmware upgrade the MemTeel pressure is used which is not of                                                                                                                                                                                                                                                                     |
| The Firmware of the PowerLink system has to be upgraded                                            | For firmware upgrade the <b>MemTool program</b> is used which is part of the <b>PowerSys Package</b> . It is used for upgrading SWT 3000 and/or the PowerLink system.                                                                                                                                                                 |
|                                                                                                    | For detailed information refer to chapter Service Program PowerSys.                                                                                                                                                                                                                                                                   |

| Problem concerning:                                                    | Reason/Solution                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No connection of the MemTool program to the PowerLink possible         | Verify, whether the service PC is connected to the RM-1 connector on the CFS-2 and switch S5/1 on the CSPi is in "ON" position.                                                                                                                                                                                                                                  |
|                                                                        | Refer to chapter Control and Signaling Elements on the CSPi Module.                                                                                                                                                                                                                                                                                              |
|                                                                        | Make sure that the target file is Siemens PowerLink CSPi                                                                                                                                                                                                                                                                                                         |
| No display of "AllInOne.jnk" files in the Open File form of MemTool    | Make sure that the "Files of type" selection in the Open file form is adjusted to <b>jnk-Files (*.jnk)</b>                                                                                                                                                                                                                                                       |
| Firmware upgrade of iSWT                                               |                                                                                                                                                                                                                                                                                                                                                                  |
| No connection of the MemTool program to the iSWT possible              | Verify, whether the service PC is connected to the PU3f connector the jumper X17 on the PU3f is in position 2-3 and switch S5/2 on the CSPi is in "ON" position.                                                                                                                                                                                                 |
|                                                                        | Make sure that the <b>target</b> file is <b>Siemens SWT 3000 PU4</b> . If although no connection is possible, push the reset button at the PU3x and try again.                                                                                                                                                                                                   |
| Firmware upgrade of vMUX                                               |                                                                                                                                                                                                                                                                                                                                                                  |
| The Firmware of the vMUX has to be upgraded                            | For firmware upgrade the <b>MemTool program</b> is used which is part<br>of the <b>PowerSys Package</b> . It is used for upgrading SWT 3000, vMUX<br>and/or the PowerLink system.                                                                                                                                                                                |
|                                                                        | For detailed information refer to chapter Firmware Upgrade with MemTool.                                                                                                                                                                                                                                                                                         |
| No connection of the MemTool program to the<br>PowerLink vMUX possible | Make sure the service PC is connected to the upper connector (SSP) of the vMUX, the target file is Siemens PowerLink – vMUX, the S2.1 on the vMUX is in "ON" position and the S5.2 on the CSPi is in "ON" position. Ref. also to <i>Control and Signaling Elements on the vMUX</i> . For detailed information refer to chapter <i>Service Program PowerSys</i> . |

# 8.14 Recommended Handling of Power Cycle

In order to ensure optimum performance of the system, applying standard procedures as for the operation of any electric equipment is recommended. These standard procedures include, but are not limited to:

- If a reset of the CSPi board has to be performed, it shall be executed via the RESET button S4 as described in the Equipment Manual chapter 8.2. Control and Signaling Elements on the CSPi Module.
- If a manual Power OFF has to be performed, it shall be executed via the Power Inhibit switch S1 as described in the Equipment Manual chapter 8.2. Control and Signaling Elements on the CSPi Module.
- If a manual Power OFF is performed, a subsequent power ON action shall be started not earlier than 10 sec after power down.

# 9 Technical Data

| 9.1 | Transmission Method                       | 592 |
|-----|-------------------------------------------|-----|
| 9.2 | HF- Interface                             | 593 |
| 9.3 | Transmission Characteristics              | 594 |
| 9.4 | Analog Interface                          | 595 |
| 9.5 | Digital Interface                         | 597 |
| 9.6 | Integrated Teleprotection System SWT 3000 | 600 |
| 9.7 | Miscellaneous                             | 605 |
|     |                                           |     |

# 9.1 Transmission Method

| Modulation         | Amplitude modulation with single sideband transmission                  |  |
|--------------------|-------------------------------------------------------------------------|--|
|                    | Single step frequency conversion                                        |  |
|                    | Multicarrier modulation (OFDM)                                          |  |
| HF-frequency range | 24 kHz to 1000 kHz                                                      |  |
| HF-bandwidth       | 2.5, 3.75, 4, 5, 7.5, 8, 12, 16, 24, 32 kHz in each operating direction |  |
| Tx/Rx band         | Adjacent                                                                |  |
|                    | Non adjacent                                                            |  |

# 9.2 HF- Interface

| Output power                       | PowerLink 100:                                   |
|------------------------------------|--------------------------------------------------|
|                                    | 50 W-amplifier, up to +47 dBm PEP                |
|                                    | Adjustable 20 W to 50 W                          |
|                                    | 100 W-amplifier, up to +50 dBm PEP               |
|                                    | Adjustable 40 W to 100 W                         |
|                                    | PowerLink 50:                                    |
|                                    | 50 W-amplifier, up to +47 dBm PEP                |
|                                    | Adjustable 20 W to 50 W                          |
| Rated output impedance             | 75 Ohm unbalanced or 150 Ohm balanced            |
| Spurious emission                  | In accordance with IEC 60495                     |
| At a distance of:                  | At transmitted power of:                         |
|                                    | > 40 W < 40 W                                    |
| 1 x BN from the transmission Band  | ≥ 60 dB -14 dBm                                  |
| 2 x BN from the transmission Band  | ≥ 70 dB -24 dBm                                  |
| >2 x BN from the transmission Band | ≥ 80 dB -34 dBm                                  |
|                                    | BN = rated bandwidth of the transmission channel |
| Return loss                        | > 10 dB (according IEC 60495)                    |
| Tapping loss                       | $\leq$ 1.5 dB (according IEC 60495)              |
| Balance to ground 50 Hz            | > 40 dB (according IEC 60495)                    |
| Balance to ground 60 Hz            | > 40 dB (according IEC 60495)                    |

# 9.3 Transmission Characteristics

| Receiver sensitivity                | Minimum receive level of pilot tone: -32 dBm                      |
|-------------------------------------|-------------------------------------------------------------------|
|                                     | (minimum receive level can vary depending on the operating mode)  |
| Receiver selectivity                | At a distance of 1 x BN from the band limits: $\ge$ 65 dB         |
|                                     | At a distance of 2 x BN from the band limits: $\geq$ 75 dB        |
|                                     | (BN = rated bandwidth of transmission channel)                    |
| Selectivity                         | < -55 dBm0 (according IEC 60495)                                  |
| AGC (automatic gain control)        | Range 40 dB                                                       |
|                                     | (AGC-range can vary depending on the operating mode)              |
|                                     | stabilization of vf-output level: $< \pm 0.5$ dB                  |
| AFC (automatic frequency control)   | VF-frequency deviation between transmitter and receiver » 0<br>Hz |
| AXC (autom. crosstalk cancellation) | Dynamic adjustments to changes in the line conditions             |

# 9.4 Analog Interface

#### VF- Interface (General)

| Number of interfaces        | PowerLink 100: Up to 8                                  |
|-----------------------------|---------------------------------------------------------|
|                             | PowerLink 50: Up to 7                                   |
| Telephone signaling channel | Pulse distortion < 1.5 ms at 50 Bd                      |
| Compander                   | Compression/expansion ratio k = 2                       |
| Bandwidth                   | 0.3 kHz to 3.84 kHz (range depends on configuration)    |
| Return loss                 | > 14 dB (according IEC 60495)                           |
| Control wire in             | Optocoupler DC 7 V < Vin < DC 72 V                      |
|                             | I <sub>max</sub> = 7 mA due to limiter at input circuit |
| Control wire out            | Optocoupler DC 12 V < Vout < DC 72 V                    |
|                             | I <sub>max</sub> = 100 mA depending on Vout             |

#### VF- Telephone Channel E&M (2/4 Wire)

| Number of channels     | PowerLink 100:                              |
|------------------------|---------------------------------------------|
|                        | Up to 5 (5 with dPLC and vMUX, 3 with aPLC) |
|                        | PowerLink 50:                               |
|                        | Up to 4 (4 with dPLC, 2 with aPLC)          |
| Impedance input/output | 600 Ohm balanced                            |
| Input level            | 4 wire: -26 dBm to +1 dBm                   |
|                        | 2 wire: -22 dBm to +5 dBm                   |
| Output level           | 4 wire: -7 dBm to +14 dBm                   |
|                        | 2 wire: -11 dBm to +10 dBm                  |
| Control wires          | Telephone signaling channel (S2)            |
|                        | Compander control                           |

#### VF- Telephone Channel FXS (2 Wire)

| Number of channels   | PowerLink 100: Up to 3                  |
|----------------------|-----------------------------------------|
|                      | PowerLink 50: Up to 2                   |
| Impedance            | 600 Ohm                                 |
| Infeed current       | 48 V, max. 40 mA                        |
| Max. loop resistance | 1500 Ohm                                |
| Ringing voltage      | 96 Vpp, 25 Hz, 50 Hz, 60 Hz, selectable |
| Input level          | -26 dBm to +5 dBm                       |
| Output level         | -11 dBm to +14 dBm                      |

#### VF- Telephone Channel FXO (2 Wire)

| Number of channels | PowerLink 100: Up to 3          |
|--------------------|---------------------------------|
|                    | PowerLink 50: Up to 2           |
| Impedance          | 600 Ohm                         |
| Ringing detection  | 25 Hz, 50 Hz, 60 Hz (> 24 Vrms) |
| Loop resistance    | < 560 Ohm                       |
| Max. loop current  | 70 mA                           |
| Input level        | -26 dBm to +5 dBm               |
| Output level       | -11 dBm to +14 dBm              |

#### VF-Data Channel F3 (4 Wire)

| Number of channels     | Up to 2           |
|------------------------|-------------------|
| Impedance input/output | 600 Ohm balanced  |
| Input level            | -26 dBm to +1 dBm |
| Output level           | -7 dBm to +14 dBm |

#### VF-Distance Protection Channel F6 (4 Wire) for aPLC

| Number of channels     | Up to 2                            |
|------------------------|------------------------------------|
| Impedance input/output | 600 Ohm balanced                   |
| Input level            | -26 dBm to +1 dBm                  |
| Output level           | -7 dBm to +14 dBm                  |
| Control wire           | Boosting of protection signal (S6) |
| Transmission time      | ≤ 10 ms                            |

#### TP-Repeater Channel (4 Wire, VF)

| Number of channels     | Up to 4                                    |
|------------------------|--------------------------------------------|
| Bandwidth              | 0.3 kHz to 2.64 kHz or 0.3 kHz to 3.84 kHz |
| Impedance input/output | 600 Ohm balanced                           |
| Input level            | 0 dBm                                      |
| Output level           | 0 dBm                                      |
| Wiring                 | 4 Wire Crossover Cable                     |

# 9.5 Digital Interface

#### Transparent Narrowband Data for a PLC

| Number of channels | Up to 4, asynchronous                                 |
|--------------------|-------------------------------------------------------|
| Interface          | RS232 (TxD, RxD)                                      |
| Modulation scheme  | FSK (Frequency Shift Keying)                          |
| Nominal baud rate  | 50 bps, 100 bps, 200 bps, 600 bps, 1200 bps, 2400 bps |
| Min. bandwidth     | 100 Hz, 200 Hz, 400 Hz, 1000 Hz, 1440 Hz, 2720 Hz     |

#### Broadband Data (General) for dPLC

| Number of channels                  | Up to 8 asynchronous,                                                                                                                                                                                                                            |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | 2 synchronous,                                                                                                                                                                                                                                   |
|                                     | 8 voice,                                                                                                                                                                                                                                         |
|                                     | 2 VF data, 2 ETH                                                                                                                                                                                                                                 |
| Modulation scheme                   | Multicarrier                                                                                                                                                                                                                                     |
| Data Pump data rate                 | Max. 320 Kbps                                                                                                                                                                                                                                    |
| Data Pump bandwidth                 | 3.5 kHz, 3.7 kHz, 4 kHz, 4.5 kHz, 4.7 kHz, 5 kHz, 5.5 kHz,<br>6.5 kHz, 7 kHz, 7.5 kHz, 11.5 kHz, 15.5 kHz, 23.5 kHz,<br>31.5 kHz                                                                                                                 |
| Versatile multiplexer               | For the multiplex transmission of digitized voice and data<br>channels. Transfer of data channels as well as digitized voice<br>in the repeater station via StationLink. Voice transferred via<br>StationLink without decompression/compression. |
| Fallback mode                       | Dynamic matching of the transmission rate in 2 steps with priority matching                                                                                                                                                                      |
| Required minimum signal-noise ratio | 39 dB for 8.5 bit/s/Hz (for example, 64 Kbps up to 7.5 kHz)                                                                                                                                                                                      |
|                                     | 20 dB for 4 bit/s/Hz (for example, 32 Kbps up to 7.5 kHz)                                                                                                                                                                                        |

#### Asynchronous Data Interface (iMUX- Data Pump)

| Number of channels    | Up to 8                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Interface             | RS232 (TxD, RxD, RTS, CTS)                                                                                                         |
| Bit rate              | 1.2 Kbps, 2.4 Kbps, 4.8 Kbps, 9.6 Kbps, 19.2 Kbps                                                                                  |
| UART-mode             | 8N1, 8N2, 8E1, 8E2, 8O1, 8O2                                                                                                       |
|                       | 7N1, 7N2, 7E1, 7E2, 7O1, 7O2                                                                                                       |
| Multiplexer scheme    | Statistical, with priority                                                                                                         |
| Transmission capacity | Bandwidth 8 kHz with 64 Kbps Data Pump rate is suitable for<br>up to 8 channels 9.6 Kbps or 4 channels 19.2 Kbps (= 76.8<br>Kbps). |
|                       | Bit rate of Data Pump is settable in 0.4 Kbps steps.                                                                               |

#### Synchronous Data Transmission via Data Pump and External Multiplexer

| Number of channels | 1                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------|
| Interface          | X.21-DP                                                                                                   |
| Bit rate           | 9.6 Kbps to 64 Kbps (adjustable in steps of 0.4 Kbps)                                                     |
|                    | 64 Kbps, 80 Kbps, 96 Kbps, 128 Kbps, 144 Kbps, 160 Kbps, 192 Kbps, 224 Kbps, 256 Kbps, 288 Kbps, 320 Kbps |
| Interface          | G703.1 (only PowerLink 100)                                                                               |
| Bit rate           | 64 Kbps                                                                                                   |

### Technical Data

9.5 Digital Interface

#### **IP User Interfaces**

| IP user interface    | Ethernet 10/100 Base T |
|----------------------|------------------------|
|                      | SFP- Module            |
| IP address PowerLink | 192.168.30.5           |
| Default address      | 255.255.255.0          |
| Subnet mask          |                        |

#### Versatile Multiplexer/Voice Compression for dPLC

| Number of voice channels            | PowerLink 100: Up to 5 via analog VF telephone interface                                      |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
|                                     | PowerLink 50: Up to 4 via analog VF telephone interface                                       |
|                                     | Up to 8 via fractional E1 interface                                                           |
| Voice transmission                  | Compression rate:                                                                             |
|                                     | 5.3 Kbps/6.3 Kbps according G.723                                                             |
|                                     | 8.0 Kbps according G.729                                                                      |
|                                     | Signaling:                                                                                    |
|                                     | S2, DTMF,                                                                                     |
|                                     | MFC (on request)                                                                              |
| Synchronous data X.21               | Up to 2 channels                                                                              |
|                                     | Bit rate: 9.6 Kbps to 64 Kbps                                                                 |
|                                     | (settable in 0.4-Kbps steps)                                                                  |
|                                     | 64, 80, 96, 128, 144, 160, 192 Kbps                                                           |
| Asynchronous data RS232             | Up to 8 channels                                                                              |
|                                     | Bit rate: 1.2 Kbps, 2.4 Kbps, 4.8 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, 115.2 Kbps |
|                                     | UART-mode: 8N1, 8N2, 8E1, 8E2, 8O1, 8O2                                                       |
|                                     | 7N1, 7N2, 7E1, 7E2, 7O1, 7O2                                                                  |
|                                     | Multiplex method statistical, with priority                                                   |
| Analog FSK data                     | Up to 2 analog FSK channels for transmission in digital mode                                  |
|                                     | (Reverse FSK)                                                                                 |
|                                     | Data rate: 50 bps, 100 bps, 200 bps, 300 bps, 600 bps, 1200 bps, 2400 bps                     |
|                                     | UART-mode: 8N1, 8N2, 8E1, 8E2, 8O1, 8O2                                                       |
|                                     | 7N1, 7N2, 7E1, 7E2, 7O1, 7O2                                                                  |
|                                     | Transparent mode:                                                                             |
|                                     | oversampling with: 1200 Hz, 2400 Hz, 4800 Hz, 9600 Hz, 19 200 Hz                              |
| Transmission capacity via Data Pump | Up to 256 Kbps at 32-kHz bandwidth                                                            |
| Fallback mode                       | Dynamic transmission rate with 2 steps and priority adjust-<br>ment                           |

#### Data Pump

| Modulation scheme | Multicarrier                                                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bandwidth         | 3.5 kHz, 3.7 kHz, 4.0 kHz, 4.5 kHz, 4.7 kHz, 5.0 kHz, 5.5 kHz,<br>6.5 kHz, 7.0 kHz, 7.2 kHz, 7.5 kHz,11.5 kHz, 15.5 kHz,<br>23.5 kHz, 31.5 kHz                        |
|                   | 9.6 Kbps to 64 Kbps (adjustable in steps of 0.4 Kbps)<br>64 Kbps, 80 Kbps, 96 Kbps, 128 Kbps, 144 Kbps, 160 Kbps,<br>192 Kbps, 224 Kbps, 256 Kbps, 288 Kbps, 320 Kbps |

| Required min. SNR     | 39 dB for 8.5 bit/s/Hz (for example, 64 Kbit/s within 7.5 kHz)<br>20 dB for 4 bit/s/Hz (for example, 32 Kbit/s within 8.0 kHz) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Latency               |                                                                                                                                |
| (Bandwidth – Latency) | 11 500 Hz, 15 500 Hz, 23 500 Hz, 31 500 Hz: 40 ms*)                                                                            |
|                       | 6500 Hz, 7000 Hz, 7200 Hz, 7500 Hz: 80 ms*)                                                                                    |
|                       | 4500 Hz, 4700 Hz, 5000 Hz, 5500 Hz: 120 ms*)                                                                                   |
|                       | 3500 Hz, 3700 Hz, 4000 Hz: 160 ms*)                                                                                            |

\*) Latency in Sync-Mode adapted or dynamic

# 9.6 Integrated Teleprotection System SWT 3000

### 9.6.1 Overview

| Number of systems                      | PowerLink 100:                                                                             |
|----------------------------------------|--------------------------------------------------------------------------------------------|
|                                        | Up to 2 SWT 3000 integrated in the PowerLink rack or connected via fiber-optic cable (FOM) |
|                                        | PowerLink 50:                                                                              |
|                                        | 1 SWT 3000 integrated in the PowerLink rack                                                |
| Operation modes                        | Single purpose (SP)                                                                        |
|                                        | Alternate multi-Purpose (AMP)                                                              |
|                                        | Simultaneous multi-Purpose                                                                 |
| Number of commands                     | Up to 4 per system (SP, MP, AMP)                                                           |
|                                        | PowerLink 100: Up to 24 in MCM mode                                                        |
| Modulation                             | F6 or Coded                                                                                |
| Broadband frequencies                  | 0.3 kHz to 2.03 kHz                                                                        |
|                                        | Guard 2.61 kHz or 3.81 kHz                                                                 |
| Narrow band frequencies                | 0.63 kHz to 1.26 kHz (incl. Guard)                                                         |
| Transmission on alternative path (1+1) | PowerLink 100:                                                                             |
|                                        | Digital: 64 Kbps: X.21, G703.1                                                             |
|                                        | 2 Mbps: G703.6                                                                             |
|                                        | PowerLink 50: none                                                                         |

### 9.6.2 Command Input/Output

#### Binary Command Input IFC-P/IFC-D

| Input voltage range <sup>5</sup> | DC 24 V to 250 V (tolerance -20 % to<br>+20 %) |           |
|----------------------------------|------------------------------------------------|-----------|
| Input per module                 | 4                                              |           |
| Nominal Input<br>Voltage         | Typical Threshold Voltage                      | Tolerance |
| 24 V                             | 17.0 V                                         | +/- 10 %  |
| 48 V or 60 V                     | 33.0 V                                         | +/- 10 %  |
| 110 V                            | 75.0 V                                         | +/- 10 %  |
| 220 V or 250 V                   | 155.0 V                                        | +/- 10 %  |
| Polarity                         | Independent                                    |           |
| Pulse suppression                | 1 ms to 100 ms (programmable in steps of 1 ms) |           |
| Input current                    | Max. 2 mA                                      |           |

#### Binary Command Output IFC-P for normal contact load

| Contact type        | Relay NO, normally open |
|---------------------|-------------------------|
| Contacts per module | 4                       |
| Contact material    | Ruthenium               |
| Switching power     | 250 W/250 VA            |
| Switching voltage   | AC/DC 250 V             |

<sup>&</sup>lt;sup>5</sup> Regardless of the configured nominal input voltage, the maximum voltage of DC 287.5 V can be connected.

| Switching current                                  | AC/DC 1.5 A                                    |
|----------------------------------------------------|------------------------------------------------|
| Carry current < 2.5 ms                             | AC/DC 5 A                                      |
| Carry current                                      | AC/DC 1.5 A                                    |
| Insulation withstand voltage                       | AC 3 kV                                        |
| Contact configuration                              | Single pole, normally open                     |
| Connection cable                                   | ≤ 2.5 mm <sup>2</sup> (modular terminal block) |
| Pickup time including contact-chatter time maximum | 2 ms                                           |
| Electric strength of contacts/coil                 | AC 3000 V                                      |

#### Binary Command Output IFC-D for high contact load

| Contact type                       | Relay NO, normally open                        |
|------------------------------------|------------------------------------------------|
| Contacts per module                | 4                                              |
| Contact material                   | Silver Tin Oxide                               |
| Switching power                    | 150 W/1250 VA                                  |
| Switching voltage                  | AC/DC 250 V                                    |
| Switching current                  | AC/DC 5 A (30 A ≤ 0.5 ms)                      |
| Carry current                      | AC/DC 5 A                                      |
| Insulation withstand voltage       | AC 3 kV                                        |
| Contact configuration              | Single pole, normally open                     |
| Connection cable                   | ≤ 2.5 mm <sup>2</sup> (modular terminal block) |
| Electric strength of contacts/coil | AC 3000 V                                      |

#### **Binary Command Output IFC-S for Signaling**

| Contact type                       | Relay CO, changeover with common root                       |
|------------------------------------|-------------------------------------------------------------|
| Contacts per module                | 8                                                           |
| Contact material                   | Silver Tin Oxide                                            |
| Switching power                    | 150 W/1250 VA                                               |
| Switching voltage                  | AC/DC 250 V                                                 |
| Switching current per contact      | AC/DC 5 A (30 A ≤ 0.5 ms)                                   |
| Carry current                      | AC/DC 1 A                                                   |
| Switching current per IFC-S module | 8 A                                                         |
| Insulation withstand voltage       | AC 3 kV                                                     |
| Contact configuration              | Single pole, configurable: normally open or normally closed |
|                                    | Common reference voltage                                    |
| Connection cable                   | ≤ 2.5 mm <sup>2</sup> (modular terminal block)              |
| Electric strength of contacts/coil | AC 3000 V                                                   |

#### Binary Input IFC-MCM Basis and Sub Module for PowerLink 100

| Rated input voltage *) | DC 24 V to DC 250 V (tolerance: -20 % to +20 %)              |
|------------------------|--------------------------------------------------------------|
| Threshold              | 70 % of rated DC input voltage (24 V, 48/60 V, 110 V, 220 V) |
| Polarity independence  | Yes                                                          |
| Pulse suppression      | 1 ms                                                         |
|                        | additionally up to 100 ms programmable in steps of 1         |
|                        | ms                                                           |
| Hardware debounce time | 0.6 ms or 1 ms                                               |
|                        | adjustable with jumpers                                      |

9.6 Integrated Teleprotection System SWT 3000

\*) Regardless of the adjusted input voltage the max. voltage of DC 287.5 V can be connected

#### Command Output IFC-MCM (Relay) for PowerLink 100

| Contact type      | Relay, make contact |
|-------------------|---------------------|
| Switching power   | 150 W (DC)          |
|                   | 1250 VA (AC)        |
| Switching voltage | 220 V (DC)          |
| Switching current | 5 A (DC or peak AC) |
| Carry current     | 5 A (DC or peak AC) |

#### Command Output IFC-MCM (Solid State Relay) for PowerLink 100

| Contact type      | Semi-conductor electrically isolated, make contact |
|-------------------|----------------------------------------------------|
| Switching power   | 50 VA                                              |
| Switching voltage | 250 V (DC or peak AC)                              |
| Switching current | 2 A (DC or peak AC)                                |
| Carry current     | 2 A (DC or peak AC)                                |

#### IEC 61850 Command Input/Output EN100

| Electrical interface | RJ45, 100BaseT, max. range 20 m                     |  |
|----------------------|-----------------------------------------------------|--|
| Optical interface    | 1300 nm, LC connector, max. range 1.5 km, Multimode |  |
| Transmission rate    | 100 Mbps (Fast Ethernet)                            |  |

### 9.6.3 Terminals of IFC Modules

#### Screwed connection

| Wire cross section                  | < 1.5 mm <sup>2</sup> (> AWG 16)           |
|-------------------------------------|--------------------------------------------|
| Bare Wire without conductor sleeve  | 12 mm (0.47 inch)                          |
| Stripping Length L                  |                                            |
| Stranded Wire with conductor sleeve | 10 mm (0.39 inch)                          |
| Stripping Length L                  |                                            |
| Terminal screw tightening torque    | 0.8 Nm (7.1 lb. inch)                      |
| Sleeve length (wire range) / Type   | > 10 mm (0.39 inch) e.g. DIN 46228-E1,5-10 |
| Sleeve Type                         | Acc. EN 60947-7 class 1                    |

#### **Crimped connection**

| 0.5 to 1.0 mm <sup>2</sup> (AWG 20 to 18)<br>Recommended Contact Type | Weidmueller Order. No. 162552 (Tape), 162556 (single contact) |
|-----------------------------------------------------------------------|---------------------------------------------------------------|
| 1.5 to 2.5 mm <sup>2</sup> (AWG 15, 14)<br>Recommended Contact Type   | Weidmueller Order. No. 162550 (Tape), 162551 (single contact) |
| Recommended Crimp Tool                                                | Weidmueller Order. No. 9014140000                             |
| Recommended Unlocking Tool                                            | Weidmueller Order. No. 1359000000                             |

### 9.6.4 Command Transmission Via Analog Path

| Broad band equipment                            |                                      |  |
|-------------------------------------------------|--------------------------------------|--|
| Single purpose                                  | ≤ 10 ms (F6, CT)                     |  |
| Alternate multi purpose<br>F2 + AMP<br>DP + AMP | ≤ 15 ms (F6, CT)<br>≤ 19 ms (F6, CT) |  |
| Simultaneous multipurpose                       | ≤ 10 ms (F6, CT)                     |  |
| Narrow band equipment                           | ≤ 15 ms (configured as service F6)   |  |

Transmission Time TO (SWT 3000 Integrated into PowerLink)\*

\* All values are given for the IFC-P module and permissive tripping. Direct tripping will prolong transmission time 5 ms.

\*\* In DP + AMP application with HF-bandwidth > 8 kHz, the transmission time is prolonged ~ 2 ms.

If the IFC-D module is used all specified transmission times are prolonged by ~ 4 ms.

Optical connection between SWT 3000 and PowerLink will prolong the transmission time 1 ms.

#### Command Transmission MCM for PowerLink 100

| Transmission period  | 50 ms (range 50 ms to 100 ms in steps of 5 ms) |
|----------------------|------------------------------------------------|
| Transmission time T0 | ≤ 20 ms                                        |
| Bandwidth            | 4 kHz                                          |

#### SWT 3000 Connection to PowerLink via Fiber Optic Module FOM for PowerLink 100

| Module Type                |                     | FOS1                                  | FOS2           |
|----------------------------|---------------------|---------------------------------------|----------------|
|                            |                     | Short range SM                        | Short range MM |
| Optical module             |                     | SFP-Tra                               | nsceiver       |
| Connector                  |                     | Industry standard duplex LC connector |                |
| Wavelength class [nm]      |                     | 1310                                  | 850            |
| Average output power [dBm] | max:                | -8                                    | -3             |
|                            | min:                | -15                                   | -10            |
| Maximum input power [dBm]  |                     | -8                                    | 0              |
| Minimum input power [dBm]  |                     | -28                                   | -17            |
| Optical budget [dB]        |                     | 13                                    | 7              |
| Range [km]                 | 1310 nm: 0.38 dB/km | 34                                    | 2              |
| depending on the fiber     | 850 nm: 3.5 dB/km   |                                       |                |

#### Security (Analog Transmission Path)

| P <sub>UC</sub>                  | < 10 <sup>-6</sup> |
|----------------------------------|--------------------|
| Probability of unwanted commands |                    |

#### Dependability (Analog Transmission Path)

| P <sub>MC</sub> (F6)            | < 10 <sup>-4</sup> at SNR of +6 dB |
|---------------------------------|------------------------------------|
| P <sub>MC</sub> (MCM)           | < 10 <sup>-3</sup> at SNR of +4 dB |
| Probability of missing commands |                                    |

# 9.6.5 Command Transmission Via Digital Networks (Alternative Path) - PowerLink 100

#### **Digital Interface**

| 64 Kbps | X.21                |
|---------|---------------------|
|         | G703.1              |
| 2 Mbps  | G703.6 sym. 120 Ohm |
|         | G703.6 asym. 75 Ohm |

#### Transmission Time T0 \*

| 64 Kbps | ≤ 5 ms |
|---------|--------|
| 2 Mbps  | ≤ 3 ms |

\* All values are given for the IFC-P module.

If the IFC-D module is used all specified transmission times are prolonged by about 4 ms

#### Security (Digital Transmission Path)

| P <sub>UC</sub>                  | < 10 <sup>-8</sup> |
|----------------------------------|--------------------|
| Probability of unwanted commands |                    |

#### Dependability (Digital Transmission Path)

| P <sub>MC</sub>                 | < 10 <sup>-4</sup> at BER of 10 <sup>-6</sup> |
|---------------------------------|-----------------------------------------------|
| Probability of missing commands |                                               |

# 9.7 Miscellaneous

### 9.7.1 Maintenance Interfaces

| Service-PC           | Ethernet 10/100Base T (LCT)     |
|----------------------|---------------------------------|
| Interface 1          | RS232, 19 200 bps (RM-1)        |
| Interface 2          |                                 |
| IP address PowerLink |                                 |
| Default address      | 192.168.20.5                    |
| DHCP address range   | 192.168.20.10 to 15             |
| Manual address range | 192.168.20.16 to 254            |
| Subnet mask          | 255.255.255.0                   |
| DHCP                 | Server (default)                |
|                      | Client                          |
| Service telephone    | Headset (2 x 3.5-mm phone jack) |

### 9.7.2 Network Management

| Element Manager                      | For local and remote access with user account<br>(MS Windows 10 or higher / x64 version); config-<br>uration, maintenance, and power management<br>by PowerLink and SWT 3000 (integrated or<br>connected via fiber-optic cable) |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integration with NMS at higher level | Via SNMP v2/3, Alarm Management (up to 6 destinations for alarm traps), inventory and performance management                                                                                                                    |

### 9.7.3 Event Memory

| Recording capacity | CSPi: 4000 events                            |
|--------------------|----------------------------------------------|
|                    | (i)SWT: 8192 events                          |
| Real-time clock    | 1-ms resolution,                             |
|                    | Synchronization per sync. pulse, IRIG-B, NTP |

### 9.7.4 Alarm Modules Input/Output

#### Binary Input ALR Module

| Binary Input 1 *)              |                                                 |
|--------------------------------|-------------------------------------------------|
| Nominal voltage                |                                                 |
| used for Synchronization with: |                                                 |
| Sync pulse                     | DC 24 V to DC 250 V (tolerance: -20 % to +15 %) |
| Polarity independence          | Yes                                             |
| IRIG-B **)                     | DC 5 V, DC 12 V, DC 24 V (tolerance: ±15%)      |
| Polarity independence          | No, defined polarity required                   |
| Binary Input 2 *) ***)         | DC 24 V to DC 250 V (tolerance: -20 % to +15 %) |
| Nominal voltage                | Yes                                             |
| Polarity independence          |                                                 |

- \*) Regardless of the adjusted input voltage the max. voltage of DC 287.5 V can be connected
- \*\*) IRIG-B input available only with ALR module
- \*\*\*) Binary Input 2 for future application

#### Output ALR Module (Relay)

| Number of alarm outputs | 3 or 6 relay contacts                      |
|-------------------------|--------------------------------------------|
|                         | (6 relay with 2 modules for PowerLink 100) |
| Contact type            | Change over contact                        |
| Switching power         | 300 W (DC)                                 |
|                         | 1000 VA                                    |
| Switching voltage       | 250 V (DC or peak AC)                      |
| Switching current       | 5 A (DC or peak AC)                        |
| Carry current           | 1 A (DC or peak AC)                        |

### 9.7.5 Power Supply

| <b>F</b>                         |                                      |
|----------------------------------|--------------------------------------|
| Input voltage range              |                                      |
| PSPA2-DC                         | DC 38 V to DC 72 V                   |
| PSPA2-AC                         | AC 93 V to AC 264 V (47 Hz to 63 Hz) |
|                                  | DC 85 V to DC 264 V                  |
| PowerLink 100: Power consumption |                                      |
| 50 W Amplifier (AC/DC)           | Normal operation: 250 VA/140 W       |
|                                  | Max *): 340 VA/200 W                 |
| 100 W Amplifier (AC/DC)          | Normal operation: 390 VA/250 W       |
|                                  | Max *): 520 VA/360 W                 |
| PowerLink 50: Power consumption  |                                      |
| 50 W Amplifier (AC/DC)           | Normal operation: 250 VA/140 W       |
|                                  | Max *): 320 VA/180 W                 |
|                                  |                                      |

\*) Single tone operation

### 9.7.6 Climatic Conditions

| Operation              | 0 °C to +55 °C                        |
|------------------------|---------------------------------------|
|                        | -5 °C to +55 °C (hot boot)            |
| Storage and transport  | -40 °C to +70 °C                      |
| Relative humidity      | 5 % to 95 %                           |
| Absolute max. humidity | 29 g/m <sup>3</sup> (no condensation) |

### 9.7.7 EMC Immunity

| RF disturbance Immunity | IEC 61000-4-6                                 |
|-------------------------|-----------------------------------------------|
|                         | 0.15 MHz to 80 MHz 10 Vrms                    |
|                         | IEC 61000-4-3, EN 61000-6-2 (Industrial area) |
|                         | 80 MHz to 1,000 MHz 10 V/m                    |
|                         | 1.4 GHz to 2.0 GHz 3 V/m                      |
|                         | 2.0 GHz to 2.7 GHz 1 V/m                      |

| Electrostatic discharge      | IEC 61000-4-2                            |
|------------------------------|------------------------------------------|
|                              | 4 kV (direct/indirect contact discharge) |
|                              | 8 kV (direct air discharge)              |
| Bursts                       | IEC 61000-4-4                            |
| Power supply                 | 2 kV                                     |
| HF input/output              | 2 kV                                     |
| VF input/output              | 1 kV                                     |
| Surges                       | IEC 61000-4-5                            |
| Common mode                  | 2 kV                                     |
| (line-to-line)               |                                          |
| Differential mode            | 1 kV                                     |
| (line-to-ground)             |                                          |
| Direct coupling into shields | 1 kV                                     |

### 9.7.8 EMC Emission

| RF disturbance Emission | IEC 61000-6-4 (Industrial area)    |
|-------------------------|------------------------------------|
|                         | Limit class A, 20 MHz to 1.000 MHz |

### 9.7.9 Insulation Withstand Voltage

| VF input/output                  | AC 500 V   |
|----------------------------------|------------|
| Alarm outputs                    | AC 2.500 V |
| Carrier frequency input/output   | AC 2.500 V |
| Power supply                     | AC 2.500 V |
| SWT: Command input/output        | AC 2.500 V |
| SWT: G703.6 sym. (PowerLink 100) | AC 500 V   |

### 9.7.10 Impulse Withstand Level 1.2/50 µs, 0.5 J

| VF input/output                | 1 kV |
|--------------------------------|------|
| Alarm outputs                  | 5 kV |
| Carrier frequency input/output | 5 kV |
| Power supply                   | 5 kV |
| SWT Command input/output       | 5 kV |

### 9.7.11 International Standards

| Single side band power-line carrier terminals | IEC 60495 *) |
|-----------------------------------------------|--------------|
| Product safety                                | IEC 60950-1  |

9.7 Miscellaneous

| EMC                 | IEC 61000-6-4 (Industrial area)               |
|---------------------|-----------------------------------------------|
|                     | IEC 61000-6-2 (Industrial area)               |
|                     | IEC 61000-4-2 Electrostatic discharge         |
|                     | IEC 61000-4-3 RF disturbance Immunity         |
|                     | IEC 61000-4-4 Bursts                          |
|                     | IEC 61000-4-5 Surges                          |
|                     | IEC 61000-4-6 RF disturbance Immunity         |
|                     | IEC 61000-6-4 RF disturbance Emission (indus- |
|                     | trial area)                                   |
| Climatic conditions | IEC 60870-2-2                                 |

\*) IEC 60495 valid for analog transmission with bandwidth up to 8 kHz

### 9.7.12 Mechanical Conditions

| Degree of protection     | IP 20                              |
|--------------------------|------------------------------------|
| Vibration stationary use | Class 3M3                          |
|                          | 2 Hz to 9 Hz: 1.5 mm amplitude     |
|                          | 9 Hz to 200 Hz: 0.5 g acceleration |
| Shock                    | Resistance, class 2M1              |
|                          | 11 ms pulse duration               |
|                          | 10-g acceleration                  |

### 9.7.13 Mechanical Design

#### PowerLink 100

| 19" frame            |                                      |
|----------------------|--------------------------------------|
| Dimensions *)        | 482 mm x 578 mm x 270 mm (W x H x D) |
| Weight *)            |                                      |
| with 50-W amplifier  | 21 kg                                |
| with 100-W amplifier | 26 kg                                |

\*) Values including carrier frequency as well as amplifier section

#### PowerLink 50

| 19" frame     |                                      |
|---------------|--------------------------------------|
| Dimensions *) | 482 mm x 266 mm x 270 mm (W x H x D) |
| Weight *)     | 18 kg                                |

\*) Values including carrier frequency as well as amplifier section

# 10 Appendix

10.1 Abbreviations

610

# 10.1 Abbreviations

Subsequently you find a list with abbreviations which are used in the PowerLink 50/100 equipment manual:

| Abbreviation | Signification                                                                    |
|--------------|----------------------------------------------------------------------------------|
| A            |                                                                                  |
| AAA          | AXC Automatic Activation                                                         |
| ACE          | Automatic Channel Equalization                                                   |
| ACN          | Allocated Channel Number                                                         |
| ADC          | Analog Digital Converter                                                         |
| ADJ          | Adjacent                                                                         |
| AFC          | Automatic Frequency Control                                                      |
| AGC          | Automatic Gain Control                                                           |
| AL           | Alarm wire                                                                       |
| AL-1HB       | Adjustable coil of tx-filter 1st order high band 500 kHz up to 1000 kHz          |
| AL-1LB       | Adjustable coil of tx-filter 1st order low band 24 kHz up to 500 kHz             |
| AL-1XB       | Adjustable coil of tx-filter 1st order high or low band                          |
| ALA          | Alarm output                                                                     |
| ALR          | Alarm Module PowerLink with binary input for IRIG-B synchronization              |
| ALRS         | Alarm module PowerLink                                                           |
| AMP          | Tele protection mode: Alternate Multi Purpose operation                          |
| АМР50-НВ     | Amplifier 50 Watt (module) High Band for the frequency range 500 kHz to 1000 kHz |
| AMP50-LB     | Amplifier 50 Watt (module) Low Band for the frequency range 24 kHz to 500 kHz    |
| AMP50-XB     | Amplifier 50 Watt (module) Low or High frequency band                            |
| aPLC         | Analog PLC                                                                       |
| ARP          | Address Resolution Protocol                                                      |
| aSWT         | Stand Alone SWT                                                                  |
| ATT          | Attenuator                                                                       |
| AXC          | Automatic Crosstalk Canceller                                                    |
| В            |                                                                                  |
| BI           | Binary Input                                                                     |
| BER          | Bit Error Rate                                                                   |
| BL           | Board Link (connection between vMUX and CSPi)                                    |
| BP           | Backplane                                                                        |
| bps          | bit per second                                                                   |
| C            |                                                                                  |
| CB-1         | Capacitor bank                                                                   |
| СС           | Control Center                                                                   |
| CDB          | Configuration Data Base                                                          |
| CF           | Carrier Frequency                                                                |
| CFG          | Configuration alarm in the PowerSys service program                              |
| CFS-2        | Carrier Frequency Section for connection with PLPA and vMUX                      |
| CI           | Command Input                                                                    |
| СО           | Command Output                                                                   |
| CSP          | Central Signal Processing unit                                                   |
| СТ           | Coded tripping (transmission mode in SWT 3000)                                   |
| CTS          | Clear to send                                                                    |
| CV           | Compressed Voice                                                                 |
| D            |                                                                                  |

| D/A     Digital Analog Converter       DCE     Data Communication Equipment       DDFC     Data Driven Frequency Control       DDS     Direct Digital Synthesizer       DHCP     Dynamic Host Configuration Protocol       DIAG     Diagnostic       DE     Digital Line Equipment       DP     Data Pump       dPLC     Digital Signal Processor       DTE     Data Terminal Equipment       DTMF     Dual Tone Multiple Frequency (signaling) telephone dialing procedure       DTMF     Dual Tone Multiple Frequency (signaling) telephone dialing procedure       DTM     Data Terminal Ready       DTT     Direct Transfer Trip       DV     Digital Voice       E     E       EXM     Ear and Mouth       EALR     Receive alarm of the ISWT from version a P3.2.216; RXALR-ISWTx is used       EMC     Electrostatic Discharge       ETC     External Transmit Clock       ETH     Ethernet       EOW     Engineering Order Wire (Service Telephone)       F1     E       F2     Speech signal at PLC terminals resp. service speech       F3/F4     Data signal at PLC terminals resp. service protection signaling       F6SV     F6 supervisory from PowerSys version > P3.2.216 (former F6UE)       F61     Protection signal at PLC terminals resp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abbreviation | Signification                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|
| DCE         Data Communication Equipment           DDFC         Data Driven Frequency Control           DDS         Direct Digital Synthesizer           DHCP         Dynamic Host Configuration Protocol           DIAG         Diagnostic           DLE         Digital Line Equipment           DP         Data Pump           dPLC         Digital Signal Processor           DTF         Data Terminal Equipment           DTMF         Dual Tone Multiple Frequency (signaling) telephone dialing procedure           DTM         Data Terminal Ready           DTT         Direct Transfer Trip           DV         Digital Voice           E         Image: Strengenetic Compatibility           ESM         Ear and Mouth           EALR         Receive alarm of the ISWT from version a P3.2.216: RXALR-ISWTx is used           EMC         Electrostatic Discharge           ETC         External Transmit Clock           ETH         Ethernet           EOW         Engineering Order Wire (Service Telephone)           F         F           F2         Speech signal at PLC terminals resp. service speech           F3:F4         Data signal at PLC terminals resp. service protection signaling           F6SV         F6 supervisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                     |
| DDFCData Driven Frequency ControlDDSDirect Digital SynthesizerDHCPDynamic Host Configuration ProtocolDIAGDiagnosticDLEDigital Line EquipmentDPData PumpdPLCDigital PLCDSPDigital Signal ProcessorDTEData Terminal EquipmentDTMFDuata Terminal ReadyDTTDirect Transfer TripDVDigital VoiceEEEARReceive alarm of the iSWT from version > P3.2.216: RXALR-ISWTx is usedEMCElectromagnetic CompatibilityESDElectromagnetic CompatibilityESDElectromagnetic CompatibilityESDElectromagnetic CompatibilityESDElectromagnetic CompatibilityESDElectrostatic DischargeETCExternal Transfit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)F2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from Power/sy version > P3.2.216 (former F6UE)F61Frame GroundF10First in First outFMFrequency Shift KeyingF01Fiber Optic Modem BoxF02Fiber Optic Modem BoxF03Fiber Optic Modem BoxF04Fiber Optic Modem BoxF05Fiber Optic Modem BoxF05Fiber Optic Modem BoxF05Fiber Optic Modem BoxF05Fiber Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                                     |
| DDSDirect Digital SynthesizerDHCPDynamic Host Configuration ProtocolDIAGDiagnosticDLEDigital Line EquipmentDPData PumpdPLCDigital Signal ProcessorDTEData Terminal EquipmentDTMFDual Tone Multiple Frequency (signaling) telephone dialing procedureDTRData Terminal RadyDTTDirect Transfer TripDVDigital VoiceEEEMMEar and MouthEALRReceive alarm of the ISWT from version > P3.2.216: RXALR-ISWTx is usedEMCElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6SVF optection signal at PLC terminals resp. service protection signalingF6SVF for protection signal at PLC terminals resp. service protection signalingF6SVF for protection signal at PLC terminals resp. service protection signalingF6SVF for protection signal at PLC terminals resp. service protection signalingF6SVF for protection signal at PLC terminals resp. service protection signalingF6SVF for poptic ModernF0DF inst outFIHF transfer ProtocolFMF requency ModulationF0F ibler Optic Modern BoxF0LF ibler Optic Modern BoxF0LF ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DDFC         | · ·                                                 |
| DHCP         Dynamic Host Configuration Protocol           DIAG         Diagnostic           DLE         Digital Line Equipment           DP         Data Pump           dPLC         Digital Signal Processor           DTF         Data Terminal Equipment           DTMF         Data Terminal Ready           DT         Direct Transfer Trip           DV         Digital Voice           E         E           E&         E           E&         E           EMM         Ear and Mouth           EALR         Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-ISWTx is used           EMC         Electrostatic Discharge           ETC         External Transmit Clock           ETH         Ethermet           EOW         Engineering Order Wire (Service Telephone)           F         F           F2         Speech signal at PLC terminals resp. service speech           F3/F4         Data signal at PLC terminals resp. service speech           F6MD         F factional E1 interface for connecting a digital exchange           F6AD         F factional E1 interface for connecting a digital exchange           F6MD         F factional E1 interface for connecting a digital exchange <t< td=""><td>DDS</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DDS          |                                                     |
| DIAG       Diagnostic         DLE       Digital Line Equipment         DP       Data Pump         dPLC       Digital Signal Processor         DTF       Data Terminal Equipment         DTMF       Dual Tome Multiple Frequency (signaling) telephone dialing procedure         DTR       Data Terminal Ready         DV       Digital Voice         E       E         E&M       Ear and Mouth         EALR       Receive alarm of the ISWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F         F2       Speech signal at PLC terminals resp. service speech         F3IF4       Data signal at PLC terminals resp. service data         F6       Protection signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)         F11       Frame Ground         F16D       Fist in First out         FM       Fequency Modulation         F0       Folice Optic Modem Box         F0L       Fiber Optic Modem Nox <td>DHCP</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DHCP         |                                                     |
| DLE       Digital Line Equipment         DP       Data Pump         dPLC       Digital PLC         DSP       Digital Signal Processor         DTE       Data Terminal Equipment         DTM       Dual Tome Multiple Frequency (signaling) telephone dialing procedure         DTR       Data Terminal Ready         DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EALR       Receive alarm of the ISWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F         F2       Speech signal at PLC terminals resp. service speech         F3/F4       Data signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)         F1       Fractional E1 interface froenceting a digital exchange         F6ND       First in First out         FM       Prequency Modulation         F0       Fiber Optic Modem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                     |
| DP       Data Pump         dPLC       Digital PLC         DSP       Digital Signal Processor         DTE       Data Terminal Ready         DTMF       Dual Tone Multiple Frequency (signaling) telephone dialing procedure         DTM       Data Terminal Ready         DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EARR       Receive alarm of the ISWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F2         Speech signal at PLC terminals resp. service speech         F3IF4       Data signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former FGUE)         F1       Fractional E1 interface for connecting a digital exchange         FGND       First in First out         FM       Frequency Modulation         F0       Fiber Optic Modem Box         F0L       Fiber Optic Modem Short distance <td></td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 5                                                   |
| dPLC     Digital PLC       DSP     Digital Signal Processor       DTE     Data Terminal Equipment       DTMF     Dual Tore Multiple Frequency (signaling) telephone dialing procedure       DTR     Data Terminal Ready       DTT     Direct Transfer Trip       DV     Digital Voice       E     E       E&M     Ear and Mouth       EALR     Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-iSWTx is used       EMC     Electromagnetic Compatibility       ESD     Electromagnetic Compatibility       ESD     Electronagnetic Compatibility       ESD     Electronagnetic Compatibility       EVW     Engineering Order Wire (Service Telephone)       F     F       F2     Speech signal at PLC terminals resp. service speech       F3/F4     Data signal at PLC terminals resp. service protection signaling       F6SV     F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)       F11     Fractional E1 interface for connecting a digital exchange       F6ND     Fraue Ground       F1F0     Filter Optic Modem Box       F0A     Frequency Modulation       F0     Fiber Optic Modem Long distance       F0A     Fiber Optic Modem Sort distance       F0A     Fiber Optic Modem Sort distance       F0A     Fiber Optic Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                     |
| DSP       Digital Signal Processor         DTF       Data Terminal Equipment         DTMF       Dual Tone Multiple Frequency (signaling) telephone dialing procedure         DTR       Data Terminal Ready         DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EAR       Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-iSWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F2         Speech signal at PLC terminals resp. service protection signaling         F6       Protection signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)         F11       Fractional E1 interface for connecting a digital exchange         F6ND       Frequency Modulation         F0       Fist in First out         FM       Fiber Optic Modem Box         F0L       Fiber Optic Modem Sort distance         F0A       Fiber Optic Modem Sort distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | •                                                   |
| DTE       Data Terminal Equipment         DTMF       Dual Tone Multiple Frequency (signaling) telephone dialing procedure         DTR       Data Terminal Ready         DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EALR       Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 5                                                   |
| DTMF     Dual Tone Multiple Frequency (signaling) telephone dialing procedure       DTR     Data Terminal Ready       DTT     Direct Transfer Trip       DV     Digital Voice       E     E       E&M     Ear and Mouth       EALR     Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-iSWTx is used       EMC     Electromagnetic Compatibility       ESD     Electrostatic Discharge       ETC     External Transmit Clock       ETH     Ethernet       EOW     Engineering Order Wire (Service Telephone)       F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                     |
| DTR       Data Terminal Ready         DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EALR       Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F         F2       Speech signal at PLC terminals resp. service speech         F3/F4       Data signal at PLC terminals resp. service data         F6       Protection signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)         F1       Fractional E1 interface for connecting a digital exchange         FGND       First in First out         FM       Frequency Modulation         FO       Fiber Optic Modem Box         FOL       Fiber Optic Modem Sox         FOS       Fiber Optic Modem Sox         FOL       Fiber Optic Modem Short distance         FPGA       Fied Programmable Gate Array         FSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                     |
| DTT       Direct Transfer Trip         DV       Digital Voice         E       E         E&M       Ear and Mouth         EALR       Receive alarm of the iSWT from version ≥ P3.2.216: RXALR-ISWTx is used         EMC       Electromagnetic Compatibility         ESD       Electrostatic Discharge         ETC       External Transmit Clock         ETH       Ethernet         EOW       Engineering Order Wire (Service Telephone)         F       F         F2       Speech signal at PLC terminals resp. service speech         F3/F4       Data signal at PLC terminals resp. service data         F6       Protection signal at PLC terminals resp. service protection signaling         F6SV       F6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)         FE1       Fractional E1 interface for connecting a digital exchange         FGND       Firame Ground         FIFO       First in First out         FM       Frequency Modulation         F0       Fiber Optic Modem Box         F0L       Fiber Optic Modem Mort distance         FOS       Fiber Optic Modem Sort distance         FOA       Fiber Optic Modem Sort distance         FOA       Field Programmable Gate Array <td< td=""><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                     |
| DVDigital VoiceEEE&MEar and MouthEALRReceive alarm of the iSWT from version ≥ P3.2.216: RXALR-iSWTx is usedEMCElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFirame GroundFMFrequency ModulationFOFiber OpticF0BoxFiber Optic Modem Long distanceFOMFiber Optic Modem Long distanceFOAFiber Optic Modem Short distanceFPGAFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGalard Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| EImage: Constant of the SWT from version ≥ P3.2.216: RXALR-ISWTx is usedE&MEar and MouthEALRReceive alarn of the iSWT from version ≥ P3.2.216: RXALR-ISWTx is usedEMCElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFirame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem Long distanceFOMFiber Optic Modem Long distanceFOAFiber Optic Modem Short distanceFDAFiled Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGGALLRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | •                                                   |
| E&MEar and MouthEALRReceive alarm of the iSWT from version ≥ P3.2.216: RXALR-iSWTx is usedEMCElectromagnetic CompatibilityESDElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Frame GroundF1FOFirst in First outFMFrequency ModulationFOFiber Optic Modem BoxFOLFiber Optic Modem Sort distanceFOMFiber Optic Modem Sort distanceFOAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGata Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                     |
| EALRReceive alarm of the ISWT from version ≥ P3.2.216: RXALR-ISWTx is usedEMCElectromagnetic CompatibilityESDElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FF72Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F11Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOAXFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Ear and Mouth                                       |
| EMCElectromagnetic CompatibilityESDElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF5VF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber Optic Modem BoxFOLFiber Optic Modem BoxFOSFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatLGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                     |
| ESDElectrostatic DischargeETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Short distanceFOMFiber Optic ModemFOSFiber Optic ModemFOSFiled Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                     |
| ETCExternal Transmit ClockETHEthernetEOWEngineering Order Wire (Service Telephone)FFF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service protection signalingF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOMFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                     |
| ETHEthernetEOWEngineering Order Wire (Service Telephone)FF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOAFiber Optic ModemFOSFiber Optic ModemFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGallGALGuard Alarm (i)SWT 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                     |
| EOWEngineering Order Wire (Service Telephone)FF2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)F1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |                                                     |
| FImage: Second Sec |              |                                                     |
| F2Speech signal at PLC terminals resp. service speechF3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)FE1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatual Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                     |
| F3/F4Data signal at PLC terminals resp. service dataF6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version ≥ P3.2.216 (former F6UE)FE1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFVGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGalard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | Speech signal at PLC terminals resp. service speech |
| F6Protection signal at PLC terminals resp. service protection signalingF6SVF6 supervisory from PowerSys version $\geq$ P3.2.216 (former F6UE)FE1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFVGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGaLGana AlarmGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F3/F4        |                                                     |
| F6SVF6 supervisory from PowerSys version $\geq$ P3.2.216 (former F6UE)FE1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFOAFiber Optic Modem Short distanceFVGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGatard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F6           | -                                                   |
| FE1Fractional E1 interface for connecting a digital exchangeFGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic Modem Short distanceFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXSTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGaLLGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F6SV         |                                                     |
| FGNDFrame GroundFIFOFirst in First outFMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFOAFiber Optic Modem Short distanceFVGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGaLGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FE1          |                                                     |
| FMFrequency ModulationFOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGalard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FGND         |                                                     |
| FOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIFO         | First in First out                                  |
| FOFiber OpticFOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FM           | Frequency Modulation                                |
| FOBoxFiber Optic Modem BoxFOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFOGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FO           |                                                     |
| FOLFiber Optic Modem Long distanceFOMFiber Optic ModemFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGeneral AlarmGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FOBox        |                                                     |
| FOMFiber Optic ModemFOSFiber Optic Modem Short distanceFPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGeneral AlarmGENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOL          |                                                     |
| FPGAField Programmable Gate ArrayFSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGeneral AlarmGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FOM          |                                                     |
| FSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOS          | Fiber Optic Modem Short distance                    |
| FSKFrequency Shift KeyingFTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FPGA         |                                                     |
| FTPFile Transfer ProtocolFWFirmwareFXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGALGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FSK          |                                                     |
| FXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGallGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FTP          |                                                     |
| FXOTelephone interface Foreign exchange officeFXSTelephone interface Foreign exchange stationGGallGALGuard Alarm (i)SWT 3000GENALRGeneral Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Firmware                                            |
| FXS       Telephone interface Foreign exchange station         G       GAL       Guard Alarm (i)SWT 3000         GENALR       General Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Telephone interface Foreign exchange office         |
| G       GAL     Guard Alarm (i)SWT 3000       GENALR     General Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                     |
| GAL     Guard Alarm (i)SWT 3000       GENALR     General Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                     |
| GENALR General Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Guard Alarm (i)SWT 3000                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Ground                                              |

| Abbreviation | Signification                                                                        |
|--------------|--------------------------------------------------------------------------------------|
| GOOSE        | Generic Object Oriented                                                              |
| GSE          | Generic Substation Events                                                            |
| G703.1       | Interface 64 Kbps of the iSWT digital line equipment                                 |
| G703.6       | Interface 2 Mbps of the iSWT digital line equipment                                  |
| Н            |                                                                                      |
| HDB3         | High Density Bipolar of order 3 code                                                 |
| HF           | High Frequency                                                                       |
| HV           | High Voltage                                                                         |
| HVL          | High Voltage Line                                                                    |
| HW           | Hardware                                                                             |
| 1            |                                                                                      |
| ICC          | Internal Communication Control                                                       |
| IFC-D        | Interface module for protection signaling system SWT 3000 (Direct tripping)          |
| IFC-MCM      | Interface module for protection signaling system SWT 3000 with MCM function          |
| IFC-P        | Interface module for protection signaling system SWT 3000 (Permissive tripping)      |
| IFC-S        | Interface module for protection signaling system SWT 3000 (Signaling only)           |
| IFC-24       | Interface module for protection signaling system SWT 3000 with MCM function          |
| iFSK         | integrated FSK-channel                                                               |
| ilan         | internal Local Area Network                                                          |
| imux         | integrated Multiplexer for asynchronous data transmission                            |
| INC          | Impulse Noise Compression                                                            |
| INPLM        | Input Limitation Alarm                                                               |
| IRIG         | Inter Range Instrumentation Group                                                    |
| IRIG-BOOx    | Message for clock synchronization of the CSPi, iSWT                                  |
| ISDN         | Integrated Services Digital Network                                                  |
| ISWT         | integrated protection signaling system                                               |
| iSWT3        | integrated protection signaling system SWT 3000                                      |
| K            |                                                                                      |
| Kbps         | Kilobit per second                                                                   |
| L            |                                                                                      |
| LAN          | l ocal Area Network                                                                  |
| LCT          | Service interface at the front cover of CSPi (Local Craft Terminal)                  |
| LEC          | Line Echo Canceller, processing echo cancellation of the incoming data (vMUX voice). |
| LED          | Light Emitting Diode                                                                 |
| LIA          | Line Interface Analog – analog line interface from (i)SWT                            |
| LID          | Line Interface Digital – digital line interface from (i)SWT                          |
| LT100-HB     | Line Transformer module 100 Watt high frequency band 500 kHz up to 1000 kHz          |
| LT100-LB     | Line Transformer module 100 Watt low frequency band 24 kHz up to 500 kHz             |
| LT100-XB     | Line Transformer module 100 Watt low or high frequency band                          |
| M            |                                                                                      |
| Mbps         | Megabit per second                                                                   |
| МСМ          | Multi Command Mode                                                                   |
| MCM SV       | Multi Command Mode Super Vision                                                      |
| MFC          | Multi Frequency Code (multi frequency signaling)                                     |
| MIB          | Management Information Base                                                          |
| MLFB         | Siemens ordering number                                                              |
| MMI          | Man-machine interface                                                                |
|              |                                                                                      |

| Abbreviation | Signification                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------|
| MMU          | Memory Management Unit                                                                                    |
| MP           | Tele protection mode: Multi Purpose operation                                                             |
| MUX          | Multiplexer                                                                                               |
| N            |                                                                                                           |
| NADJ         | Non Adjacent                                                                                              |
| NAT          | Network Address Translation                                                                               |
| NC           | Normally Closed contact, brake contact (alarm relay)                                                      |
| NE           | Network Element                                                                                           |
| NMS          | Network Management System                                                                                 |
| NO           | Normally Open contact, make contact (alarm relay)                                                         |
| NTP          | Network Time Protocol (clock synchronization of the iSWT resp. PowerLink via internet<br>in case of SNMP) |
| NU           | Non-Urgent alarm, pre-alarm                                                                               |
| 0            |                                                                                                           |
| OFDM         | Orthogonal Frequency Division Multiplexing                                                                |
| OID          | Object Identifier                                                                                         |
| OSA          | Optimized Sub channel Allocation                                                                          |
| Р            |                                                                                                           |
| PABX         | Private Automatic Branch Exchange                                                                         |
| PAL          | Pilot Alarm / Receive level alarm                                                                         |
| РСВ          | Printed Circuit Board                                                                                     |
| PD           | Present Detect                                                                                            |
| PDH          | Plesiochronous Digital Hierarchy                                                                          |
| PEP          | Peak Envelope Power                                                                                       |
| PLC          | Power Line Carrier                                                                                        |
| PLE          | PLC line equipment                                                                                        |
| PLL          | Phase Locked Loop                                                                                         |
| PLPA 50      | PowerLink Power amplifier 50 Watt                                                                         |
| PLPA 100     | PowerLink Power amplifier 100 Watt                                                                        |
| PLPAStraps   | Program for determining the jumper and straps in the PowerLink PLPA part                                  |
| PowerSys     | Service program for PowerLink and SWT 3000                                                                |
| PPP          | Point to Point Protocol                                                                                   |
| PPPOE        | PPP Over Ethernet                                                                                         |
| PS           | Power supply                                                                                              |
| PSCF2        | Power Supply Carrier Frequency Section                                                                    |
| PS E&M       | Power Supply E&M interface (for signaling) on the PowerLink connector panel                               |
| PSCFS-2      | Power Supply CFS-2                                                                                        |
| PSE          | Protection Signaling Equipment                                                                            |
| PSPLE        | Power Supply PLE                                                                                          |
| PSPA2        | Power Supply Power-Amplifier                                                                              |
| PSTN         | Public Switched Telephone Network                                                                         |
| PU3e         | Processing Unit SWT 3000 enhanced necessary for integration in PowerLink                                  |
| PU3f         | Processing Unit SWT 3000 enhanced for operation with FOM                                                  |
| PU3g         | Processing Unit SWT 3000 enhanced for operation with FOM                                                  |
| PWL          | PowerLink                                                                                                 |
| Q            |                                                                                                           |
| ×            |                                                                                                           |

| Abbreviation | Signification                                                                    |
|--------------|----------------------------------------------------------------------------------|
| QoS          | Quality of Service                                                               |
| R            |                                                                                  |
| RARP         | Reverse Address Resolution Protocol                                              |
| RAS          | Remote Access Server                                                             |
| REM          | Alarm from the remote station displayed in the PowerSys if RM function activated |
| RF           | Radio Frequency (High Frequency)                                                 |
| rFSK         | reversed FSK channel                                                             |
| RM           | Remote Monitoring                                                                |
| RM-1         | Serial interface Programming (CSPi), used for flash programming with MemTool     |
| RM-2         | Remote access interface on the PowerLink connector panel for route communication |
| ROHC         | Robust Header Compression                                                        |
| RS232        | Asynchronous digital interface                                                   |
| RTC          | Real Time Clock (on iSWT)                                                        |
| RTS/CTS      | HW handshake signals Request To Send / Clear To Send                             |
| RTU          | Remote Terminal Unit                                                             |
| RX           | Receiver                                                                         |
| RXALR        | Receiver Alarm                                                                   |
| RxC          | Receive Clock                                                                    |
| RxD          | Receive Data signal                                                              |
| RXF-HB       | Receive Filter high frequency band 500 kHz up to 1000 kHz                        |
| RXF-LB       | Receive Filter low frequency band 24 kHz up to 500 kHz                           |
| RXF-XB       | Receive Filter low or high frequency band                                        |
| S            |                                                                                  |
| S/N, SNR     | Signal to Noise Ratio                                                            |
| S2           | Signaling wire from telephone exchange E&M interface                             |
| S6           | Control wire for AMP, switch over to protection signal transmission              |
| SC           | Service Channel SWT 3000 via digital communication links                         |
| SDH          | Synchronous Digital Hierarchy                                                    |
| SFP          | Small Form-factor Pluggable (Opt module from the fiber optic modem FOM)          |
| SL           | StationLink                                                                      |
| SMI          | Structure of Management Information                                              |
| SMUX         | Synchronous Multiplexer                                                          |
| SNALR        | Signal/Noise Alarm                                                               |
| SNMP         | Simple Network Management Protocol                                               |
| SP           | Tele protection mode: Single Purpose operation                                   |
| SSB          | Service interface Backplane SWT 3000 for RM connection of 2 links                |
| SSF          | Service interface front panel PU3 module                                         |
| SSI          | Serial Synchronous Interface on the PU3e module                                  |
| SSP          | Serial interface Programming (vMUX), used for flash programming with MemTool     |
| SSR          | Service interface Remote Access on the backplane SWT 3000                        |
| SSTN         | Substation                                                                       |
| SERTEL       | Service Telephone                                                                |
| STEL         | Service Telephone                                                                |
| SV           | Sampled Values                                                                   |
| SWT          | Protection voice frequency transmission                                          |
| SysPil       | System Pilot in the PowerLink                                                    |
| Т            |                                                                                  |

| Abbreviation | Signification                                                                    |
|--------------|----------------------------------------------------------------------------------|
| TCP/IP       | Transmission Control Protocol/Internet Protocol                                  |
| ТР           | Teleprotection                                                                   |
| TPS          | Teleprotection Signal (trip frequency)                                           |
| Tunbl        | Duration of the unblocking impulse of the (i)SWT 3000                            |
| TXALR        | Transmitter Alarm                                                                |
| TxC          | Transmit Clock                                                                   |
| TxD          | Transmit Data signal                                                             |
| TXF-1HB      | Transmit filter 1st order high frequency band 500 kHz up to 1000 kHz             |
| TXF-1LB      | Transmit filter 1st order low frequency band 24 kHz up to 500 kHz                |
| TXF-1XB      | Transmit filter 1st order low or high frequency band                             |
| TXF-2HB      | Transmit filter 2nd order high frequency band 500 kHz up to 1000 kHz             |
| TXF-2LB      | Transmit filter 2nd order low frequency band 24 kHz up to 500 kHz                |
| TXF-2XB      | Transmit filter 2nd order low or high frequency band                             |
| U            |                                                                                  |
| UART         | Universal Asynchronous Receiver Transmitter (RS232 chip)                         |
| UDP          | User Datagram Protocol                                                           |
| UNBL         | Unblocking                                                                       |
| Usync        | Clock synchronization for CSPi resp. integrated SWT 3000                         |
| V            |                                                                                  |
| VAD          | Voice Activity Detection                                                         |
| VCA          | Voltage Controlled Amplifier                                                     |
| VF           | Voice Frequency                                                                  |
| VFM          | Voice Frequency interface module with E&M interface                              |
| VFO          | Voice Frequency interface module with FXO interface                              |
| VFS          | Voice Frequency interface module with FXS interface                              |
| VFx          | VF interface module (VFM, VFS, VFO)                                              |
| VFx-y        | VF interface module (VFM, VFS, VFO) in slot position y                           |
| VL           | vMUX link                                                                        |
| VLAN         | Virtual Local Area Network                                                       |
| VoIP         | Voice over IP                                                                    |
| VMUX         | Versatile Multiplexer in PowerLink 50/100                                        |
| X            |                                                                                  |
| X.21-DP      | Synchronous digital interface for connection of external MUX to the DP           |
| X.21-x       | Synchronous user interface x for connection of synchr. data channels to the VMUX |
| xMUX         | Collective term for iMUX or vMUX                                                 |
| 2            |                                                                                  |
| 2<br>2plus2  | Operation Mode 3b for the iSWT3 transmission of 2 uncoded and 2 coded commands   |
| 3            | operation mode 55 for the 15W15 transmission of 2 directed and 2 coded commands  |
| 3<br>3iC     | Operation Mode M5A for the iSWT3 transmission of 3 independent commands          |
| 4            |                                                                                  |
|              | Operation Mode 2a for the iSWT2 transmission of 4 independent commondate         |
| 4iC          | Operation Mode 3a for the iSWT3 transmission of 4 independent commands           |

# Index

### Α

ACE 41 ADC 237 Adjacent Mode 235 AFC 41 AGC 41 Alarm 315, 468, 488 ALR 179 Display 565 Modules 605 Allocated Channel Number (ACN) 255 ALR 44, 179, 337, 605 Alternate Multi Purpose 302, 306, 464 AMP 106 Analog Interface 61 Applications 91 Automatic Channel Equalization (ACE) 41, 249 Automatic Crosstalk Canceller (AXC) 41, 235 Automatic Frequency Control (AFC) 41 Automatic Gain Control (AGC) 41 AXC 41

### В

Backplane 52, 71, 74 Band 235 Adjacent 235, 235 HF 232 RX 235, 498 TX 235, 498 Bandwidth 41, 203, 497, 512 Bandwith 61, 65 Binary Inputs IFC-D/IFC-P 132 Bit error rate 66, 273, 544, 545 Block Error 273, 273, 576

### С

CFS-2 52, 150 Climatic Conditions 606 Clock Synchronization 125, 317 Alarm 240 IRIG-B 238

NTP 238 Sync. type 238 USYNC 238 Commands 569 Commissioning NMS 436 PU4 471 Sequence 196 Compander 42, 342 Configuration 281 ACE 334 Alarm 273, 315 ALR 337 Analog Service 509 Data Interval 237 **Diagnostic LED 237** DLE 296 Ethernet 284, 364 FOM 297 G703 297 HF 232 IFC 290 iFSK Channel 256 iSWT 290 iSWT System 297 LID 296 Multi Command Mode (MCM) 485 PLPAStraps 206 Protection 262 PU4 295 Remote RM 336 rFSK 285 RS232 279 RX 325 Service Telephone (STEL) 250 Services 241 StationLink 287 System 194, 230 **Terminal Station 246 TP-Repeater Station 247** TX Level 320 VF 230 VFS 242 VFx Module 252 vMUX 275 X.21 284 xMUX Supervision 238

Connector 160

HF-Connecting board 162 StationLink 185 CSF-2 161 CSPi 53, 55, 374, 422, 535 Diagnostic 568 Time Setting 240 Cyber Security 48

### D

Data Pump 64, 263, 273, 464, 489, 507 Block Error 578 DHCP Server 221 Diagnostic 541, 555, 568 EN100 584 Digital Line Equipment (DLE) 125, 188, 296 Dummy Load 199

### E

EMC Emission 607 Immunity 606 EN100 138 Diagnostic 584 Settings 410 Ethernet 43, 184, 221, 269, 284, 356, 364 Event log 605 Event Memory 466 Event Recorder 47

### F

Filter 61, 203, 207 Receive Filter 216 Fire Prevention Kit 149 Firmware Upgrade 354 MemTool 367 Flash 377, 383, 386, 389 FOM 297 Frequency 194, 203, 306, 496 Range 40 Tuning 501

### G

G703.1 43, 70, 185, 189, 267, 297

#### Н

Header Compression 456 HF 232, 235 Connecting board 162 range 110

### I

IEC 61850 140 IFC MCM 465 Modules 135, 190, 290 IFC-24 475 IFC-D 126 IFC-MCM 479 IFC-P 126 IFC-S 126 IFC24 465 iFSK 43, 63, 256 Impulse Withstand Level 607 iMUC 66 iMUX 44, 263 Insulation 607 Interface 307 Analog 61, 595 AsynchronousTCP/IP-DP 67 Digital 597 E1 184 Ethernet 43, 184, 356 G703.1 43, 185 HF 593 IFC-24 465, 475 IFC-D 126 IFC-MCM 465 IFC-P 126 IFC-S 126 Maintenance 605 MCM 465, 479 RM 187, 440 RS232 62, 75, 165 Service Channel 190 Synchronous G703.1-DP 70 Synchronous X.21-DP 70 TCP/IP 76 VF for data channels 42 VF for external protection 42 VFx 57, 167 vMUX X.21 183 Voice 42, 60 X.21 42, 75, 182 Interfaces 54 IP 40 Local PowerLink via Service Port 357 PowerLink via User Port 359 Remote PowerLink via Service Port 358 IRIG-B 238 iSWT 40, 99, 471, 600 Alarm 488 Broadband Version 107 Date/Time 317 DLE 188 G703.1 189 Narrow Version 107 Timer 487 Timer Setting 310 X.21 189

### J

Jumper Settings StationLink 554

### L

LED 237, 333 Level Adjustment 217, 254 Level RX 325 Level setting 195, 510 Level TX 320 LIA 102 LID 102, 188, 296 Line Traps 501

### Μ

MCM 462, 463 Mechanical Conditions 608 Mechanical Design 608 MemTool 367 MergeTool 404 Module ALR 44 Multi Command Mode (MCM) 462, 485 Multi Purpose 105, 302, 305

### Ν

Network Management 605 NMS Commissioning 436 NTP 238

### Ρ

Password 351, 444, 457

Pinout IFC 134 Planning Examples 519 PLC 106, 301 PLPA 80, 83, 85, 150, 194, 202, 203, 320, 397 **RXF 89 TXF 87** PLPA 50 161 PLPA 100 161 PLPA Straps 194, 204 AMP50 398 DLE 402 FO 402 IFC 402 LT100 398 **RXF 398** TXF 398 Power Supply 157, 606 PS E&M 172 PSPA2 81 PowerCalc 514 PowerLink 50 Interfaces 54 PowerLink PLC System 138 Programming CSPi 374 PU4 118, 295, 471 Connectors 562 Controller 122 Flash 389 Flash Memory 392 LED 560 Power Supply 122 Programming of the PU4 389 Purpose 464 Alternate Multi 96 Alternate Multi Purpose 106 Multi 96 Multi Purpose Operation 105 Single 96 Single Purpose 118 Single Purpose Operation (SP) 105

### Q

Quality Data 576

### R

Real-Time Clock (RTC) 47 Remote Access 46, 96, 420, 437 Remote Monitoring (RM) 46, 420 RM 46, 187, 224 RM Interface 440 ROHC 68, 456 RS232 43, 62, 75, 164, 224, 279 RTC 47 RTU 43 RX 235, 325

### S

Service Channel 190 Service Telephone (STEL) 46, 250 Services 514 Analog 509 Protection 262 Signaling Elements 535 Single Purpose 105, 301, 305, 327, 329 Slot 138 Slot Identifier 130 SNMP 47 Function 422 Indications 425 Standards 607 StationLink 78, 277 Examples 522 Test Loops 574 STEL 46 Supervision 342, 468, 579 Transmission Line 66 SWTStraps 400

### Т

TCP/IP Interface 67, 76 Telephone Networks 94 Test Loops 574 Test Mode 129, 567 Test Tools 198 Transmission 501, 592, 594 analog 93 Analog 61 Asynchronous via iMUX 66 Capacity 56 Commands via Analog Path 603 Commands via Digital Networks 604 digital 93 iFSK 63 **iSWT 101** MCM 465 MCM with Data Pump 489 Mode 40 Power 44 Ranfe 504 Scheme 466 Service F3 252 Signal 95 **Telecontrol 91** Voice 242

Transmit Filter 207 Trouble Shooting 372 Tuning 194, 210 RXF-XB 216 TXF1 filter 211 TXF2 filter 213 TX 235

### U

Upgrade 354 USYNC 238

#### V

VF 230 VF Interface 42 VFM 58,60 VFO 58,60 VFS 58, 60, 242 VFx 57, 167 VFx Analog 61 vMUX 40, 44, 60, 71, 275 Connectors 554 Diagnistic LED 555 DIL 554 Examples 522 Interface E1 184 Interface X.21 183 Jumpers 552 LED 552 MemTool 385 Programming of Flash Memory 383 rFSK Channels 77 RS232 Interface 75 TCP/IP Interface 76 Voice 281 Voice Channels 76 X.21 Interface 75 vMUX Voice 281 Voice 42, 60, 76, 242 vMUX 60

### W

Web Interface 443

### Х

X.21 42, 182, 189, 265, 284 X.21 Interface 75 X.21-DP Interface 70