
Realtime Information Backbone
(RIB)

Programming Manual

05/2023
A5E52046002-AB

S7-1500/ET 200MP
Documentation Guide 1

Introduction 2
Safety information 3
Product overview /
Software description 4
Software installation and
uninstallation 5

RIB_Application 6
RIB Support Library 7
Programming using the
SFC ODKP_ISC (SFC65490) 8

Commissioning (software) 9
Examples and tables A
List of abbreviations B

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance
are required to ensure that the products operate safely and without any problems. The permissible ambient
conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E52046002-AB
Ⓟ 05/2023 Subject to change

Copyright © Siemens AG 2021 - 2023.
All rights reserved

Table of contents

1 S7-1500/ET 200MP Documentation Guide... 5
1.1 S7-1500 / ET 200MP Documentation Guide .. 5
1.2 SIMATIC Technical Documentation ... 6
1.3 Tool support .. 8

2 Introduction ... 9
2.1 Operating instructions guide.. 9

3 Safety information... 11
3.1 Security information .. 11
3.2 Open-source software.. 11

4 Product overview / Software description... 13
4.1 Integration of RIB ... 13
4.2 Realtime data exchange ... 15
4.2.1 Realtime data exchange concept .. 15
4.2.2 Adjustments for correct realtime behavior .. 16
4.2.3 Lifetime buffer ... 18
4.2.4 Writing data to lifetime buffer... 20
4.2.5 Reading data from lifetime buffer ... 21
4.2.6 Buffer example... 22

5 Software installation and uninstallation... 25
5.1 Installing RIB on CPU 1518(F)‑4 PN/DP MFP .. 25
5.2 Installing RIB on Software Controller .. 25
5.3 Compatibility rules ... 27
5.4 Uninstalling RIB from Software Controller... 28

6 RIB_Application.. 31
6.1 RIB_Application.. 31
6.2 Diagnostic data.. 33
6.3 General response... 34
6.4 Global RIB environment.. 35
6.5 Connecting client applications ... 35
6.6 Data processing and symbol matching ... 38
6.7 Connection response ... 39
6.8 Disconnecting client applications ... 41
6.9 Programming example... 44

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 3

7 RIB Support Library.. 47
7.1 Introduction... 47
7.2 Connecting a client to RIB .. 48
7.3 Defining symbols ... 49
7.4 Activating client... 51
7.5 Reading data from lifetime buffer ... 52
7.6 Writing data to lifetime buffer... 57
7.7 Deactivating client ... 59
7.8 Obtaining a string for RibReturnCode ... 60
7.9 Registering and unregistering signal callback functions... 61

8 Programming using the SFC ODKP_ISC (SFC65490) .. 63
8.1 Configuration... 63
8.2 "OP_INIT" mode ... 64
8.2.1 "Init" operation .. 64
8.2.2 ODKP_ISC "Initialize" mode parameters... 66
8.3 "OP_CONNECT" mode... 69
8.3.1 Connecting to RIB .. 69
8.4 "OP_READ" mode ... 71
8.4.1 Reading data from Linux applications ... 71
8.5 "OP_WRITE" mode .. 73
8.5.1 Writing data from Linux applications .. 73
8.6 "OP_DISCONNECT" mode.. 75
8.6.1 Disconnecting from RIB .. 75

9 Commissioning (software) .. 77
9.1 Cleaning lifetime buffer.. 77

A Examples and tables.. 79
A.1 Example project ... 79
A.2 Application examples ... 86
A.3 Allowed data types .. 92
A.4 Example configuration string.. 92
A.5 RibReturnCode... 94

B List of abbreviations .. 97

Table of contents

Realtime Information Backbone (RIB)
4 Programming Manual, 05/2023, A5E52046002-AB

S7-1500/ET 200MP Documentation Guide 1
1.1 S7-1500 / ET 200MP Documentation Guide

The documentation for the SIMATIC S7-1500 automation system and the ET 200MP
distributed I/O system is arranged into three areas.
This arrangement enables you to access the specific content you require. Changes and
supplements to the manuals are documented in a Product Information.
You can download the documentation free of charge from the Internet (https://
support.industry.siemens.com/cs/ww/en/view/109742691).

Basic information
The System Manual and Getting Started describe in detail the configuration, installation,
wiring and commissioning of the SIMATIC S7-1500 and ET 200MP systems.
The STEP 7 online help supports you in the configuration and programming.
Examples:
• Getting Started S7-1500
• S7-1500/ET 200MP System Manual
• Online help TIA Portal

Device information
Equipment manuals contain a compact description of the module-specific information, such
as properties, wiring diagrams, characteristics and technical specifications.
Examples:
• Equipment Manuals CPUs
• Equipment Manuals Interface Modules
• Equipment Manuals Digital Modules
• Equipment Manuals Analog Modules
• Equipment Manuals Communications Modules
• Equipment Manuals Technology Modules
• Equipment Manuals Power Supply Modules

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 5

https://support.industry.siemens.com/cs/ww/en/view/109742691
https://support.industry.siemens.com/cs/ww/en/view/109742691

General information
The function manuals contain detailed descriptions on general topics relating to the SIMATIC
S7-1500 and ET 200MPsystems.
Examples:
• Function Manual Diagnostics
• Function Manual Communication
• Function Manual Motion Control
• Function Manual Web Server
• Function Manual Cycle and Response Times
• PROFINET Function Manual
• PROFIBUS Function Manual

Product Information
Changes and supplements to the manuals are documented in a Product Information. The
Product Information takes precedence over the device and system manuals.
You can find the latest Product Information on the S7-1500 and ET 200MP systems on the
Internet (https://support.industry.siemens.com/cs/de/en/view/68052815).

Manual Collection S7-1500/ET 200MP
The Manual Collection contains the complete documentation on the SIMATIC S7‑1500
automation system and the ET 200MP distributed I/O system gathered together in one file.
You can find the Manual Collection on the Internet. (https://
support.industry.siemens.com/cs/ww/en/view/86140384)

SIMATIC S7-1500 comparison list for programming languages
The comparison list contains an overview of which instructions and functions you can use for
which controller families.
You can find the comparison list on the Internet (https://
support.industry.siemens.com/cs/ww/en/view/86630375).

1.2 SIMATIC Technical Documentation
Additional SIMATIC documents will complete your information. You can find these documents
and their use at the following links and QR codes.
The Industry Online Support gives you the option to get information on all topics. Application
examples support you in solving your automation tasks.

S7-1500/ET 200MP Documentation Guide
1.2 SIMATIC Technical Documentation

Realtime Information Backbone (RIB)
6 Programming Manual, 05/2023, A5E52046002-AB

https://support.industry.siemens.com/cs/de/en/view/68052815
https://support.industry.siemens.com/cs/ww/en/view/86140384
https://support.industry.siemens.com/cs/ww/en/view/86140384
https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/86630375

Overview of the SIMATIC Technical Documentation
Here you will find an overview of the SIMATIC documentation available in SIOS:

Industry Online Support International (https://
support.industry.siemens.com/cs/ww/en/view/109742705)

Watch this short video to find out where you can find the overview directly in SIOS and how to
use SIOS on your mobile device:

Quick introduction to the technical documentation of automation products per
video (https://support.industry.siemens.com/cs/us/en/view/109780491)

YouTube video: Siemens Automation Products - Technical Documentation at a
Glance (https://youtu.be/TwLSxxRQQsA)

mySupport
With "mySupport" you can get the most out of your Industry Online Support.

Registration You must register once to use the full functionality of "mySupport". After registration,
you can create filters, favorites and tabs in your personal workspace.

Support re‐
quests

Your data is already filled out in support requests, and you can get an overview of your
current requests at any time.

Documenta‐
tion

In the Documentation area you can build your personal library.

Favorites You can use the "Add to mySupport favorites" to flag especially interesting or fre‐
quently needed content. Under "Favorites", you will find a list of your flagged entries.

Recently
viewed articles

The most recently viewed pages in mySupport are available under "Recently viewed
articles".

CAx data The CAx data area gives you access to the latest product data for your CAx or CAe
system. You configure your own download package with a few clicks:
• Product images, 2D dimension drawings, 3D models, internal circuit diagrams,

EPLAN macro files
• Manuals, characteristics, operating manuals, certificates
• Product master data

You can find "mySupport" on the Internet. (https://support.industry.siemens.com/My/ww/en)

Application examples
The application examples support you with various tools and examples for solving your
automation tasks. Solutions are shown in interplay with multiple components in the system -
separated from the focus on individual products.
You can find the application examples on the Internet. (https://
support.industry.siemens.com/cs/ww/en/ps/ae)

S7-1500/ET 200MP Documentation Guide
1.2 SIMATIC Technical Documentation

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 7

https://support.industry.siemens.com/cs/ww/en/view/109742705
https://support.industry.siemens.com/cs/ww/en/view/109742705
https://support.industry.siemens.com/cs/us/en/view/109780491
https://youtu.be/TwLSxxRQQsA
https://support.industry.siemens.com/My/ww/en
https://support.industry.siemens.com/cs/ww/en/ps/ae
https://support.industry.siemens.com/cs/ww/en/ps/ae

1.3 Tool support
The tools described below support you in all steps: from planning, over commissioning, all the
way to analysis of your system.

TIA Selection Tool
The TIA Selection Tool tool supports you in the selection, configuration, and ordering of devices
for Totally Integrated Automation (TIA).
As successor of the SIMATIC Selection Tools , the TIA Selection Tool assembles the already
known configurators for automation technology into a single tool.
With the TIA Selection Tool , you can generate a complete order list from your product
selection or product configuration.
You can find the TIA Selection Tool on the Internet. (https://
support.industry.siemens.com/cs/ww/en/view/109767888)

SINETPLAN
SINETPLAN, the Siemens Network Planner, supports you in planning automation systems and
networks based on PROFINET. The tool facilitates professional and predictive dimensioning of
your PROFINET installation as early as in the planning stage. In addition, SINETPLAN supports
you during network optimization and helps you to exploit network resources optimally and to
plan reserves. This helps to prevent problems in commissioning or failures during productive
operation even in advance of a planned operation. This increases the availability of the
production plant and helps improve operational safety.
The advantages at a glance
• Network optimization thanks to port-specific calculation of the network load
• Increased production availability thanks to online scan and verification of existing systems
• Transparency before commissioning through importing and simulation of existing STEP 7

projects
• Efficiency through securing existing investments in the long term and the optimal use of

resources
You can find SINETPLAN on the Internet (https://new.siemens.com/global/en/products/
automation/industrial-communication/profinet/sinetplan.html).

See also
PRONETA Professional (https://support.industry.siemens.com/cs/ww/en/view/109781283)

S7-1500/ET 200MP Documentation Guide
1.3 Tool support

Realtime Information Backbone (RIB)
8 Programming Manual, 05/2023, A5E52046002-AB

https://support.industry.siemens.com/cs/ww/en/view/109767888
https://support.industry.siemens.com/cs/ww/en/view/109767888
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://support.industry.siemens.com/cs/ww/en/view/109781283

Introduction 2
2.1 Operating instructions guide

Purpose of the documentation
These operating instructions supplement the manuals of the S7‑1500 Software Controller and
the CPU 1518(F)‑4 PN/DP MFP with SIMATIC Industrial OS as of firmware version V2.9.
The information provided in these operating instructions enables you to:
• Install the Realtime Information Backbone (RIB) on a SIMATIC IPC with an S7‑1500 Software

Controller
• Use the Realtime Information Backbone (RIB) on an S7‑1500 Software Controller or a

CPU 1518(F)‑4 PN/DP MFP
• Use libraries for C++ applications
• Use the 5 different modes of SFC65490 to connect RIB to the CPU user program

Basic knowledge required
The following knowledge is required to understand this documentation:
• General knowledge of automation technology
• Knowledge of the SIMATIC industrial automation system
• Knowledge of working with STEP 7
• Knowledge of working with Linux
• Knowledge of programming with C/C++

Validity of the documentation
This documentation is valid for users of the Realtime Information Backbone (RIB) and
supplements the manuals of the following products:

CPU Article number RIB pre-installed
Software Controllers 1505SP 6ES7672-5DC12-0YA0 --

1505SP F 6ES7672-5SC12-0YA0 --
1507S 6ES7672-7AD02-0YG0 --
1507S F 6ES7672-7FD02-0YG0 --
1508S 6ES7672-8AD02-0YG0 --
1508S F 6ES7672-8FD02-0YG0 --

Hardware CPUs 1518‑4 PN/DP MFP 6ES7518-4AX00-1AB0 ✓ (as of firmware version V2.9)
1518F‑4 PN/DP MFP 6ES7518-4FX00-1AB0 ✓ (as of firmware version V2.9)

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 9

Note
Naming convention
Whenever the generic term "CPU" is used in this manual, we refer to both the Software
Controllers and Hardware CPUs.

Definitions
We will use the following terms and definitions when explaining the RIB functional principle and
example projects:

Name Definition
Symbol The smallest meaningful data element in the RIB environment for exchanging data

A 'Symbol' is a shared variable between provider and consumer. The variable is described by a symbolic
name, data type, data size and storage location in a shared memory.

Provider An application connected to RIB that provides symbols
Consumer An application connected to RIB that reads symbols from providers

Introduction
2.1 Operating instructions guide

Realtime Information Backbone (RIB)
10 Programming Manual, 05/2023, A5E52046002-AB

Safety information 3
3.1 Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.
For additional information on industrial security measures that may be implemented, please
visit (https://www.siemens.com/industrialsecurity).
Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure
to cyber threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed visit (https://www.siemens.com/cert).

3.2 Open-source software
Open-source software is used in the firmware of the product described. Open-source software
is provided free of charge. We are liable for the product described, including the open-source
software contained in it, pursuant to the conditions applicable to the product. Siemens accepts
no liability for the use of the open-source software over and above the intended program
sequence, or for any faults caused by modifications to the software.
For legal reasons, we are obliged to publish the original text of the license conditions and
copyright notices. Readme_OSS files containing all relevant information on the open-source
software used in this product are provided in the compressed folder "documentation.tar.gz".

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 11

https://www.siemens.com/industrialsecurity
https://www.siemens.com/cert

Safety information
3.2 Open-source software

Realtime Information Backbone (RIB)
12 Programming Manual, 05/2023, A5E52046002-AB

Product overview / Software description 4
4.1 Integration of RIB

The Realtime Information Backbone (RIB) is an environment to exchange data between the CPU
and realtime applications running on SIMATIC Industrial OS (IndOS) in parallel on the same
device.
The creation of client applications is not restricted to a specific programming language. The
programming language must support the exchange of JSON formatted strings over a TCP
socket connection. Additionally, access to POSIX (Portable Operating System Interface) or
interaction with a driver (VMM shared memory driver) must be possible. The communication
protocol and data exchange concept are easy to implement.

Note
POSIX (Portable Operating System Interface)
If you do not install the Software Controller and hypervisor, only the Linux-based POSIX is
available.

Example of data exchange between an IndOS application and a CPU
The following image shows how RIB is integrated into the system architecture. The example uses
an IPC with IndOS and a CPU as RIB client.

Figure 4-1 Overview of system architecture

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 13

Communication and the exchange of data between the RIB_App and the RIB client
applications are facilitated by the use of the RIB Support Library. The RIB Support Library
is installed together with the RIB_App.
For more information about the RIB Support Library, refer to chapter RIB Support Library
(Page 47).

NOTICE
Root rights
For the Software Controller, the RIB_App and the RIB Support Library do not require root rights
by default. Therefore, other applications do not require root rights, either.
For the CPU 1518(F)-4 PN/DP MFP, the RIB_App and the RIB Support Library do require root
rights. The root user may modify permissions and ownerships in a way that the RIB_App and the
RIB Support Library are also accessible to users without root rights.
However, if additional actions (for example, setting process priorities) require root rights, the
application developer and user must be aware that applications with root access can cause
significant damage to the system.

System requirements
To use RIB, your system must meet the following requirements:

Category Requirement
Operating system SIMATIC Industrial OS ≥ V2.4
Supported CPUs CPU 1505SP (F), CPU 1507S (F), CPU 1508S (F) as of V21.9 and CPU 1518(F)‑4 PN/DP MFP as

of V2.9.3
CPU firmware as of V2.9
Supported SIMATIC Hardware IPC 227G, IPC 427E, IPC 477E, IPC 477E Pro and BX-39A with at least 4 GB free memory space

on the target storage medium and CPU 1515SP PC2 Open Controller
Supported TIA Portal versions as of V17

SFC modes
The CPU provides the SFC ODKP_ISC to exchange data between the user program and Linux
applications via the RIB.
This instruction provides methods to:
• Initialize ("OP_INIT") and establish ("OP_CONNECT") a connection to RIB
• Define symbols for data exchange using data blocks
• Read ("OP_READ") and write ("OP_WRITE") data of symbols
• Disconnect "OP_DISCONNECT" from RIB

Product overview / Software description
4.1 Integration of RIB

Realtime Information Backbone (RIB)
14 Programming Manual, 05/2023, A5E52046002-AB

4.2 Realtime data exchange

4.2.1 Realtime data exchange concept
The RIB and one or more RIB client applications exchange their data in a shared memory area.
This area is called the lifetime buffer. The following image shows the functional principle of the
lifetime buffer:

Figure 4-2 Realtime data exchange
The lifetime is the time span during which a provider must not overwrite a buffer element
of the lifetime buffer. The buffer element is valid for at least this time span. During this time
span, the data within the buffer element is consistent.

Note
Shared memories
Shared memories used for data exchange are not exclusively available for the applications that
opened it or access it as a consumer via RIB. Therefore, malicious software might be able to
modify content of an existing lifetime buffer unnoticed by the user. If you exchange sensitive
data via the RIB, you must take appropriate measures to secure the data.

Note
Deterministic data exchange
The RIB_App and the RIB Support Library do not guarantee deterministic data exchange in cases
where system utilization is high or very large data blocks are exchanged. The timing constraints
are highly dependent on system utilization and process priorities. Therefore, the user must make
sure that realtime requirements are met. Furthermore, the user must also consider other
circumstances, for example interrupts from the Siemens Hypervisor, when configuring the
system.

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 15

4.2.2 Adjustments for correct realtime behavior
For realtime applications to work properly, a Linux system with the "RT-Preempt" patch installed
must be configured accordingly. To enable correct realtime behavior, the following adjustments
apply:

Core pinning
Linux systems running with the SIMATIC RT-VMM (Hypervisor) have some particularities that
must be taken into account:
• Linux systems generally use all but one physical available processor cores. If there is, for

example, a processor with 4 physical cores without hyper-threading, Linux will use 3 cores.
With hyper-threading, there would be six logical cores available.

• The Linux OS shares the first physical core with the hypervisor (core 0 if no hyper-threading
is available and core 0 and 1 with hyper-threading).

• The hypervisor has priority over the Linux OS.
• The Software Controller runs on a separate processor core and is not interrupted by the

hypervisor.
Due to these particularities, it is advisable to pin the execution of the RIB_App to core 0
because the RIB_App does not require realtime performance. To do this, you can start the
RIB_App as follows:
taskset -c 0 RIB_App
For the performance of realtime applications not to be affected by the hypervisor, these
applications should be pinned to a core that is not shared with the hypervisor (for example,
core 1 or 2 when using a 4-core processor without hyper-threading). To do this, proceed as
follows:
taskset -c 1 RT_Application

Note
CPU 1518(F)‑4 PN/DP MFP
The CPU 1518(F)‑4 PN/DP MFP has one CPU core available for Linux. Therefore, core pinning is
not useful for this platform.

Setting realtime priority
Non-root users are not allowed to use RT priorities. To change this for user "pt1", add the
following line to the file /etc/security/limits.conf:
pt1 - rtprio 30
30 is the maximum priority that the user "pt1" can set (100 is the maximum priority and 0 is
the default priority).
The priority on which a realtime application should run can be set in its code. The following
lines should be added to run at the beginning of the CPU user program:
//Set process priority
struct sched_param param;

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
16 Programming Manual, 05/2023, A5E52046002-AB

param.sched_priority = 30;
sched_setscheduler(0, SCHED_FIFO, ¶m);

Memory locking
To lock part or all of the virtual address space of the calling process into RAM, which prevents
memory from being paged to the swap area, add the code pt1 - memlock -1 to the file: /etc/
security/limits.conf:
"-1" means that the user "pt1" can lock an "unlimited" amount of space into RAM.
For an application to lock all of its virtual address space into RAM, add the following code to
run at the beginning of the application:
//Lock process memory to not be stored on disc
mlockall(MCL_CURRENT | MCL_FUTURE);

Note
Locking insufficient memory space
If you try to lock less memory space than you consume, the application will not work anymore
or might crash.

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 17

4.2.3 Lifetime buffer
The lifetime buffer stores the data to be shared. The following image shows the components of
the lifetime buffer.

① Lifetime buffer
② Header
③ Buffer element
④ Symbol

Figure 4-3 Buffer layout

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
18 Programming Manual, 05/2023, A5E52046002-AB

Header
The header contains the following information:

Element Size
in bytes

Description

Buffer version 2 Contains the version of buffer implementation, for example 1.0
The first byte represents the major part of the version (1). The second byte represents
the minor part of the version (0).
Every consumer that opens this lifetime buffer for reading must have the same major
version number. If not, the generation of the Reader object in the RibClient fails
with the error InvalidBufferVersion.

Buffer type 2 In addition to the buffer version, the header of each lifetime buffer contains a buffer
type.
The first version of the RIB Support Library only supports the lifetime buffer. This is set
by provider applications by default when using the RIB Support Library. If a consumer
tries to open a lifetime buffer with a different buffer type, the generation of
the Reader object in the RibClient will fail with the error InvalidBufferType.

CountOfBufferElements 4 Defines number of buffer elements
SizeOfABufferElement 4 Defines size of each buffer element in bytes
LastValidBufferElementIn‐
dex

4 Defines latest updated buffer element

Buffer elements
A buffer element contains all symbols that the RIB client application provides. The symbols must
have the structure as described in chapter Connecting client applications (Page 35).
A buffer element, e.g. UserData0, is a simple array of bytes in which individual symbols are
stored in an array with no gaps. Symbols whose types require more than 1 byte are stored in
standard Intel format. When using the RIB Support Library, the system arranges the individual
symbols as a byte array automatically. For read and write access, the offset and the data type
are relevant. When using the RIB Support Library, the pointers for reading and writing data
are provided on the basis of the offset and the data type.

Calculating lifetime buffer size
The maximum size of VMM shared memory is 8 MB.
Use the following formula to calculate the size of the lifetime buffer:
Size‑of‑Lifetimebuffer = Size‑of‑Header + Number‑of‑Segments * Segment‑size
where:
Size‑of‑Header = 16 bytes
Number‑of‑Segments = 3 + Lifetime / Cycle-time
Segment‑size = Sum‑of‑all‑symbol‑sizes (rounded up to the next multiple of 8)

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 19

Compiler settings
The compiler settings must be the same throughout all applications used. The recommended
compiler settings are stored in the file CMakeLists.txt of the example applications.

4.2.4 Writing data to lifetime buffer
The providing application writes its data into a buffer element. After writing the data to the
buffer element, the header field "LastValidBufferElementIndex" must be updated. Now the
lifetime starts to be counted. The buffer element is allowed to be written again after the lifetime
has expired. The writing algorithm must ensure that a buffer element does not change within
the lifetime.

Note
Lifetime limits
We recommend not to exhaust the lifetime to its limits. Even though the algorithm still works,
other topics like clock accuracy, the processor's memory management and other system
hardware effects might compromise the user's algorithm.

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
20 Programming Manual, 05/2023, A5E52046002-AB

Example algorithm
The following flow chart shows a possible implementation of the write algorithm. This algorithm
describes a ring buffer.

4.2.5 Reading data from lifetime buffer
When reading data from the lifetime buffer, the following two actions must be carried out within
the specified lifetime:
1. Reading "LastValidBufferElementIndex" from the header of the lifetime buffer.
2. Reading the buffer element indexed by "LastValidBufferElementIndex".
If these operations are finished within the lifetime, the read data is consistent. Otherwise, the
reading process must be repeated.

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 21

Example algorithm
The following flow chart shows an example reading process that a consumer must follow:

4.2.6 Buffer example
The following image shows an example where the provider application writes data to and the
consumer reads data from the lifetime buffer. The guaranteed buffer element lifetime is 3 ms.
The cycle time of the provider is 1 ms. The number of buffer elements is based on the formula
shown in section Lifetime buffer (Page 18):
Number‑of‑Segments = 3 + Lifetime / Cycle-time
Number‑of‑Segments = 3 + 3 / 1
For this reason, 6 buffer elements are provided.

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
22 Programming Manual, 05/2023, A5E52046002-AB

Figure 4-4 Writing and reading data from buffer

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 23

Product overview / Software description
4.2 Realtime data exchange

Realtime Information Backbone (RIB)
24 Programming Manual, 05/2023, A5E52046002-AB

Software installation and uninstallation 5
5.1 Installing RIB on CPU 1518(F)‑4 PN/DP MFP

On a CPU 1518(F)‑4 PN/DP MFP, the RIB_App and RIB Support Library are already pre-installed
and require root rights.
The files under the path mentioned in the table below require root rights to be changed. If
you want to allow other users to change these files, add those users and modify the access
rights of the preinstalled files by calling the commands mentioned in the table below as root:

Path Command for modifying access rights
/usr/bin/RIB_App chmod 755 /usr/bin/RIB_App
/usr/lib/librib_support.so.1.0, incl. symlink chmod 755 /usr/lib/librib_support.so.1.0
/usr/lib/libsimatic-vmm-shmem.so.1 chmod 755 /usr/lib/libsimatic-vmm-shmem.so.1
/usr/bin/s7_RIB_memory_cleaner chmod 755 /usr/bin/s7_RIB_memory_cleaner

Note
Creating dedicated user groups
You can alternatively assign ownership and access rights to files to a dedicated user group.

5.2 Installing RIB on Software Controller
The following chapter describes how to install the RIB_App and the RIB Support Library on an
S7-1500 Software Controller 1505SP (F), 1507S (F) or 1508S (F).

Installing RIB_App and RIB Support Library
When installing the S7-1500 Software Controller, the RIB setup is copied to <mount_point>/
SWCPU/RIB.
For installing the RIB_App and RIB Support Library, use the binary "RIBSetup".

Note
Root privileges
The binary must be executed with root privileges.

sudo ./RIBSetup

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 25

Result after successful installation
After successful installation, the following components are copied to the following paths:

Component Path
RIB_App /usr/bin/RIB_App
C++ support library 1) /usr/lib/librib_support.so.[version], including a link /usr/lib/librib_support.so
Simatic VMM shared memory library /usr/lib/libsimatic-vmm-shmem.so.1
Template applications 2) /home[/user]/rib
Copyright file /usr/share/doc/ribenvironment/copyright
Changelog /usr/share/doc/ribenvironment/changelog.gz
VMM shared memory access rules /etc/udev/rules.d/99-simatic-shm.rules
s7_RIB_memory_cleaner /usr/bin/s7_RIB_memory_cleaner

1) It is allowed to link the rib_support.so. files dynamically, but not statically
2) This folder contains application examples for the customer. If there is already a folder for templates, it will not be overwritten

by the installation. The templates are copied to a new folder with the same name. The name is then followed by an underscore
and the first integer that is not used, starting with "1", e.g. /home[/user]/rib_1.

User group 'rib_operators'
During the first installation of the RIB_App, the user group 'rib_operators' is created. The
user who executes the installation is added automatically to the group 'rib_operators'. The
administrator of the system is allowed to add and remove users to this group.

VMM shared memory driver
Additionally, a package for the VMM shared memory driver is installed and the driver (simatic-
vmm-shmem) is loaded.
• If dkms is installed, the appropriate VMM shared memory driver is installed automatically.
• If dkms is not installed, the version of the VMM shared memory driver must strictly match the

current kernel version. If the kernel is upgraded by the user, a reinstallation of the RIB with
the correct VMM shared memory driver becomes additionally necessary.

Access to the 'Simatic-VMM shared memory driver' is restricted. Only users who belong to the
'rib_operators' group are allowed to create or access 'Simatic-VMM shared memory'.
Access control for the Hypervisor shared memory is realized by the tool 'udev' and the
configuration file located in: '/etc/udev/rules.d/99-simatic-shm.rules'. This file contains the
following configuration:
bash
KERNEL=="simatic-vmm/*", SUBSYSTEM=="simatic-vmm/*",
GROUP=="rib_operators", MODE="0660"
The file '/etc/udev/rules.d/99-simatic-shm.rules' is always created from scratch during the
installation process with the default settings mentioned above. If you want to set your own
access rules for the 'Simatic-VMM shared memory driver', you must define your own rule file
that is not touched by the installation or uninstallation of the RIB_App.
If loading the driver for the VMM shared memory fails, you can only use RIB with Linux
applications, but not with the Software Controller. The following error message is printed to
the logfile and console:
Simatic-VMM shared memory driver installation FAILED!

Software installation and uninstallation
5.2 Installing RIB on Software Controller

Realtime Information Backbone (RIB)
26 Programming Manual, 05/2023, A5E52046002-AB

Communication to Simatic Software Controller is not possible via RIB
However RIB can be used on Linux only systems without restriction

Installation logs
The installation logs all important information to the console and to the log file. You can find the
log file under the following path:
/home[/user]/.siemens/rib_installation.txt

5.3 Compatibility rules

Versioning schema
The RIB_App and RIB Support Library use the version schema 'V.x.y.z'. The meaning of the
version letters is as follows:

Version letter Meaning
'V' Prefix that is kept through all versions
'x' Represents the major version

(starts with 0 and will only be changed if incompatible API changes are made)
'y' Represents the minor version

(is increased if significant functionality is added in a backwards compatible manner)
'z' Represents the patch level

(is changed, for example, when doing backwards compatible bug fixes)

Version compatibility rules
In general, the RIB_App and RIB Support Library will be released together and should have the
same version. However, 'RIB_App V1.y.z' and 'RIB Support Library V1.y.z' might face newer
versions like 'RIB_App V2.y.z' and 'RIB Support Library V2.y.z' in the future.
The following matrix summarizes the version compatibility:

 RIB Support Library
V1.y.z

RIB Support Library
V2.y.z

Software Controller
V21.9

Software Controller
V30.0

RIB_App V1.y.z

compatible

incompatible

compatible

compatible

RIB_App V2.y.z

compatible

compatible

compatible

compatible

Compatibility handling for JSON messages
The version information is a mandatory attribute that must be available in the top level of each
JSON string that is sent by a client application to the RIB_App.

Software installation and uninstallation
5.3 Compatibility rules

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 27

The RIB_App evaluates each received JSON string which contains a version information. If
the version is available and evaluated as compatible, the message is accepted and processed
accordingly. Otherwise, the following two error cases exist:
• The version is regarded as incompatible
• No version attribute can be found
In these cases, the RIB_App will respond with a general response message that is specified as
follows:

Key Value Description
"Type" "GeneralResponse" Message type; for a 'general response', type must

be GeneralResponse
"Version" "1.0" Protocol version
"RIBInformation" "RibInformationData" Contains all information regarding connection to RIB

'RibInformationData' contains the following information:

Key Value Description
"RIBPid" "1111" Process identification number of RIB_App in Linux opera‐

tion system
"RIBVersion" "1.0" Version of RIB_App, for example 1.0
"Result" "error" Indicates that the request is invalid
"ErrorMessage" "Detailed error message" Provides more details about the error

The "DetailedErrorMessage" contains additional information about the error:
• If no "Version" was found, "DetailedErrorMessage" contains the following string: "Version not

available"
• If "Version" is regarded as incompatible, the "DetailedErrorMessage" contains the following

string: "VersionNotSupported 'GivenVersion'"
('GivenVersion' is the version sent by the client application)

5.4 Uninstalling RIB from Software Controller

Uninstalling RIB_App and RIB Support Library
For uninstalling the RIB_App and RIB Support Library, execute "RIBSetup" with the parameter '--
-u', for example:
sudo ./RIBSetup -- -u
Successful uninstallation removes the following components from the system:

Component Path
RIB_App /usr/bin/RIB_App
C++ support library /usr/lib/librib_support.so.[version], including a link /usr/lib/librib_support.so
Simatic VMM shared memory library /usr/lib/libsimatic-vmm-shmem.so.1
Copyright file /usr/share/doc/ribenvironment/copyright

Software installation and uninstallation
5.4 Uninstalling RIB from Software Controller

Realtime Information Backbone (RIB)
28 Programming Manual, 05/2023, A5E52046002-AB

Component Path
Changelog /usr/share/doc/ribenvironment/changelog.gz
VMM Shared Memory Access Rules /etc/udev/rules.d/99-simatic-shm.rules

Note
Remaining components after uninstallation
The component "Template applications" will not be removed by the uninstallation.
The user group 'rib_operators' will not be automatically removed from the system, either. This
way, the list 'rib_operator' is still available when reinstalling or updating RIB. If you want to
remove the list, the list must be removed manually by the administrator.

Uninstallation while RIB_App is running
If there is a RIB_App running during uninstallation, the system asks you if the running
instance should be terminated before by the uninstallation. Confirm this prompt with 'y' or
'Y' to continue and 'n' or 'N' to abort uninstallation. You can also skip the confirmation and
continue the uninstallation process anyway by adding the parameter 'y':
sudo ./RIBSetup -- -u -y

VMM shared memory driver
The package for the VMM shared memory driver is also uninstalled and the driver (simatic-
vmm-shmem) is unloaded. If uninstallation of the VMM shared memory fails, the following
message will be printed to the logfile and console:
Simatic-VMM driver uninstallation FAILED!
Please ignore message above, if you want to work on a system
without Simatic VMM.

Note
Uninstallation of the Software Controller
Note that an uninstallation of the S7-Software Controller will also remove the RIB installer. If you
want to uninstall the Software Controller, we recommend that you uninstall the RIB first.

Uninstallation logs
The uninstallation logs all important information to the console and to the log file. You can find
the log file under the following path:
/home[/user]/.siemens/rib_installation.txt

Software installation and uninstallation
5.4 Uninstalling RIB from Software Controller

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 29

Software installation and uninstallation
5.4 Uninstalling RIB from Software Controller

Realtime Information Backbone (RIB)
30 Programming Manual, 05/2023, A5E52046002-AB

RIB_Application 6
6.1 RIB_Application

The RIB_Application (RIB_App) is an application that runs on Linux operating systems and is the
basic environment for all RIB clients.
The RIB_App brings different RIB client applications together in order for them to exchange
data. RIB client applications are not restricted to a one-to-one relationship. RIB client
applications can have many-to-many relationships, as well.

Starting RIB_App
For starting the RIB_App, run the "RIB_App" executable on the Linux operating system. Starting
the RIB_App is possible without root privileges. However, you can only start one RIB_App
instance at a time.

Note
Starting RIB_App on CPU 1518(F)-4 PN/DP MFP
For the CPU 1518(F)-4 PN/DP MFP, root rights are required to start RIB_App. If you want to allow
non-root users to start RIB_App, change the access rights of the following files to 755:
• /usr/bin/RIB_App
• /usr/lib/librib_support.so.1.0
• /usr/lib/libsimatic-vmm-shmem.so.1

TCP communication
The port (port number 27567) that the RIB application opens for communication with client
applications is currently available for all network interfaces that can be accessed by the RIB.

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 31

Furthermore, the port of the RIB_App is currently not adjustable. If the port 27567 is already
being used, the RIB_App will abort with an error.

Note
Allow TCP communication for the Software Controller
Note that you must explicitly allow the Software Controller to establish a connection to the
RIB_App.
To allow TCP communication, proceed as follows:
1. Run "sudo ufw status" to show the firewall status.
2. Run "sudo ufw allow from <SWCPU_VNIC_IP_ADDRESS> to <LINUX_VNIC_IP_ADDRESS> port

27567 proto tcp" to add a rule to allow TCP communication over port 27567.
The information above is also printed out at the end of successful installation.
The CPU 1518(F)-4 PN/DP MFP already includes these firewall rules.

Terminating RIB_App
To terminate the RIB_App, you can use, for example, the key combination CTRL+C to send a
"SIGINT" to the Linux process, or alternatively send a "SIGTERM" signal.
The RibClient notices if the connection to the RIB_App is terminated. A termination of the
connection can happen, e.g. if the network interface is disabled after activation of the
RibClient or if the RIB_App itself is terminated. In this case, a log message is printed to the
console. However, read and write access to the Lifetime Buffers is still possible.
The RibClient will not automatically reconnect to the RIB_App afterwards.

RIB_App startup parameters
On startup, you can configure different parameters. These parameters specify the behavior of
the RIB_App. The following table lists all supported parameters:

Parameter Shortcut Description
--help -h Displays the RIB_App help in the console
--verbose -v Displays additional debugging logs for the RIB_App in the console
--version -V Displays the RIB_App version in the console
--libraryversion -lv Displays the version of the current RIB support library used by the RIB_App in the

console
--lifetime -l Starts the RIB_App and defines the maximum guaranteed lifetime in milliseconds

of the buffer elements in the lifetime buffer for the RIB environment. If you do not
use this parameter, the default value is 10 milliseconds. The allowed minimum is
1 millisecond. The maximum lifetime is not restricted.
A syntax example of a lifetime of 20 milliseconds is:
RIB_App -l 20

--waittime -w Starts the RIB_App and defines the timeout waiting time for pending socket re‐
sponses in the RIB_App. If you do not use this parameter, the default value is 15
seconds. The allowed minimum is 1 second. The maximum timeout waiting time
is not restricted.

RIB_Application
6.1 RIB_Application

Realtime Information Backbone (RIB)
32 Programming Manual, 05/2023, A5E52046002-AB

Restrictions
The RIB_App has the following restrictions:
• Accessing the RIB_App has only been tested with the IPv4 protocol.
• The total number of client applications allowed to establish a socket connection with the

RIB_App is not restricted. The guaranteed number of simultaneous applications that create
a new socket connection to the RIB_App is 128 clients.

6.2 Diagnostic data
The RIB_App offers access to diagnostic data. You can use this data for the development of
diagnostic applications. The RIB_App returns a list. This list describes all connected applications
with their provided and requested symbols.

Note
Note that the following requests are only a description of features that the RIB_App offers on the
low-level API. It is the task of the user to implements these requests, as they are not provided by
the RIB Support Library.

Diagnostic data request
The RIB_App accepts a diagnostic data request of client applications using an established TCP
socket connection. The diagnostic data request must be formatted as a JSON string and must
contain the following information:

Key Value Description
"Type" "DiagnosticDataRequest" Type of message; must be DiagnosticDataRequest
"Version" "1.0" Protocol version

Diagnostic data response
The RIB_App responds to a diagnostic data request with a diagnostic data response. The
provided and requested symbols are structured as in "ConnectToRIBConfig". The RIB_App sends
the disconnect response message as a JSON formatted string. The string contains the following
information:

Key Value Description
"Type" "DiagnosticDataResponse" Type of message; must be DiagnosticDataResponse
"Version" "1.0" Protocol version
"RIBInformation" "RibInformationData" Contains all information regarding connection to RIB
"DiagnosticData" "DiagnosticData" Contains all available diagnostic data of the applications

currently connected to RIB

RIB_Application
6.2 Diagnostic data

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 33

"RibInformationData"
The value "RibInformationData" contains the following information:

Key Value Description
"RIBPid" "1111" Process identification number of RIB_App in Linux opera‐

tion system
"RIBVersion" "1.0" Version of RIB_App, for example 1.0
"Result" "DiagnosticResponse" Indicates that a diagnostic data response is provided
"ErrorMessage" "Detailed error message" Detailed error message in case of an error (optional)

"DiagnosticData"
The value "DiagnosticData" contains the following information:

Key Value Description
"Type" "ConnectToRIBConfig" Diagnostic data of all applications connected to RIB
"Version" "1.0" Protocol version
"<ApplicationName>" "ApplicationDescription" Each application connected to RIB contains a complete ap‐

plication description including all provided and requested
symbols of client application

6.3 General response

General response message
When the RIB_App receives a client message with the following characteristics, the RIB_App
responds with a 'general response' message indicating that the received string cannot be
processed:
• The JSON format of the received string is invalid
• The message type is unknown
• The type attribute is completely missing
The RIB_App sends the 'general response' message as a JSON formatted string containing the
following information:

Key Value Description
"Type" "GeneralResponse" Type of message, for a 'general response', type must

be GeneralResponse
"Version" "1.0" Protocol version
"RIBInformation" "RibInformationData" Contains all information regarding connection to RIB

'RibInformationData' contains the following information:

Key Value Description
"RIBPid" "1111" Process identification number of RIB_App in Linux opera‐

tion system
"RIBVersion" "1.0" Version of RIB_App, for example 1.0

RIB_Application
6.3 General response

Realtime Information Backbone (RIB)
34 Programming Manual, 05/2023, A5E52046002-AB

Key Value Description
"Result" "GeneralError" Indicates that an error occurred after interpreting the

string sent from the client App to the RIB_App
"ErrorMessage" "Detailed error message" InvalidMessageType, InvalidJsonString, TooLongMessage,

VersionNotSupported or AttributeMissing

6.4 Global RIB environment
Within the global RIB environment, the RIB_App has the following functions:
• Giving client applications access to the RIB environment settings
• Hosting and distributing global RIB environment parameters
• Accepting requests for global RIB environment configuration data in the form of a JSON

formatted string
The string must contain the following parameters:

Key Value Description
"Type" "ConfigDataRequest" Requests RIB ConfigData
"Version" "1.0" Protocol version

The RIB_App creates and sends a response string that contains the global RIB environment.
This message is a JSON formatted string and contains the following parameters:

Key Value Description
"Type" "ConfigDataResponse" Responds to RIB ConfigData
"Version" "1.0" Protocol version
"ConfigData" "RibConfigData" Contains all global RIB configuration data

For RIB version V1.0, the "RibConfigData" in the response message contains the following
parameter:

Key Value Description
"BufferElementLifeTime" "10" The maximum guaranteed lifetime in milliseconds of the

buffer elements in the shared memory. It is defined for all
applications in the current RIB environment. The default
value is 10 (10 ms). The value is distributed as an unsigned
integer. Only positive values are possible. You can only set
this value when starting the RIB_App.

6.5 Connecting client applications
For connecting to the RIB environment, the client application must send a connection request
via an established socket connection. The RIB_App then processes this request and returns a
connection response to the client application.

RIB_Application
6.5 Connecting client applications

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 35

Requirements
To be able to connect to the RIB_App, the client application must meet the following
requirements:
• The connection request of the client application uses an established TCP socket connection
• The connection request contains an application configuration formatted as a JSON string

with a maximum length of 1 MiB
If the size of this string is exceeded, the RIB_App logs the following error message:
"Received string data too long or missing zero termination."
Afterwards, the RIB_App closes the socket connection to the client application.

JSON string
The JSON string contains the following information:

Key Value Description
"Type" "ConnectToRIBConfig" Type of message; must be ConnectToRIBConfig for con‐

nection request
"Version" "1.0" Protocol version
"<ApplicationName>" "ApplicationDescription" All configuration data needed to register an application to RIB;

It is not mandatory that the name matches the process name.

"ApplicationDescription"
The value "ApplicationDescription" contains the following information:

Key Value Description
"Type" "ApplicationData" Application data type is described here
"PID" "<1234>" Process identification number of app in Linux operating sys‐

tem
"Description" "some text" Optional: App can be described here
"Version" "4.5" Optional: App version
"Manufacturer" "CompanyName" Optional: Name of application creator, for example company

name
"Provides" "ProvidedData" Optional: Describes the data provided by the app
"Requests" "RequestedData" Optional: Describes the data requested by the app

"ProvidedData"
The value "ProvidedData" contains at least one identifier of a shared memory and a
corresponding shared memory description:

Key Value Description
"<IdentifierOfTheShared‐
Mem>"

"SharedMemoryDescription" Describes shared memory containing provided data

RIB_Application
6.5 Connecting client applications

Realtime Information Backbone (RIB)
36 Programming Manual, 05/2023, A5E52046002-AB

"SharedMemoryDescription"
The value "SharedMemoryDescription" contains the following information:

Key Value Description
"Type" "Provide" The provided type is described here
"Signal" "<SignalId>" Signal ID; not used yet; -1
"CycleTimeInMicroseconds" "<CycleTime>" Optional: Cycle time in microseconds used for writing data
"Description" "some text" Optional: Description of shared memory
"Version" "1.0" Optional: Version of provided data
"Symbols" "SymbolList" List of symbol descriptions, provided in shared memory

"SymbolList"
The value "SymbolList" contains a list of all symbols provided by the application in the shared
memory to which it belongs. The symbol description of a provided symbol must contain the
following information:

Key Value Description
"<SymbolName>" "SymbolDescription" Symbol name; must be unique in the RIB system

"SymbolDescription"
A "SymbolDescription" as part of a connection request contains the following data:

Key Value Description
"Offset" "0" Offset of symbol in shared memory in bytes
"Size" "1" Size of symbol in shared memory in bytes
"Type" "uint8_t" Type of symbol; in first version only simple value types are

allowed

"Size" and "Type"
The "Size" attribute represents the complete size of the symbol in the shared memory. The
"Size" is calculated from the "Type" size in bytes.

Note
Array
In case of an array, the number of elements ("ArrayCount") in this array must be calculated as
follows:
Size = ArrayCount * TypeSize

RIB_Application
6.5 Connecting client applications

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 37

Supported data types for symbols
The following data types are allowed to be used for symbols:

Category Data types Size in bytes
Signed integer int8_t, int16_t, int32_t, int64_t 1, 2, 4, 8
Unsigned integer uint8_t, uint16_t, uint32_t,

uint64_t
1, 2, 4, 8

Floating points float, double 4, 8

You can also use an array of these supported data types.

Note
BOOL not supported
Note that the data type BOOL is not supported.

6.6 Data processing and symbol matching
After receiving a connection request that contains configuration data from a client application,
the RIB_App processes the JSON string.

Process steps
When processing data and matching symbols, the RIB_App progresses through the following
steps:
• Checks the incoming JSON based strings and messages

If the message is not supported or contains an error, the RIB_App does not process the string.
The RIB_App returns an error to the client application in the 'general response' message.

• Detects and stores all information from the client application regarding provided symbols
and additionally needed data (for example application data, shared memory name etc.)

• Detects and remembers all information from the client application regarding requested
symbols and additionally needed data (for example application data, etc.)

• Matches the requested symbols with the already known provided symbols based on the
symbol name (case-sensitive)

• Matches newly provided symbols with already known requested symbols based on the
symbol name (case-sensitive)

RIB_Application
6.6 Data processing and symbol matching

Realtime Information Backbone (RIB)
38 Programming Manual, 05/2023, A5E52046002-AB

6.7 Connection response
Based on the result of the JSON message data processing, the RIB_App generates a response
message and sends it back to the client application. The RIB_App sends at least one response for
each connection request of a client application. The RIB_App response message is restricted to
a maximum length of 1 MiB.

Note
String size
Note that the number of consumed symbols might be restricted by the 1 MiB length of the JSON
string and the length of symbol names, descriptions texts, etc.
If the string size is exceeded, the RIB_App logs the following error message: "The message to be
sent is too long. Please reduce number of provided/requested symbols or the number of
applications." The following response message containing a 'General Error' is returned to the
client application: "TooLongMessage RIB_App response would be too long."

The RIB_App sends the connection response message as a JSON formatted string. The string
contains the following information:

Key Value Description
"Type" "ConnectToRIBResult" Type of message; must be ConnectToRIBResult for the connec‐

tion response
"Version" "1.0" Protocol version
"RIBInformation" "RibInformationData" Contains all information regarding connection to RIB
"DataProviderAvailable" "DataProviderAvailableData" Contains all information regarding available data providers for previ‐

ously requested symbols (optional)

"RibInformationData"
The value "RibInformationData" contains the following information:

Key Value Description
"RIBPid" "1111" Process identification number of RIB_App in Linux operating system
"RIBVersion" "1.0" Version of RIB_App, for example 1.0
"Result" "<Connected or Error>" Indicates whether connection was successful (Connected) or not

(Error)
"ErrorMessage" "A detailed error message" Optional: Detailed error message in case of error

"DataProviderAvailableData"
The value "DataProviderAvailableData" is optional. If data providers are available, this value is
part of the message. If no data providers are available yet or no symbols were requested, this
value is not part of the message.
The value "DataProviderAvailableData" contains the following information:

Key Value Description
"Symbols" "SymbolList" List of symbol descriptions

RIB_Application
6.7 Connection response

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 39

The "SymbolList" contains a set of symbol descriptions. The number of symbols in this list
is not restricted. However, the maximum number should match the number of symbols
requested by the client application.
Each symbol is described as a pair of the symbol name and a description of the symbol
details:

Key Value Description
"<SymbolName>" "SymbolDescription" All details describing a symbol in the RIB environment

A "SymbolDescription" contains the following information:

Key Value Description
"Offset" "<AddressOffset>" Offset of symbol in shared memory in bytes; 32 bit unsigned integer

value
"Size" "<SizesInBytes>" Size of symbol in shared memory in bytes; 32 bit unsigned integer

value
"Type" "<SymbolType>" Type of symbol; in first version only simple value types and arrays of

them are allowed
"ShmId" "<SharedMemoryId>" Name of shared memory where requested symbol is in

"Size" and "Type"
The "Size" attribute represents the complete size of the symbol in the shared memory.

Note
Array
In case of an array, the number of elements ('Count') in this array must be calculated from "Size"
and "Type" in bytes.
"Size" and "Type" can be calculated the following way:
math
ArrayCount = Size / TypeSize

Registration results
Registering an application to RIB can produce the following results:
• The registration of the application to RIB is successful.
• The registration of the application to RIB is not successful.

Possible error reasons are:
– Error in JSON message, for example invalid content, malformed JSON, etc
– Application with same name already registered to RIB

Solution: If the application was started twice, set or check a different application name
– Symbol with same name already registered to RIB

Solution: Set a different symbol name.

RIB_Application
6.7 Connection response

Realtime Information Backbone (RIB)
40 Programming Manual, 05/2023, A5E52046002-AB

6.8 Disconnecting client applications

Disconnect request
For disconnecting a client application, the client application sends a disconnect request to the
RIB_App via the established socket connection. The RIB_App processes this message and cleans
the internal data storage.
The disconnect request is formatted as a JSON string and contains the following information:

Key Value Description
"Type" "DisconnectFromRIB" Type of message; must be DisconnectFromRIB for disconnect

request
"Version" "1.0" Protocol version
"ApplicationName" "<ApplicationName>" Name of application, as sent in the connection request
"PID" 1234 Process identification number of application in Linux operating sys‐

tem, as sent in connection request

Disconnect handling
After receiving a disconnect request with application configuration data of a client application,
the RIB_App processes the JSON string as follows:
• Checks if the JSON strings are a supported and valid message

If the message is not supported or contains an error, the RIB_App does not process the string.
In the response message, the RIB_App sends back an error message to the client application.

• Detects which application wants to disconnect from the RIB
• Removes all data related to this disconnecting application from its internal data store
• Identifies whether the disconnecting application provides symbols

In this case, the RIB_App informs all client applications that consume these symbols about
the removal of the symbol from the RIB. The RIB_App uses the following 'Provider Disconnect
Info Message':

Key Value Description
"Type" "ProviderDisconnectInfo" Type of message; must be ProviderDisconnectInfo for 'Pro‐

vider Disconnect Info Message'
"Version" "1.0" Protocol version
"RIBInformation"" "RibInformationData" Contains all information regarding connection to RIB
"SymbolsToDisconnect" "SymbolsToDisconnectData" Contains all information regarding symbols that are not available

anymore because provider applications are disconnected

RIB_Application
6.8 Disconnecting client applications

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 41

"SymbolsToDisconnectData"
The "SymbolsToDisconnectData" contains at least one of the following objects:

Key Value Description
"<SharedMemoryId>" ["<SymbolName>",

"<SymbolName>",
...]

List of the symbols that are disconnected.

The RIB_App expects that each notified client application acknowledges this message using a
'Provider Disconnect Response Message'.
When a consumer application receives a 'Provider Disconnect Info Message' from the
RIB_App, it has to stop accessing the corresponding shared memory.
After a consumer has stopped accessing the shared memory of a provider, the consumer
must acknowledge the provider disconnect notification to the RIB_App. This message may
also contain the status for each shared memory that was closed. In order to do that, the
optional attribute 'DisconnectStatus' containing a list of the closed shared memory names
and a status is added.
This message has the following format:

Key Value Description
"Type" "ProviderDisconnectRes‐

ponse"
Type of the message; must be ProviderDisconnectResponse

"Version" "1.0" Protocol version
"ApplicationName" "<ApplicationName>" Name of application that sends response message
"PID" 1234 PID of application in Linux operating system that sends response

message
"Result" "<OK or Error>" Indicates whether reading from shared memories was stopped

(OK) or not (Error)
"ErrorMessage" "A detailed error message" Optional: Detailed error message telling RIB why consumer cannot

stop reading from shared memory
"DisconnectStatus" "DisconnectStatusList" Optional: A list of shared memory and its disconnect status

The elements of the 'DisconnectStatusList' are defined by the following attributes:

Key Value Description
"ShmID" "<SharedMemoryName>" Name of shared memory that should be closed by consumer
"Result" "<OK or Error>" Indicates whether reading from the shared memories was stopped

(OK) or not (Error)

The 'DisconnectStatus' is defined as optional attribute and can be omitted by the user.
The RIB_App expects that this "ProviderDisconnectResponse" message is returned by the
client application within a defined time. In case of a timeout or the shared memory could not
be closed ('Result=="Error"') the RIB_App informs the provider about the not closed shared
memories in the "DisconnectResponse" message.

RIB_Application
6.8 Disconnecting client applications

Realtime Information Backbone (RIB)
42 Programming Manual, 05/2023, A5E52046002-AB

Disconnect response
The RIB_App sends a disconnect response to a disconnecting application that is only consuming
data, after it has been successfully removed from the RIB_App data store. In this case the
consumer only client application has to wait for a 'Disconnect Response' of the 'RIB_App' before
it can be closed.
The RIB_App sends a disconnect response to a disconnecting application that provides
symbols in the RIB. In this case, the provider application sends a disconnect request to the
RIB. The provider application waits for an answer from the RIB. The RIB sends this answer
after all corresponding consuming applications have been informed and have acknowledged
the disconnection of the provider.
The RIB_App disconnect response message is sent as a JSON formatted string and contains
the following information:

Key Value Description
"Type" "DisconnectFromRIB" Type of message; must be DisconnectFromRIB for disconnect

request
"Version" "1.0" Protocol version; should fit to current RIB version, for example 1.0
"RIBInformation" "RibInformationData" Contains all information regarding the connection to RIB

"RibInformationData"
"RibInformationData" contains the following information:

Key Value Description
"RIBPid" 1111 Process identification number of RIB_App in Linux operation system
"RIBVersion" "1.0" Version of RIB_App, for example 1.0
"Result" "<Disconnected or Error>" Indicates whether disconnection was successful (Disconnected)

or not (Error)
"ErrorMessage" "A detailed error message" Optional: Detailed error message telling the user what went wrong

in case of an error

Based on the result of the consumer application reply to the 'ProviderDisconnectInfo'
message, the "RibInformationData" might contain different data and a different meaning for
the client application.

RIB_Application
6.8 Disconnecting client applications

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 43

The following scenarios are possible:
• All consumer applications stopped reading from the provider application's shared memory.

Disconnection was successful and the application was removed from the RIB.
• One or more consumer applications did not respond to the RIB_App 'ProviderDisconnectInfo'.

After a timeout, the disconnect response sent to the provider application contains the
following error information:
– The "Result" value of the "RibInformationData" is "Error".
– The error message contains the string "Timeout occurred at:" followed by a listing of

consumer applications that did not respond. This list contains the names of the
applications and their known PID in the Linux operating system, for example "Timeout
occurred at: ConsumerClientApp1 (1235); ConsumerClientApp2 (1236);"
The providing client application is not allowed to delete the shared memory, because
there might be consumers that still try to access the shared memory.
Remove the shared memory manually.
- Usage of POSIX shared memory: Delete the corresponding file in the Linux filesystem
(/dev/shm) manually.
- Usage of VMM shared memory: Execute the tool "s7_RIB_memory_cleaner".
For more information on the "s7_RIB_memory_cleaner", refer to section Cleaning lifetime
buffer (Page 77).
Note
If the Software Controller/CPU 1518(F)‑4 PN/DP MFP is the provider of that shared
memory, the shared memory is deleted and recreated automatically when the Software
Controller/CPU 1518(F)‑4 PN/DP MFP reconnects to RIB.

6.9 Programming example
The following programming example shows an example of a Consumer JSON file:

{
 "Type": "ConnectToRIBConfig",
 "Version": "1.0",
 "App_Sample_Consumer": {
 "Type": "ApplicationData",
 "Version": "1.0",
 "Description": "This app consumes a symbol named Symbol_1.",
 "Manufacturer": "Siemens AG",
 "PID": 12342,
 "Requests": {
 "Symbols": [
 "Symbol_1"
]
 }
 }
}

RIB_Application
6.9 Programming example

Realtime Information Backbone (RIB)
44 Programming Manual, 05/2023, A5E52046002-AB

The following programming example shows an example of a Provider JSON file:

{
 "Type": "ConnectToRIBConfig",
 "Version": "1.0",
 "App_Sample_Provider": {
 "Type": "ApplicationData",
 "Version": "1.0",
 "Description": "This app provides a symbol named Symbol_1 of
type uint8_t.",
 "Manufacturer": "Siemens AG",
 "PID": 12341,
 "Provides": {
 "App_Sample_Provider_SHM": {
 "Type": "Provide",
 "Version": "1.0",
 "Description": "This shared memory only offers one
value",
 "Signal": -1,
 "CycleTimeInMicroseconds": 10000,
 "Symbols": {
 "Symbol_1": {
 "Offset": 0,
 "Size": 1,
 "Type": "uint8_t"
 }
 }
 }
 }
 }
}

The following programming example shows an example of a Consumer and Provider JSON
file:

{
 "Type": "ConnectToRIBConfig",
 "Version": "<MESSAGE_VERSION_TO_REPLACE>",
 "App_Sample_Provide_and_Consumer": {
 "Type": "ApplicationData",
 "Version": "1.0",
 "Description": "This app provides a symbol named Symbol_1 of
type uint8_t and consumes a symbol named Symbol_2.",
 "Manufacturer": "Siemens AG",
 "PID": 12343,
 "Provides": {
 "App_Sample_Provide_and_Consumer": {

RIB_Application
6.9 Programming example

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 45

 "Type": "Provide",
 "Version": "1.0",
 "Description": "This shared memory only offers one
value",
 "Signal": -1,
 "CycleTimeInMicroseconds": 10000,
 "Symbols": {
 "Symbol_1": {
 "Offset": 0,
 "Size": 1,
 "Type": "uint8_t"
 }
 }
 }
 },
 "Requests": {
 "Symbols": [
 "Symbol_2"
]
 }
 }
}

RIB_Application
6.9 Programming example

Realtime Information Backbone (RIB)
46 Programming Manual, 05/2023, A5E52046002-AB

RIB Support Library 7
7.1 Introduction

The RIB Support Library is a high-level C++-API (Application Programming Interface) for writing
RIB client applications.
The RIB Support Library makes it easy to connect to RIB, manages symbols and reads/writes
them.
The library consists of one library shared object file and C++ header files. The main entry
point for the developer is the 'RibClient' class and its related objects. All these objects can be
included by the single header file 'ribClient.h'. The RIB Support Library also uses the SIMATIC
VMM Library to access a hypervisor-based shared memory.
The RIB Support Library has the following design features:
• The API must be written in C++
• The C++ standard used is C++17 and the compiler (GNU Compiler Collection) used is

GCC10.2.1(libstdc++ 6.0.28, glibc 2.31-13)
• You can configure a RIB client object using a configuration string in a defined JSON format

Note
Thread safety of objects created by RIB Support Library
Instances of the 'RibClient', 'Reader' and 'Writer' and other related objects are not thread-safe by
default. In a multi-threaded application, it is the responsibility of the developer to ensure thread
safety.

Receiving symbol information after activation
The first release of the RIB Support Library did not support changes of the availability of
consumed symbols after activation was done. Due to its blocking behavior it is waiting for all
requested symbols to be available on activation. This has changed in the new version of the
RIB Support Library (RIB V2.0).
With this library version, even after activation, the consumer receives the information from
the RIB_App about symbols that become available or unavailable every time a provider
connects or disconnects. The information about available symbols can be obtained any
time by the user simply by requesting a new SymbolToPointerMap that includes the
new symbols and their pointers using the method SymbolToPointerMap symbolMap =
reader->getSymbolNameToPointerMap(); . Also a call to getPointerToSymbol()
returns the newly available pointer.

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 47

7.2 Connecting a client to RIB

RibClient
To connect a client to RIB, an instance of 'RibClient' must be created. The 'RibClient' object is
configured by default, but you can set your own configuration data, for example IP-address,
application name or configuration string:

RibClient::RibClient ribClient;

auto result = ribClient.setIPAddress("127.0.0.1");
if (result != RibReturnCode::OK)
{
 // error handling here
}

string configurationData = ...;
result = ribClient.setConfigurationData(configurationData);
if (result != RibReturnCode::OK)
{
 // error handling here
}

result = ribClient.setApplicationName("MyApplication");
if (result != RibReturnCode::OK)
{
 // error handling here
}
A detailed example of string configurationData can be found in section Example
configuration string (Page 92).

Logging
The RIB Support Library supports a configurable logging mechanism that logs data to the
standard output. The 'RibClient' class offers the following static method:
static void setLogLevelToDebug(const bool enable);
This method changes the detail level of the log messages. The method has the following
characteristics:
• By default, the logged data only contains necessary information, for example important

information and errors
• When "enable" is set to "true", additional log data is printed to "stdout", for example

debugging information
• When "enable" is set to "false", the additional output is suppressed

Retrieve library version
You can retrieve the currently used version of the RIB Support Library. To retrieve the
currently used version, call the following method:
std::string getLibraryVersion();

RIB Support Library
7.2 Connecting a client to RIB

Realtime Information Backbone (RIB)
48 Programming Manual, 05/2023, A5E52046002-AB

The version should match the version of the currently used 'RIB_App'.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.3 Defining symbols
When RIB is configured, the 'RibClient' object needs to know all consumed and provided symbols.
Use the methods 'InitRequestedData' and 'InitProvidedData'.

Adding provided symbols to configuration
A provider can use the method below to provide the configuration data object with the following
information:
• name of shared memory
• provided symbols
• cycle time in microseconds

RIBClient::initProvidedData(lifetimeBufferName, symbolList,
cycleTimeInMicroSeconds)

A RibReturnCode is returned and must be handled by the user:

const std::string& lifetimeBufferName = ...;
const std::list<RIB::SymbolDescription> symbolList = {
 { "myValue_x", RIB::SymbolDescription::DataType::UINT64_T, 1},
 { "myValue_y", RIB::SymbolDescription::DataType::UINT64_T, 1} };
const std::uint64_t cycleTimeInMicroSeconds = 500;
result = ribClient.initProvidedData(lifetimeBufferName, symbolList,
cycleTimeInMicroSeconds);
if (result != RibReturnCode::OK)
{
 // error handling here
}

Forcing deletion of lifetime buffer before creating new lifetime buffer
When initializing provided data, a name for the shared memory of the lifetime buffer is
specified. If a shared memory with this specific name already exists, the
method RibClient::activate() returns the following error message:
RibReturnCode::GenerateLifetimeBufferFailed
To avoid this error message, make sure to clean up the system. To clean up the system, call
the method RibClient::deactivate() and the destructor of the 'RIBClient' objects.

RIB Support Library
7.3 Defining symbols

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 49

The 'RibClient' offers the following function to force the deletion of an existing lifetime buffer:
setForceDeletingExistingLifetimeBuffer(std::string
lifetimeBufferName)
The name of a lifetime buffer must be unique. If a lifetime buffer with such a name already
exists, this existing lifetime buffer will be deleted before creating a new one.

Note
Deleting existing shared memory containing a lifetime buffer
Deleting existing shared memory that contains a lifetime buffer might lead to undefined
behavior, if the deleted shared memory is still used by consuming or providing applications.

Adding requested symbols to configuration
Use the following API call to register symbol names:

RibClient::initConsumedData(const std::string& symbolName)

The following RibReturnCode must be handled by the user:

const auto result = ribClient.initConsumedData("ASymbolToRead");
if (result != RibReturnCode::OK)
{
 // error handling here
}

The RibClient can now communicate and read/write data from/to the RIB.

initConsumedData for a list of symbol names
In addition to the already existing function RibReturnCode
RibClient::initConsumedData(const std::string&), an overloaded
method RibReturnCode RibClient::initConsumedData(const
std::list<std::string>& symbolNames) is added that takes a list of symbol names to
consume.

// 1. Initialize the RibClient object
RIB::RibClient ribClient;

// 2. Configure RIB consumer part
const std::list<std::string> symbolToBeConsumed = {"switch1",
"switch2", "switch3"};

RIB Support Library
7.3 Defining symbols

Realtime Information Backbone (RIB)
50 Programming Manual, 05/2023, A5E52046002-AB

ribClient.initConsumedData(symbolToBeConsumed);

If one of the symbol names to be added has already been added before, it will not be added a
second time.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.4 Activating client
After configuring the provided and/or consumed symbols, use the following method to activate
the client:

RibClient::activate()

This method carries out the following steps:
1. Creates the shared memory for providing symbols
2. Connects the application to RIB
3. Registers the configured provided and/or consumed symbols

The following RibReturnCode must be handled by the user:

const auto result = ribClient.activate();
if (result != RibReturnCode::OK)
{
 // error handling here
}

The RibClient can now communicate with the RIB and data exchange is available for
consuming and/or providing operations.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

RIB Support Library
7.4 Activating client

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 51

7.5 Reading data from lifetime buffer

Accessing the reader object
To read data from the lifetime buffer of a provider, a consumer needs to obtain a reader object
via the following method:

std::tuple<RibReturnCode, std::shared_ptr<Reader>>
RibClient::getReader()

The first element of the returning tuple is a RibReturnCode that must be handled by the user.
The second element of the returning tuple is a smart pointer. This pointer owns a 'Reader'
object through the pointer that allows reading data from a lifetime buffer.

auto [getReaderResult, reader] = ribClient.getReader();
if (getReaderResult != RibReturnCode::OK)
{
 // error handling here
}

Accessing the symbols for reading their values
With the reader object generated by calling getReader, a consumer application is able to place
a pointer to a symbol via the following method:

std::pair<RibReturnCode, T*>getPointerToSymbol<T>(const
std::string& symbolName)

The template parameter 'T' represents one of the allowed data types. The first element of the
returned pair is a RibReturnCode that must be handled by the user. The second element of
the returned tuple is a raw pointer for accessing the symbol and reading its value.

auto [getPointerResult, ptrToSymbol] = reader-
>getPointerToSymbol<std::uint64_t>("ASymbolToRead");
if (getPointerResult != RibReturnCode::OK)
{
 // error handling here
}

Note
The parameter type must match the provided symbol type. The system does not check whether
these two types match.
Make sure to use the correct type.

RIB Support Library
7.5 Reading data from lifetime buffer

Realtime Information Backbone (RIB)
52 Programming Manual, 05/2023, A5E52046002-AB

You can additionally obtain a list of all requested symbols and their corresponding pointer. So
only a single method call is needed.
This method is added to the class RIB::Reader. It returns a map containing the symbol
name as key and the pointer to the value. These pointers are nullptr in case the symbol is
not available yet. Therefore, it can be used the following way:

// get the reader
auto [getReaderResult, reader] = ribClient.getReader();
...
// get the maps containing the symbol name as key and the pointer
as value
SymbolNameToPointerMap symbolMap = reader-
>getSymbolNameToPointerMap();
// access the value for a given symbol named "Symbol_1"
void const* ptrToSymbol_1 = symbolMap["Symbol_1"];
if (ptrToSymbol_1 != nullptr)
{
 auto value = *static_cast<int*>(ptrToSymbol_1);
 std::cout << "Value of Symbol_1=" << value << std::endl;
}

// access all symbols of the map and interpret them as int
for (const auto& [symbolName, ptrToSymbol] : symbolMap)
{
 if (ptrToSymbol != nullptr)
 {
 auto value = *static_cast<int*>(ptrToSymbol);
 std::cout << "Value of " << symbolName << "=" << value <<
std::endl;
 }
}

Continue reading data even if provider is disconnected
In the first version of the RIB Support Library the consumer application stops reading from all
connected providers, if one of the providers was disconnected from RIB. Reading from the
remaining shared memories of other providers was not possible and the consumer application
stopped working.

RIB Support Library
7.5 Reading data from lifetime buffer

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 53

In the new version of the RIB Support Library (RIB V2.0) only the shared memory of
the disconnected provider is closed. The shared memories and symbols of the remaining
connected providers are still available and their data values can be read by the consumer.
The method read() returns a tuple consisting of a RibReturnCode and an updateAvailable
flag. The updateAvailable flag is set to true, when a provider connects or disconnects until
the method reader-
>getSymbolNameToPointerMap() is called. This resets updateAvailable to false.

Note
Also a call to reader->getPointerToSymbol(...) resets the internal updateAvailable flag
to false as this method always provides the latest pointer address.

Even if a provider disconnects, RibReturnCode::OK indicates that data from other
connected providers can still be read successfully by the consumer application.
As long as you do not call SymbolImage::getSymbolNameToPointerMap(), the
pointers belonging to the disconnected shared memory and symbols remain valid and
contain the last read value. Pointers that were accessed using the method reader-
>getPointerToSymbol(...) also remain valid and contain the last read value until
SymbolImage::getSymbolNameToPointerMap() is called or the reader object is
released.
You can update the pointers used in your application by calling the method
SymbolImage::getSymbolNameToPointerMap() . With this call, all previously
disconnected shared memories and symbols are not available anymore in the client
application. The related pointers must not be accessed anymore in the user program. Make
sure to update your locally used pointer references in this case to prevent segmentation
faults.

Note
Recommendation
Do not mix SymbolImage::getSymbolNameToPointerMap() and reader-
>getPointerToSymbol(...) in your code. Pointers aquired with reader-
>getPointerToSymbol(...) become invalid
when SymbolImage::getSymbolNameToPointerMap() cleans up old reader objects that
are not in use anymore.

Receive symbol update information after activation
Due to the "non-blocking activate" behavior and the need for a consumer to continue working
even after another provider disconnects, there is a need to frequently update the list of symbol
pointers by calling reader->getSymbolNameToPointerMap() in each loop of the user
program. This however might cause performance issues.
To reduce the workload by not requesting the SymbolNameToPointerMap in each loop the
Reader::read() method was changed. It now returns in addition to the "RibReturnCode"
an "updateAvailable" flag. This flag is true in case the content of the
SymbolNameToPointerMap has changed since the last call to reader-

RIB Support Library
7.5 Reading data from lifetime buffer

Realtime Information Backbone (RIB)
54 Programming Manual, 05/2023, A5E52046002-AB

>getSymbolNameToPointerMap(). So you can update his SymbolNameToPointerMap
on changes only.

// get the reader
auto [getReaderResult, reader] = ribClient.getReader();
...
// get the maps containing the symbol name as key and the pointer
as value
SymbolNameToPointerMap symbolMap = reader-
>getSymbolNameToPointerMap();

while (loop)
{
 // check for changes in SymbolNameToPointerMap
 auto [errorCode, updateAvailable] = reader->read();

 if (updateAvailable)
 {
 // only get new copy of SymbolToPoinerMap
 symbolMap = reader->getSymbolNameToPointerMap();
 }

 for (const auto& [symbolName, ptrToSymbol] : symbolMap)
 {
 if (ptrToSymbol != nullptr)
 {
 auto value = *static_cast<int*>(ptrToSymbol);
 std::cout << "Value of " << symbolName << "=" << value <<
std::endl;
 }
 }
}
// access all symbols of the map and interpret them as int

RIB Support Library
7.5 Reading data from lifetime buffer

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 55

Note
Updating a large amount of symbol pointers
Updating a large amount of symbol pointers in the application loop, in case updateAvailable
has changed to true when
reading data, might take a longer time and needs to be handled with care to avoid violating cycle
times or timing behavior.

Read operation
The method read() of the reader object executes a read operation for all acquired symbol
values from the RIB applications' shared memory. Afterwards the symbol values can be used in
the consumer program.
The following RibReturnCode is returned that must be handled by the user.

auto retVal = reader-> read();
if (retVal == RibReturnCode::OK)
{
 std::cout << "ASymbolToRead=" << std:to_string(*ptrToSymbol) <<
std::endl;
}
else if (retVal == RibReturnCode::BufferNotWrittenByProducer)
{
 // special case provider has not written data yet
}
else
{
 // error handling here
}

Possible error return codes:
• If RibReturnCode::DataNotAvailable is returned, any of the connected providing

applications has been terminated. In this case, we recommend deactivating the connection.
If you want to restart the provider, reactivate the existing connection. To reactivate the
existing connection, the reader and writer objects must be generated again.

• If RibReturnCode::ReadTimeOut is returned, reading the data from one lifetime buffer
takes longer than the specified segment lifetime. If this occurs once, we recommend that you
repeat the read operation. If this occurs frequently, reduce the system utilization or increase
the process priority of the reading application.

• If RibReturnCode::BufferNotWrittenByProducer is returned, the provider has not
written any data yet. In this case, we recommend that you repeat the read operation.

RIB Support Library
7.5 Reading data from lifetime buffer

Realtime Information Backbone (RIB)
56 Programming Manual, 05/2023, A5E52046002-AB

• The error code RibReturnCode::InvalidBufferElement is caused by the providing
application. This error cannot be corrected by the consumer application.

• The error code RibReturnCode::ReadError indicates that accessing the reader failed
and that the lifetime buffer is not available for reading. Possible reasons for the error might
be that the provider has been stopped or the shared memory has been deleted.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.6 Writing data to lifetime buffer
The RIB Support Library provides a 'Writer' class. The 'Writer' class grants write data access to RIB
lifetime buffers based on the realtime data exchange concept.

Accessing the writer object
To write data into the lifetime buffer, a provider needs to obtain a writer object via the following
method:

std::tuple<RibReturnCode, std::shared_ptr<Writer>>
RibClient::getWriter(const std::string& sharedMemory)

The parameter lifetimeBufferName represents the name of the lifetime buffer already
used when defining this buffer with InitProvidedData().
The first element of the returned tuple is a RibReturnCode that must be handled by the user.
The second element of the returned tuple is a smart pointer. This pointer owns a 'Writer'
object through the pointer that allows writing data to a lifetime buffer.

auto [getWriterResult, writer] =
ribClient.getWriter(lifetimeBufferName);
if (getWriterResult != RibReturnCode::OK)
{
 // error handling here
}

Accessing symbols for writing their values
After obtaining the writer object by calling getWriter, a provider application is able to direct
a pointer to a symbol using the following method:

std::pair<RibReturnCode, T*>getPointerToSymbol<T>(const
std::string& symbolName)

RIB Support Library
7.6 Writing data to lifetime buffer

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 57

The template parameter 'T' represents one of the allowed data types. The first element of the
returned pair is a RibReturnCode that must be handled by the user. The second element of
the returned tuple is a pointer to access the symbol and set its value.

auto [getPointerResult, ptrToSymbol] = writer-
>getPointerToSymbol<std::uint64_t>("ASymbolToWrite");
if (getPointerResult != RibReturnCode::OK)
{
 // error handling here
}

Note
The system does check whether the type provided here matches the type given in the
initialization of the symbol description when initializing the provider.
Make sure to use the correct type.

You can additionally obtain a list of all requested symbols and their corresponding pointer, so
only a single method call is needed.
This method is added to the class RIB::Writer. It returns a map containing the symbol
name as key and the pointer to the value. These pointers are available immediately after
successful creation of the RIB::Writer object and will not be nullptr. It can be used the
following way:

// get the writer
auto [getWriterResult, writer] = ribClient.getWriter();
...
// get the maps containing the symbol name as key and the pointer
as value
SymbolNameToPointerMap symbolMap = writer-
>getSymbolNameToPointerMap();

while (!stopProcess)
{
 // write data to the shared memory
 retVal = writer->write();
 if (retVal != RibReturnCode::OK)
 {
 return EXIT_FAILURE;
 }

RIB Support Library
7.6 Writing data to lifetime buffer

Realtime Information Backbone (RIB)
58 Programming Manual, 05/2023, A5E52046002-AB

 // access all symbols of the map and interpret them as int and
increment them
 for (auto& [symbolName, ptrToSymbol] : symbolMap)
 {
 const auto value = ++(*static_cast<int*>(ptrToSymbol));
 std::cout << "New value of " << symbolName << "=" << value <<
std::endl;
 }
}

Write operation
With the writer object, a provider is able to write its data into the shared memory using
the write() method.
The following RibReturnCode must be handled by the user.

auto retVal = writer->write();
if (retVal != RibReturnCode::OK)
{
 // error handling here
}

Possible error return codes:
• The error code RibReturnCode::WriteSymbolsInvalidParameter can not be

influenced by the user.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.7 Deactivating client
A RibClient object allocates several resources, e.g. for:
• Maintaining an open socket connection to the RIB_App
• Accessing lifetime buffers in shared memories

RIB Support Library
7.7 Deactivating client

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 59

Note
We strongly recommend that you free these resources by using the following method:
RibClient::deactivate()
This method closes the connection to the RIB, cleans up the lifetime buffers' and shared memory
accesses used for reading data. The lifetime buffers' and shared memory accesses used for
writing data are cleaned up by destroying the RibClient object.

The following RibReturnCode can be handled by the user.

retVal = RibClient::deactivate()
if (retVal != RibReturnCode::OK)
{
 // error handling here
}

If the deactivation of a provider is not acknowledged by the RIB_App (e.g. if the connection
to the RIB_App was terminated or a consumer does not respond), the 'Lifetime Buffers' will
not be closed.
Possible error return codes:
• If RibReturnCode::NotConnected is returned, the RibClient has not been activated

before or activation failed.
• The error code RibReturnCode::SocketCommunicationError is an internal error that

cannot be influenced by the user.
• If RibReturnCode::SignOutTimeOut is returned, at least one of the consuming

applications has not acknowledged the deactivation within the waiting time specified by the
RIB. Either check the consumers or increase the RIB_App waiting time using parameter -w. If
the application is a provider, it will not delete its lifetime buffer. For more information, refer
to chapter Cleaning lifetime buffer (Page 77).

• The error code RibReturnCode::SignOutUnknownError is an internal error

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.8 Obtaining a string for RibReturnCode
The following RibClient member function returns a string containing the predefined description
of a given RibReturnCode:

getRibReturnCodeAsString(const RibReturnCode code)

RIB Support Library
7.8 Obtaining a string for RibReturnCode

Realtime Information Backbone (RIB)
60 Programming Manual, 05/2023, A5E52046002-AB

You can use this function to obtain a description of occurring errors, for example, logging
errors during the execution of an application.

RibReturnCodes
For a list of all RibReturnCodes, refer to section RibReturnCode (Page 94).

7.9 Registering and unregistering signal callback functions
To register a callback function to a signal, use the following method:

registerCallback(int posixSignal, const std::function<void(int)>
callback)

If an application needs to be terminated when a signal is received, the corresponding signal
has to be registered here. This is necessary in order to properly terminate the connection to
the RIB in the background.
To terminate the client when receiving the specified signals, use this method instead of
registering signals directly. If you do not want to use a signal for process termination, do not
use this method.
You can use this method for all POSIX (Portable Operating System Interface) signals except
SIGKILL and SIGSTOP. For signal registration, this method grants multiple client registrations
to one POSIX signal within one process. If the callback parameter is invalid, this function
might throw a RIBException error.
The register method returns a cookie identifier. To later unregister from the signal, use this
identifier with the following method:

unregisterCallback(int cookie)

If the cookie parameter is an integer below zero, the method might throw a RIBException
error.

Note
Make sure to use the correct cookie identifier to avoid unregistering from a wrong signal.

RIB Support Library
7.9 Registering and unregistering signal callback functions

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 61

RIB Support Library
7.9 Registering and unregistering signal callback functions

Realtime Information Backbone (RIB)
62 Programming Manual, 05/2023, A5E52046002-AB

Programming using the SFC ODKP_ISC (SFC65490) 8
8.1 Configuration

For sharing data between the CPU and Linux applications, the SFC65490 establishes a
connection to RIB.
The SFC offers the following five modes for carrying out all RIB-related operations:
• "OP_INIT"
• "OP_CONNECT"
• "OP_READ"
• "OP_WRITE"
• "OP_DISCONNECT"
The SFC ODKP_ISC is not part of the TIA Portal hardware catalog. You can add the SFC by
searching ODKP_ISC by its name in TIA Portal.

Requirements
For using RIB and SFC, the following requirements apply:
• You can only use RIB on IndOS operating systems, a Siemens Hypervisor and shared memory.
• RIB does not support Windows operating systems.
• You cannot run multiple SFC calls at the same time. The system must first finish an ongoing

operation, before handling a new operation.
If one or multiple of these mentioned conditions are not met, the following SFC return codes
appear:

Status Error reason
0x8090 The given operation ID is not supported. Only the listed five modes are supported.
0x809B Hypervisor shared memory does not exist or the SFC is used in a Windows variant.
0x80C3 The SFC is already in progress. The SFC cannot be called concurrently.

SFC return codes

Preconditions
Before initializing operation, carry out the following steps:
For requested symbols:
1. Create a user data type (UDT) for the requested symbol.
2. Create a type DB with the user data type created in the previous step.
3. Create a DB_ANY variable in another DB and assign this consumed type DB to the variable.

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 63

For provided symbols:
1. Create a user data type (UDT) for the provided symbol.
2. Create a type DB with the user data type created in the previous step.
3. Create a DB_ANY variable in another DB and assign this provided type DB to the variable.
4. Create an unsigned long integer variable for the cycle time in another DB.

Note
Optimized DBs
For the created DBs, the attribute "Optimized block access" must be enabled.

Note
Multiple SFC operations
You cannot call multiple SFC operations at the same time. The system must first finish an
ongoing operation, before handling a new operation.

The steps to be followed as preconditions are described in chapter "OP_INIT" mode
(Page 64).

8.2 "OP_INIT" mode

8.2.1 "Init" operation
The initialize ("Init") operation configures the provided and consumed symbols. You can only use
the "Init" operation with a rising edge. The "Init" operation is called only once. You cannot change
the symbol configuration after its execution. If you need to reconfigure symbols, call the
"disconnect" operation first. Then modify the configuration and call the "Init" operation again.

Restrictions
Calling the "Init" operation is subject to the following restrictions:
• Consumed DBs and provided DBs

The maximum number of supported consumed DBs and provided DBs is 16 each.
If you use more than one consumed DB and/or provided DB, you must create a DB_ANY Array
variable. Then assign all DBs to this variable.

• Cycle time
You can use a common cycle time for all provided DBs.
If you only set one cycle time value, then this value applies to all DBs. If you set different cycle
times for each DB, the array index of the provided DB must match the array index of the cycle
time.

Programming using the SFC ODKP_ISC (SFC65490)
8.2 "OP_INIT" mode

Realtime Information Backbone (RIB)
64 Programming Manual, 05/2023, A5E52046002-AB

• Names of DBs
The names of provided and consumed DBs are used as lifetime buffer names. Make sure that
each of these DB names is unique. Also make sure that these DB names are not the same as
lifetime buffer names created by Linux applications.

• Symbols for consumed DBs/provided DBs
The maximum number of symbols for consumed DBs and provided DBs is 1024 each.

• Symbol names
Symbol names must be unique in the whole RIB ecosystem, otherwise RIB returns an error
when calling the "connect" operation.

Supported data types
For the RIB environment, the CPU supports reading and writing the following data types.

TIA Portal C++ Size in Bytes
ULINT uint64_t 8
UDINT uint32_t 4
UINT uint16_t 2

USINT uint8_t 1
LINT int64_t 8
DINT int32_t 4
INT int16_t 2

SINT int8_t 1
LREAL double 8
REAL float 4
BYTE uint8_t 1

Data type conversion table
You can also use an array of these supported data types as symbol. An array of the supported
data types as symbol counts as only one symbol.

Return codes of STATUS variable
Calling the "Init" operation may return the following codes in the STATUS variable.

STATUS Reason
0x0000 "Init" operation successful
0x7000 No active job
0x8154 Invalid data type for ParPtr1
0x8254 Invalid data type for ParPtr2
0x8354 Invalid data type for ParPtr3
0x8454 Invalid data type for ParPtr4
0x8281 Invalid value for ParPtr2
0x8381 Invalid value for ParPtr3
0x8481 Invalid cycle time value given. Cycle time must be greater than 0.

Cycle time array and provided DB array mismatch.

Programming using the SFC ODKP_ISC (SFC65490)
8.2 "OP_INIT" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 65

STATUS Reason
0x80A2 Internal error

Contact customer support.
0x80A3 Unsupported data type
0x80AA Maximum number of supported symbols exceeded
0x80AB No provided or consumed DBs given. ParPtr2 and ParPtr3 are both NULL.
0x80AC Maximum number of supported DBs is exceeded
0x80AD Failsafe DBs are not supported
0x80B1 Not enough resources for JSON allocation
0x80D3 One of the provided DBs is registered more than once

Return values of OP_INIT mode

8.2.2 ODKP_ISC "Initialize" mode parameters

ODKP_ISC "Initialize" mode parameters
The following example shows the parameters of the OP_INIT mode for the consumer and
provider configuration of the Software Controller.

Code

Comments

#Result_Init := ODKP_ISC(OperationID := "OP_INIT", // Initialize RIB symbols for
requested and provided DBs

 ParPtr1 := "RIB".InitRequest, // Rising edge control for
executing the operation

 ParPtr2 := "ConsumedDBArray", // Consumed DB(s) (optional)
 ParPtr3 := "ProvidedDBArray", // Provided DB(s) (optional)
 ParPtr4 := "RIB.CycleTime, // Cycle time for provided

symbols update (mandatory, if
ParPtr3 is set for a provided DB)

 ParPtr5 := NULL);

The following table gives an overview of the available OP_INIT mode parameters and their
characteristics.

Section Name Data type Description
Automatically generated parameters by ODKP_ISC

Output STATUS INT Function result error message
User defined parameters

Input OperationID INT OP_INIT (id: 0)
InOut ParPtr1 BOOL Rising edge control variable to execute "Init" operation; when in‐

put signal goes from low (0) to high (1)

Programming using the SFC ODKP_ISC (SFC65490)
8.2 "OP_INIT" mode

Realtime Information Backbone (RIB)
66 Programming Manual, 05/2023, A5E52046002-AB

Section Name Data type Description
InOut ParPtr2 DB_ANY or

DB_ANY Array
Requested DB(s)

InOut ParPtr3 DB_ANY or
DB_ANY Array

Provided DB(s)

InOut ParPtr4 ULINT or
ULINT Array

Scheduled update cycle interval for provided DBs (in microsec‐
onds)

InOut ParPtr5 NULL reserved
OP_INIT mode parameters

ODKP_ISC "Initialize" mode parameters for consumer only configuration
The following example shows the parameters of the OP_INIT mode for a consumer-only
configuration of the Software Controller.

Code

Comments

#Result_Init := ODKP_ISC(OperationID := "OP_INIT", // Initialize RIB symbols for
requested DBs

 ParPtr1 := "RIB".InitRequest, // Rising edge control for
executing the operation

 ParPtr2 := "ConsumedDBArray", // Consumed DB(s) (mandatory
since SWCPU is consumer only app)

 ParPtr3 := NULL,
 ParPtr4 := NULL,
 ParPtr5 := NULL);

The following table gives an overview of the available OP_INIT mode parameters and their
characteristics.

Section Name Data type Description
Input OperationID INT Parameter must be set to 0, which is OperationID for "Initialize"
InOut ParPtr1 BOOL Rising edge control variable to execute "Init" operation
InOut ParPtr2 DB_ANY or

DB_ANY Array
(mandatory)

for consumed DB(s)

InOut ParPtr3 NULL reserved
InOut ParPtr4 NULL reserved
InOut ParPtr5 NULL reserved

ODKP_ISC "Initialize" mode parameters for provider-only configuration
The following example shows the parameters of the OP_INIT mode for a provider-only
configuration of the Software Controller.

Programming using the SFC ODKP_ISC (SFC65490)
8.2 "OP_INIT" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 67

Code

Comments

#Result_Init := ODKP_ISC(OperationID := "OP_INIT", // Initialize RIB symbols for
provided DBs

 ParPtr1 := "RIB".InitRequest, // Rising edge control for
executing the operation

 ParPtr2 := NULL,
 ParPtr3 := "ProvidedDBArray", //Provided DB(s) (mandatory

since SWCPU is a provider only
app)

 ParPtr4 := "RIB.CycleTime, //Cycle time for provided
symbols (in microseconds)

 ParPtr5 := NULL);

The following table gives an overview of the available OP_INIT mode parameters and their
characteristics.

Section Name Data type Description
Input OperationID INT Parameter must be set to 0, which is OperationID for "Initialize"
InOut ParPtr1 BOOL Rising edge control variable to execute "Init" operation
InOut ParPtr2 NULL reserved
InOut ParPtr3 DB_ANY or

DB_ANY Array
(mandatory)

for provided DB(s)

InOut ParPtr4 Long Integer
or Long Integer Ar‐
ray
(mandatory)

Scheduled update cycle interval for provided DBs (in microsec‐
onds)
The array index of the provided DB must match the array index of
the cycle time.

InOut ParPtr5 NULL reserved

Impact of Initialize operation on performance
The Initialize operation internally resolves, extracts and decomposes all DB symbols and
retrieves their offset, size and type information. For these reasons, the Initialize operation
impacts the performance based on the data size of DBs and the variable count.

Note
Cycle time
Note that a high number of symbols to be initialized has an impact on the OB cycle time.
If your project handles large amounts of data or symbol counts, increase the maximum cycle
time in the CPU configuration.
Also note that a high number of symbols can result in cycle times of some milliseconds and
should therefore not be used in time critical OBs.

Programming using the SFC ODKP_ISC (SFC65490)
8.2 "OP_INIT" mode

Realtime Information Backbone (RIB)
68 Programming Manual, 05/2023, A5E52046002-AB

The Initialize operation is only executed once before connecting to RIB. You can use the
operation in the startup OB. When reconfiguring the "Init" operation, a STOP-RUN transition
of the CPU is necessary.

8.3 "OP_CONNECT" mode

8.3.1 Connecting to RIB
Before reading and writing any symbols, you must establish a connection to RIB. The connect
operation handles the communication part with RIB. After establishing a RIB connection, you
can access the CPU for shared memory operations.

Establish RIB connection
You establish a connection to RIB by using the mode "OP_CONNECT" (ID: 1) of ODKP_ISC
(SFC65490). This mode starts an asynchronous connection request to the RIB_App.

Preconditions
• Before you connect to RIB, call an "OP_INIT" operation.

For more information on how to call an "OP_INIT" operation, refer to section "OP_INIT" mode
(Page 64).

• The port number used as a parameter in the OP_INIT operation must be the same as the port
number configured for the RIB_App. The default value is 27567.

• The IP address used as a parameter for the OP_INIT operation must be the VNIC
(virtual network interface card) IP address on IndOS side.

Calling the connect operation
The following example shows the parameters of the ODKP_ISC "Connect" mode.

Code

Comments

#Result_Connect := ODKP_ISC(OperationID := "OP_INIT",
 ParPtr1 := "RIB".ConnectRequest, // Rising edge control for

executing the operation
 ParPtr2 := "RIB.Address", // TADDR_PARAM which has IP and

port information of RIB
 ParPtr3 := NULL,
 ParPtr4 := NULL,
 ParPtr5 := NULL);

Programming using the SFC ODKP_ISC (SFC65490)
8.3 "OP_CONNECT" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 69

The following table gives an overview of the available OP_CONNECT mode parameters and
their characteristics.

Section Name Data type Description
Automatically generated parameters by ODKP_ISC

Output STATUS INT Function result error message
User defined parameters

Input OperationID INT OP_CONNECT (id: 1)
InOut ParPtr1 BOOL Rising edge control variable to execute CONNECT operation
InOut ParPtr2 TADDR_PARAM IP address of Linux VNIC IP address and port information of

RIB_App
InOut ParPtr3 NULL reserved
InOut ParPtr4 NULL reserved
InOut ParPtr5 NULL reserved

Parameters of OP_Connect mode
If you enter the provided DBs, the operation "ODKP_ISC CONNECT" writes the initial values of
the provided symbols. If there is no initial value, the provided symbol values are filled up by
zeros.
The CPU creates a lifetime buffer for the provided symbols.
The connect operation works on the rising edge. This means the operation is executed when
the RIB connect request changes from FALSE to TRUE.

Return codes of STATUS variable
You can check the connection status with its return code. When the RIB_App crashes or closes,
it can be seen from the connect operation’s return code.

Note
RIB_App crashes or closes
If the RIB_App is gone while the CPU continues to exchange data, consistent data transfer is no
longer guaranteed due to the absence of RIB_App. When you restart the RIB_App, the CPU is not
automatically reconnected. You must call the "disconnect" operation and then "init" operation
for connecting to the RIB_App again.

Calling the "Connect" operation may return the following codes in the STATUS variable.

STATUS Reason
0x0000 Connection request successful
0x7000 No active job
0x7001 Connection in progress
0x7002 Connection in progress already
0x8154 Invalid data type for ParPtr1
0x8254 Invalid data type for ParPtr2
0x80A0 "Init" operation must be executed first

Programming using the SFC ODKP_ISC (SFC65490)
8.3 "OP_CONNECT" mode

Realtime Information Backbone (RIB)
70 Programming Manual, 05/2023, A5E52046002-AB

STATUS Reason
0x80A2 Internal error

Contact customer support.
0x80A7 Requested DB not registered before with "Init" operation
0x80A8 Type of requested symbol(s) different from provided type
0x80B0 RIB returns "application name already exists"
0x80B3 Software Controller version is not compatible with RIB version
0x80B4 Response string does not match valid format of RIB configuration values
0x80B6 Lifetime buffer name exceeds 128 characters
0x80B7 RIB returns "invalid argument response"
0x80B8 RIB returns "attribute is missing" error
0x80B9 RIB returns "symbol type is different from the provided type"
0x80BA RIB returns "provided symbol has been provided by a different provider"
0x80D1 Lifetime buffer provided by a Linux application could not be found
0x80D2 Lifetime buffer cannot be created on VMM (Virtual Machine Manager) shared memory
0x80F1 Connection request failed or RIB_App crashed

Return values of OP_CONNECT mode

8.4 "OP_READ" mode

8.4.1 Reading data from Linux applications
After successful connection and configuration, the CPU can start exchanging data.

Reading data
For reading data provided by Linux applications, use ODKP_ISC with "OP_READ" (ID: 3).

Preconditions
Before you call read operations, make sure that you have carried out the following steps:
1. You have called "OP_INIT" successfully.

For more information on "OP_INIT", refer to section "OP_INIT" mode (Page 64).
2. You have called "OP_CONNECT" successfully.

For more information on "OP_CONNECT", refer to section "OP_CONNECT" mode (Page 69).

Calling the read operation
The following example shows the parameters of the ODKP_ISC "Read" mode.

Programming using the SFC ODKP_ISC (SFC65490)
8.4 "OP_READ" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 71

Code

Comments

#Result_Read := ODKP_ISC(OperationID := "OP_READ",
 ParPtr1 := "RIB".EnableRead, // Enable read operation
 ParPtr2 := "SWCPU_DataExchange_DB", // Requested DB
 ParPtr3 := NULL,
 ParPtr4 := NULL,
 ParPtr5 := NULL);

The following table gives an overview of the available OP_READ mode parameters and their
characteristics.

Section Name Data type Description
Automatically generated parameters by ODKP_ISC

Output STATUS INT Function result error message
User defined parameters

Input OperationID INT OP_READ (id: 3)
InOut ParPtr1 BOOL Enabler for executing READ operation
InOut ParPtr2 Type DB Requested DB
InOut ParPtr3 NULL reserved
InOut ParPtr4 NULL reserved
InOut ParPtr5 NULL reserved

Parameters of OP_READ mode
The OP_READ mode of ODKP_ISC supports a maximum of 16 DBs. The OP_READ mode can be
called multiple times with different consumed DBs.
The CPU can read symbols provided by different Linux applications even though they are all
stored in the same DB.
If one of the provider applications has disconnected from the RIB
environment, the READ operation result value changes from SUCCESS(0) to
REQUESTED_SYMBOLS_MISSING(0x7300). When the provider application reconnects, the
CPU will continue to read and the result value will return to SUCCESS(0).
The read operation only works with the enabler state being TRUE.
The same DB must be used for both "init" and "read" operations. Changes in the DB (adding
or deleting symbols) is not allowed.
RIB V1 does not support download in RUN.
If you use a cyclic OB for a read operation, set the OB priority to 16 or higher.
If every symbol in that requested DB is available, the READ operation starts immediately. If
there are more than one DB, missing symbols in other DBs do not block that specific DB's read
operation.

Programming using the SFC ODKP_ISC (SFC65490)
8.4 "OP_READ" mode

Realtime Information Backbone (RIB)
72 Programming Manual, 05/2023, A5E52046002-AB

Return codes of STATUS variable
Calling the "read" operation might return the following codes in the STATUS variable.

STATUS Reason
0x0000 Read operation successful
0x7000 No active job
0x7001 Provider application starts disconnecting while operation is running
0x7300 Requested symbols missing
0x7400 Data not published yet by provider application
0x8154 Invalid data type for ParPtr1
0x8254 Invalid data type for ParPtr2
0x80A2 Internal error

Contact customer support.
0x80A4 Connect operation not finished yet
0x80A5 Read data outdated. Symbol could not be read in buffer element lifetime duration.
0x80A7 Requested DB not registered before with "Init" operation
0x80A9 DB length is exceeded with wrong offset or symbol size
0x80AE DB changed during download in RUN after "Init" operation.
0x80C4 Lifetime buffer is corrupted. Reconnect again.

Return values of OP_READ mode

8.5 "OP_WRITE" mode

8.5.1 Writing data from Linux applications
After successful connection and configuration, the CPU can start exchanging data.

Writing data
For writing data, use ODKP_ISC with "OP_WRITE" (ID: 2).

Preconditions
Before you call write operations, make sure that you have carried out the following steps:
1. You have called "OP_INIT" successfully.

For more information on "OP_INIT", refer to section "OP_INIT" mode (Page 64).
2. You have called "OP_CONNECT" successfully.

For more information on "OP_CONNECT", refer to section "OP_CONNECT" mode (Page 69).

Calling the write operation
The following example shows the parameters of the ODKP_ISC "Write" mode.

Programming using the SFC ODKP_ISC (SFC65490)
8.5 "OP_WRITE" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 73

Code

Comments

#Result_Write := ODKP_ISC(OperationID := "OP_WRITE",
 ParPtr1 := "RIB".EnableWrite, // Enable write operation
 ParPtr2 := "S7_SWCPU_DB", // Provided DB
 ParPtr3 := NULL,
 ParPtr4 := NULL,
 ParPtr5 := NULL);

The following table gives an overview of the available OP_WRITE mode parameters and their
characteristics.

Section Name Data type Description
Automatically generated parameters by ODKP_ISC

Output STATUS INT Function result error message
User defined parameters

Input OperationID INT OP_WRITE (id: 2)
InOut ParPtr1 BOOL Enabler for executing WRITE operation
InOut ParPtr2 Type DB Provided DB
InOut ParPtr3 NULL reserved
InOut ParPtr4 NULL reserved
InOut ParPtr5 NULL reserved

Parameters of OP_WRITE mode
The OP_WRITE mode of ODKP_ISC supports a maximum of 16 DBs. The OP_WRITE mode can
be called multiple times with different provided DBs.
The write operation only works with the enabler state being TRUE.
The same DB must be used for both "init" and "write" operations. Changes in the DB (adding
or deleting symbols) is not allowed.
RIB V1 does not support download in RUN.
If you use a cyclic OB for a write operation, set the OB priority to 16 or higher.

Return codes of STATUS variable
Calling the "write" operation might return the following codes in the STATUS variable.

STATUS Reason
0x0000 Write operation successful
0x7000 No active job
0x8154 Invalid data type for ParPtr1
0x8254 Invalid data type for ParPtr2

Programming using the SFC ODKP_ISC (SFC65490)
8.5 "OP_WRITE" mode

Realtime Information Backbone (RIB)
74 Programming Manual, 05/2023, A5E52046002-AB

STATUS Reason
0x80A2 Internal error

Contact customer support
0x80A4 Connect operation not finished yet
0x80A7 Provided DB not registered before with "Init" operation
0x80AE DB changed during download in run after initialize operation
0x80C4 Lifetime buffer is corrupted. Reconnect again.

Return values of OP_WRITE mode

8.6 "OP_DISCONNECT" mode

8.6.1 Disconnecting from RIB
When you have finished exchanging data between the CPU and Linux applications, disconnect
from RIB. We recommend that you disconnect from RIB before changing the CPU operating state
to STOP or closing the RIB_App.

Disconnection
For disconnecting from RIB, use ODKP_ISC (SFC65490) with mode "OP_DISCONNECT" (ID: 4).

Calling the disconnect operation
The following example shows the parameters of the ODKP_ISC "Disconnect" mode.

Code

Comments

#Result_Disconnect := ODKP_ISC(OperationID :=
"OP_DISCONNECT",

 ParPtr1 := "RIB".DisconnectRequest, // Rising edge control for
executing the operation

 ParPtr2 := NULL,
 ParPtr3 := NULL,
 ParPtr4 := NULL,
 ParPtr5 := NULL);

Programming using the SFC ODKP_ISC (SFC65490)
8.6 "OP_DISCONNECT" mode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 75

The following table gives an overview of the available OP_DISCONNECT mode parameters
and their characteristics.

Section Name Data type Description
Automatically generated parameters by ODKP_ISC

Output STATUS INT Function result error message
User defined parameters

Input OperationID INT OP_DISCONNECT (id: 4)
InOut ParPtr1 BOOL Rising edge control variable to execute DISCONNECT operation
InOut ParPtr2 NULL reserved
InOut ParPtr3 NULL reserved
InOut ParPtr4 NULL reserved
InOut ParPtr5 NULL reserved

Parameters of OP_Disconnect mode
The "Disconnect" operation only works on the rising edge.

Return codes of STATUS variable
Calling the "Disconnect" operation might return the following codes in the STATUS variable:

STATUS Reason
0x0000 Disconnection request successful
0x7000 No active job
0x7001 Disconnection in progress
0x7002 Disconnection in progress already
0x80A2 Internal error, contact customer support
0x8154 Invalid data type for ParPtr1
0x80E8 Connection in progress
0x80E9 Connection lost already
0x80EA Disconnect operation executed after connection to RIB App lost

Return values of OP_DISCONNECT mode

Programming using the SFC ODKP_ISC (SFC65490)
8.6 "OP_DISCONNECT" mode

Realtime Information Backbone (RIB)
76 Programming Manual, 05/2023, A5E52046002-AB

Commissioning (software) 9
9.1 Cleaning lifetime buffer

The system cleans the lifetime buffer of an application when terminating this application. In
specific cases, however, it is necessary to clean the lifetime buffer manually.
Cleaning the lifetime buffer area is necessary, if:
• An application has not been terminated properly
• An error occurs when closing the lifetime buffer
• The provider application cannot connect to RIB and the error "Shared memory segment is

already open" appears. This error message might also indicate that a running application
uses the same shared memory name.

Cleaning the entire lifetime buffer is only necessary in the following case:
• The memory of the lifetime buffer is corrupted

Note
Deleting the lifetime buffer on Linux-only systems and the CPU
On Linux-only systems, the lifetime buffers are stored in the Linux file system. Delete the
shared memory by deleting the corresponding file from /dev/shm.
On the CPU, the lifetime buffers are stored in the Hypervisor shared memory area and can
only be accessed with the corresponding driver.

Requirements
To clean the entire lifetime buffer, the following requirements apply:
• All applications using RIB are closed
• The operating state of the CPU is STOP or POWER OFF
To remove the lifetime buffer(s), the following requirements apply:
• All applications which access the lifetime buffer must be closed

s7_RIB_memory_cleaner
For cleaning the lifetime buffer, use the application s7_RIB_memory_cleaner. This application is
installed together with the RIB_App.

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 77

The application has the following options:
• Displaying help messages

For displaying help messages, use -h or--help.
Usage: s7_RIB_memory_cleaner -h

• Cleaning the entire lifetime buffer
For cleaning the entire lifetime buffer, a hard reset is required. For a hard reset, call the
memory cleaner application with the force option (-f or --force).
Usage: s7_RIB_memory_cleaner -f
Note
Software Controller
Note that the s7_RIB_memory_cleaner may affect the stability of running applications. The
tool is not intended for productive use. We recommend to remove the tool from a productive
system.
When carrying out this function, make sure that there is no running application using the RIB.
The CPU must be in STOP or POWER OFF.

• Removing the lifetime buffer area by its name
For removing the lifetime buffer area by its name, call the s7_RIB_memory_cleaner
application with the name option (-n or --name). Use the name of the lifetime buffer as
parameter.
Usage: s7_RIB_memory_cleaner -n <LTB_Name>
Note
Software Controller and CPU 1518(F)‑4 PN/DP MFP
Note that the s7_RIB_memory_cleaner may affect the stability of running applications. The
tool is not intended for productive use. We recommend to remove the tool from a productive
system.
When carrying out this function, make sure that no application is using the lifetime buffer and
that there is no data being exchanged. Otherwise, removing the lifetime buffer could cause
the application to crash or to return unexpected error codes.

• Removing all available lifetime buffer areas
For removing all available lifetime buffer areas, call the s7_RIB_memory_cleaner application
with the all option (-a or --all).
Usage: s7_RIB_memory_cleaner -a

• Listing the names of all available lifetime buffer areas
For listing all lifetime buffer areas, call the s7_RIB_memory_cleaner application with the list
option (-l or --list).

Note
CPU 1518(F)‑4 PN/DP MFP does not support -l and -a switches
Note that the CPU 1518(F)‑4 PN/DP MFP does not support the -l and -a switches of the
s7_RIB_memory_cleaner tool.
If you want to use the -f switch, the CPU user program must be in STOP.

Commissioning (software)
9.1 Cleaning lifetime buffer

Realtime Information Backbone (RIB)
78 Programming Manual, 05/2023, A5E52046002-AB

Examples and tables A
A.1 Example project

Under <mount_point>/SWCPU/RIB you will also find a TIA Portal example project and an example
C++ application.
You can use the example to adapt the values to your actual project.
To use the TIA Portal example project, copy the file
"RIB_Template_SWCPU_DataExchange.ap18" to your Windows environment and import the
file into TIA Portal.

Note
Example project is based on fail-safe CPU
The TIA Portal example project is based on a fail-safe CPU. If you are using a standard CPU, make
sure to change the CPU type before downloading the project to the CPU. A fail-safe CPU cannot
be downloaded to a standard CPU.

Structure of the example project
The example project has the following structure:

Figure A-1 Structure of example project
In the example project, the Linux Application provides four symbols. However, the Software
Controller (SWCPU) only consumes three of them (start, ReturnDeltaX and ReturnDeltaY).
The user data type (UDT) that stores these three symbols is T_LinuxApp_DB.

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 79

The Software Controller provides two symbols (DeltaX and DeltaY). The user data type that
stores these two symbols is T_SWCPU_DB.

Creating user data types
The following image shows the already created user data in TIA Portal.

Figure A-2 Added user data types

Creating data blocks
The SFC will later be called with a data block (DB).
The following image shows how to create one of the two needed DBs with our defined user
data types. In the example project, the data blocks S7_SWCPU_DB and LinuxApp_DB have
already been created.

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
80 Programming Manual, 05/2023, A5E52046002-AB

Figure A-3 Creating DBs

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 81

Calling SFC functions
The following image shows how to call SFC functions using the configured symbols:

Figure A-4 SFC functions
In the example, we created wrapper FBs to make using the RIB functionality easy. We added
DONE, ERROR and BUSY flags to facilitate programming. You can find the wrapper FBs in the
project tree under "Programm blocks < RIB_SUPPORT".
For provided DBs and consumed DBs, we must create two variables (DB_ANY or DB_ANY
array) in another DB. In the example, we used RIB[DB4] for storing variables for provided and
consumed DBs.
Since we have one provided DB (S7_SWCPU_DB) and one consumed DB (LinuxApp_DB), we
created two different DB_ANY variables ("RIB".ProvidedDB and "RIB".ConsumedDB).
For the provided DB, we assigned the cycle time in microseconds to an unsigned integer
variable.

Note
Assignment operations in Main DB
Note that for display purposes, we put the assignment operations of this example in the Main
OB. In practical use cases where assignment operations should not repeat every cycle, you can
use a different OB.

The following table lists the commands and comments from section ① (code lines 6 to 12):

The RIB_INIT mode of ODKP_ISC is called with the consumed DB, provided DB and the cycle time of the provided DB
Line Command Comment
6 "RIB_INIT_DB" (REQ := "RIB".InitRequest, Rising edge control for executing the operation
7 CONSUMED_DB := "RIB".InitConsumedDB, Consumed DB use DB_ANY array for multiple DBs
8 PROVIDED_DB := "RIB".InitProvidedDB, Provided DB use DB_ANY array for multiple DBs

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
82 Programming Manual, 05/2023, A5E52046002-AB

The RIB_INIT mode of ODKP_ISC is called with the consumed DB, provided DB and the cycle time of the provided DB
9 CYCLE_TIME := "RIB".InitCycleTime, Cycle time use ULINT array for multiple cycle times for pro‐

vided DBs
10 STATUS => "RIB".InitStatus, Status
11 DONE => "RIB".InitDone, Done flag
12 ERROR => "RIB".InitError); Error flag

The following table lists the commands and comments from section ② (code lines 16 to 21):

The RIB_CONNECT mode of ODKP_ISC is called with the Linux VNIC IP address and the port number of RIB_App
Line Command Comment
16 "RIB_CONNECT_DB" (REQ :=

"RIB".ConnectRequest,
Rising edge control for executing the operation

17 ADDRESS := "RIB".ConnectAddress, TADDR_Param struct that has IP and port information of
RIB_App

18 STATUS => "RIB".ConnectStatus, Status
19 DONE => "RIB".ConnectDone, Done flag
20 BUSY => "RIB".ConnectBusy, Busy flag
21 ERROR => "RIB".ConnectError); Error flag

The following table lists the commands and comments from section ③ (code lines 24 to 28):

The RIB_DISCONNECT mode of ODKP_ISC must be called, if you want to disconnect and reconfigure the symbols or set
the CPU to STOP

Line Command Comment
24 "RIB_DISCONNECT_DB" (REQ :=

"RIB".DisconnectRequest,
Rising edge control for executing the operation

25 STATUS => "RIB".DisconnectStatus, Status
26 DONE => "RIB".DisconnectDone, Done flag
27 BUSY => "RIB".DisconnectBusy, Busy flag
28 ERROR => "RIB".DisconnectError); Error flag

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 83

Using SFC operations for exchanging data
The following image shows how to use SFC operations to exchange data between IndOS and the
Software Controller:

Figure A-5 SFC data exchange
The following table lists the commands and comments from section ① (code lines 2 to 7):

Line Command Comment
2 "RIB_READ_DB" (ENABLE :=

"RIB".ReadEnable,
Enable Read Operation
(RIB_Read has a BUSY flag that is not available on
RIB_WRITE. The BUSY flag is set to TRUE when requested
symbols have not been shared by Linux applications.)

3 DB := "LinuxApp_DB", Requested DB
4 STATUS => "RIB".ReadStatus Status
5 DONE => "RIB".ReadDone, Done flag
6 BUSY => "RIB".ReadBusy, Busy flag
7 ERROR => "RIB".ReadError); Error flag

The following table lists the commands and comments from section ② (code lines 14 to 18):

Line Command Comment
14 "RIB_WRITE_DB" (ENABLE :=

"RIB".WriteEnable,
Enable Write Operation
(RIB_WRITE mode is called with the provided DB, in this
example project, the provided DB is S7_SWCPU_DB)

15 DB := "S7_SWCPU_DB", Provided DB
16 STATUS => "RIB":WriteStatus, Status
17 DONE => "RIB".WriteDone, Done flag
18 ERROR => "RIB".WriteError); Error flag

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
84 Programming Manual, 05/2023, A5E52046002-AB

Functional principle of using multiple DBs
In the above shown example project, we created the following constellation (Constellation I):

DB Name
S7_SWCPU_DB ProvidedDB
LinuxApp_DB ConsumedDB

The following examples show the correct variables for the following constellation
(Constellation II):

DB Name
S7_SWCPU_DB
S7_SWCPU_DB_2

ProvidedDB[0]
ProvidedDB[1]

LinuxApp_DB
LinuxApp_DB_2

ConsumedDB[0]
ConsumedDB[1]

Figure A-6 Configuration of Constellation II
Instead of creating the variable as DB_ANY, we created a DB_Any array. One of the arrays
stores the information of the consumed DBs and the other array the information of the
provided DBs.
Since there are two provided DBs, we changed the data type to ULInt array CycleTime
variable.
The following image shows the SFC operation with multiple DBs.

Examples and tables
A.1 Example project

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 85

① Both consumed DBs are assigned to the consumed DB_ANY array.
② One of the provided DBs is assigned to the provided DB_ANY array as first element. The cycle time of the provided DB is

assigned to the cycle time array with the corresponding index. The index of the cycle time and the provided DB array must
match.

③ The other provided DB is assigned to the DB_ANY array as second element. The cycle time of the provided DB is also
assigned to the matching index. If both provided DBs have the same cycle time, then, instead of the cycle time array, only
one value can be used. This default cycle time value will be applicable to both provided DBs.

Figure A-7 Multiple DBs

Note
Multiple calls of read and write operations
Read and write operations can be called multiple times with different provided/consumed DBs
but cannot be called at the same time.

A.2 Application examples
The following example project "SWCPU_DataExchange.cpp" relates to the TIA Portal example
project and is also included the template applications folder "/home[/user]/rib".

//
//////////////////////
/// Example app which communicates with PLC
///
/// \file SWCPU_DataExchange.cpp
///
///
**
******************/
/// \copyright Copyright (C) 2022 Siemens Aktiengesellschaft. All
rights reserved.
///
**
******************/
/// This program is protected by German copyright law and

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
86 Programming Manual, 05/2023, A5E52046002-AB

international
/// treaties. The use of this software including but not limited to
its
/// Source Code is subject to restrictions as agreed in the license
/// agreement between you and Siemens.
/// Copying or distribution is not allowed unless expressly permitted
/// according to your license agreement with Siemens.
///
//
//////////////////////

#include "ribClient.h"
#include "symbolDescription.h"
#include <csignal>
#include <unistd.h>
#include <iostream>
#include <memory>
#include <cstdint>

using namespace RIB;

volatile bool stopProcess = false;

void ctrl_c_handler(int signal);

void ctrl_c_handler(int signal)
{
 (void)signal;
 std::cout << "Caught Stop-signal" << std::endl;
 stopProcess = true;
}

///
/// This app demostrates the feasibility of the lock free buffer
concept for RIB data exchange
///
int main(void)
{
 const std::uint64_t cycleTimeIn_usec = 150;
 const std::string ipAddr = "127.0.0.1";

 // register signal handler function
 signal(SIGINT, ctrl_c_handler);

 //**************************
 //Create connection object, specify request data and connect to
RIB
 RibClient ribClient = RIB::RibClient();

 //**************************

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 87

 // Create a memory area called "SWCPU_DataExchange" for
provided symbols
 const std::string providedMemoryName = "SWCPU_DataExchange";

 std::list<RIB::SymbolDescription> providedData
 {
 RIB::SymbolDescription("start",
RIB::SymbolDescription::DataType::UINT8_T),
 RIB::SymbolDescription("alarm",
RIB::SymbolDescription::DataType::UINT64_T),
 RIB::SymbolDescription("ReturnDeltaX",
RIB::SymbolDescription::DataType::UINT64_T),
 RIB::SymbolDescription("ReturnDeltaY",
RIB::SymbolDescription::DataType::UINT64_T)
 };

 ribClient.initProvidedData(providedMemoryName, providedData,
cycleTimeIn_usec);

 //**************************
 // Add requested symbols provided by SWCPU
 std::list<std::string> consumedData
 {
 "DeltaX",
 "DeltaY"
 };

 ribClient.initConsumedData(consumedData);

 if (ribClient.activate() != RibReturnCode::OK)
 {
 std::cout << "Activating RIB was not possible" << std::endl;
 ribClient.deactivate();
 return EXIT_FAILURE;
 }

 // get the writer for this client to write the data
 auto [retVal1, writer] =
ribClient.getWriter(providedMemoryName);
 if (retVal1 != RIB::RibReturnCode::OK)
 {
 std::cout << "Getting the writer for this client was not
possible" << std::endl;
 ribClient.deactivate();
 return EXIT_FAILURE;
 }

 // get the reader for this client to read the data
 RibReturnCode getReaderResult;
 std::shared_ptr<RIB::Reader> reader = nullptr;
 std::tie(getReaderResult, reader) = ribClient.getReader();

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
88 Programming Manual, 05/2023, A5E52046002-AB

 if (getReaderResult != RIB::RibReturnCode::OK)
 {
 std::cout << "Getting the reader for this client was not
possible." << std::endl;
 ribClient.deactivate();
 return EXIT_FAILURE;
 }

 // define pointers to read the payload.
 uint64_t* deltaX = nullptr;
 uint64_t* deltaY = nullptr;

 // get a pointer to access the requested data in the symbol
image and cast it to specific type
 auto providedSymbolNameToPointerMap = writer-
>getSymbolNameToPointerMap();
 auto returnDeltaX =
static_cast<uint64_t*>(providedSymbolNameToPointerMap["ReturnDeltaX"
]);
 auto returnDeltaY =
static_cast<uint64_t*>(providedSymbolNameToPointerMap["ReturnDeltaY"
]);

 while (!stopProcess)
 {
 //Update requested symbol values
 auto [retValRead, updateAvail] = reader->read();
 if (retValRead != RibReturnCode::OK &&
 retValRead != RibReturnCode::BufferNotWrittenByProducer
&&
 retValRead != RibReturnCode::DataNotAvailable)
 {
 // react on error
 }

 if (updateAvail)
 {
 // there is a change in the availability of symbols, so
ask for update
 auto symbolNameToPointerMap = reader-
>getSymbolNameToPointerMap();
 deltaX =
static_cast<uint64_t*>(symbolNameToPointerMap["DeltaX"]);
 deltaY =
static_cast<uint64_t*>(symbolNameToPointerMap["DeltaY"]);
 }

 //Consumed DeltaX and DeltaY symbols are mirrored on
providedData;
 if(deltaX != nullptr && deltaY != nullptr)
 {

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 89

 *returnDeltaX = *deltaX;
 *returnDeltaY = *deltaY;
 }

 // Update provided symbol values
 auto retVal = writer->write();
 if (retVal != RIB::RibReturnCode::OK)
 {
 std::cout << "Writing data caused an error" <<
std::endl;
 ribClient.deactivate();
 return EXIT_FAILURE;
 }

 usleep(cycleTimeIn_usec);
 }

 if (ribClient.deactivate() != RIB::RibReturnCode::OK)
 {
 std::cout << "Error: Deactivation of RibClient caused an
Error" << std::endl;
 return EXIT_FAILURE;
 }

 return EXIT_SUCCESS;
}

This example provides a rough overview of the application flow. Error handling is omitted to
obtain a better overview.

Note
Note that the CPPYY package should be installed for the Python examples.

#include "RibClient.h"

int main()
{
 // 1. Initialize the RibClient object
 RIB::RibClient ribClient;

 // 2. Configure RIB consumer part
 ribClient.initConsumedData("hugo");
 ribClient.initConsumedData("temperature_1");

 // 3. Configure RIB provider part
 string shmName = "myOwnShm";
 int cycleTimeInMilliseconds = 500;
 const list<RIB::SymbolDescription> symbolList = {

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
90 Programming Manual, 05/2023, A5E52046002-AB

 {"myValue_x", RIB::SymbolDescription::DataType::UINT64_T, 1},
 {"myValue_x", RIB::SymbolDescription::DataType::UINT64_T, 1},
 ribClient.initProvidedData(shmName, symbolList,
cycleTimeInMilliseconds);

 // 4. Connect to RIB App, create SHM, register symbols, create
symbol images of provided
 // and consumed data, start connection thread
 ribClient.activate();

 // 5. Use symbols
 // 5.1 Access writer
 auto [getWriterResult, writer] = ribClient.getWriter(shmName);

 // 5.2 Access pointer to symbols to write
 auto [getPointerResultX, ptrToMyValueX] = writer-
>getPointerToSymbol<std::uint64_t>("myValue_x");
 auto [getPointerResultY, ptrToMyValueY] = writer-
>getPointerToSymbol<std::uint64_t>("myValue_y");

 // 5.3 Access reader
 auto [getReaderResult, reader] = ribClient.getReader();

 // 5.4 Access pointer to 'hugo' and 'temperature_1'.
 auto [getPointerResult, ptrToSymbolHugo] = reader-
>getPointerToSymbol<std::uint64_t>("hugo");
 auto [getPointerResult, ptrToSymbolTemperature_1] = reader-
>getPointerToSymbol<std::uint64_t>("temperature_1");

 while (...)
 {
 // 5.5 Read data
 reader->read();

 // 5.6 User algorithm
 *ptrToMyValueX = *ptrToSymbolHugo + 1;
 *ptrToMyValueX = *ptrToSymbolTemperature_1 * 42;

 // 5.7 Write data
 writer->write();
 }

 //6. Cleanup RIB
 ribClient.deactivate();

 return 0;
}

Examples and tables
A.2 Application examples

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 91

A.3 Allowed data types
Currently, the following data types and arrays of them are allowed for the definition of symbols:

Category Data types Size in bytes
Signed integer int8_t, int16_t, int32_t, int64_t 1, 2, 4, 8
Unsigned integer uint8_t, uint16_t, uint32_t, uint64_t 1, 2, 4, 8
Floating points float, double 4, 8

Use these type names for the place holder "<SymbolType>" in the subsequent configuration
descriptions.

A.4 Example configuration string
The following example shows a configuration JSON string and descriptive comments.

Code Comment
"Type": "ConnectToRIBConfig", // mandatory, this string represents

configuration data to connect an application
to the RIB

"Version": "1.0", // mandatory, the version of the connection
data information (needed for compatibility
issues)

"<Application_Name>": // mandatory, all information needed to
register an application to the RIB, this
field represents the name of the application

{
 "Type": "ApplicationData", // mandatory, the type that is described here

is an ApplicationData object
 "PID": <PIDOfApplication>, // mandatory, the current process ID of the

application
 "Description": "<DescriptionOfApp>", // optional, some more information regarding

the application
 "Version": "<VersionOfApp>", // optional, the version of the application
 "Manufacturer": "<ManufacturerOfApp>", // optional, the creator of the application.

e.g. company name
 "Provides": // optional, if the application provides

data, this data is described here
 {
 "<IdentifierOfTheSharedMem>": // mandatory, if the application provides

data, the ID of the shared memory is needed
 {
 "Type": "Provide"; // mandatory, the type that is described here

is a Provide object
 "Signal": <SignalId>, // mandatory, the signal the client must

listen to (currently not implemented, -1)

Examples and tables
A.4 Example configuration string

Realtime Information Backbone (RIB)
92 Programming Manual, 05/2023, A5E52046002-AB

 "CycleTimeInMicroseconds":
<CycleTime>,

// optional, the cycleTime the buffer is
updated in microseconds, can be added
optionally

 "Version": "<VersionOfApp>", // optional, the version of the data set can
be entered here

 "Symbols": // mandatory, at least one data symbol must
be provided

 {
 "Symbol_1" : // mandatory, name of the Symbol
 {
 "Offset": "<AddressOffset>", // mandatory, offset of the symbol in the

shared memory in bytes
 "Size": "<SizesInBytes>", // mandatory, size of the symbol in the

shared memory in bytes
 "Type": "<SymbolType>"
 },
 ...
 "Symbol_n" : // optional, another symbol
 {
 "Offset": "<AddressOffset>", // mandatory, offset of the symbol in the

shared memory in bytes
 "Size": "<SizesInBytes>", // mandatory, size of the symbol in the

shared memory in bytes
 "Type": "<SymbolType>" // mandatory, the type of the symbol (in

first version only simple value types are
allowed)

 }
 }
 }
 },
 "Requests": // optional, if the application requests

data, this data is described here
 {
 "Symbols": // mandatory, at least one data symbol must

be requested
 [
 "Symbol_1", // mandatory, name of the Symbol
 ...
 "Symbol_n" // optional, another symbol name
]
 }
}

Examples and tables
A.4 Example configuration string

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 93

A.5 RibReturnCode
The following table lists all API return codes and their meanings.

Value Error Description
0 OK Operation was successful.
100 NotConnected Connecting to RIB failed, the client could not establish a socket con‐

nection to RIB.
101 NotSignedIn Connecting to RIB failed, the client configuration was not accepted by

RIB.
102 NotSignedInInvalidJson Connecting to RIB failed, the client configuration was not accepted by

RIB, invalid JSON format.
103 NotSignedInAppAlreadyExists Connecting to RIB failed, the client configuration was not accepted by

RIB, application with same name already exists.
104 NotSignedInProvidedSymbolAlreadyE

xists
Connecting to RIB failed, the client configuration was not accepted by
RIB, one of the provided symbols already exists in RIB.

105 NotSignedInProvidedSymbolInvalidT
ype

Connecting to the RIB failed, the client configuration was not accep‐
ted by RIB, the type of a provided symbol is not supported.

106 SocketCommunicationError Operation failed because of an error while communicating with the
RIB app over a socket.

107 RibEnvironmentConfigNotAvailable Generating a lifetime buffer failed because RibEnvironmentConfig is
not available.
(for example missing maximum guaranteed lifetime of buffer ele‐
ments in lifetime buffer)

108 GenerateLifetimeBufferFailed Generating a lifetime buffer failed because internal allocation failed.
109 AddConfigurationError Adding a configuration failed because client is already connected to

RIB.
110 InvalidIPAddress The IPAddress is not valid.
111 InvalidConfigurationData ConfigurationData is not valid.
112 OperationNotAllowedWhenConnected Operation is not allowed when application is already connected.
113 OperationNotAllowedWhenSignedIn Operation is not allowed when application is already signed in.
114 AlreadySignedIn Already signed in.
200 SignOutTimeOut Disconnect from RIB failed, at least one consumer did not respond to

RIB within the given timeout and might still access the lifetime buffer.
201 SignOutUnknownError Disconnect from RIB failed, an unknown error happened and there

might still be some client accessing the lifetime buffer.
300 WriteSymbolsError Writing symbol data to shared memory failed.
301 WriteSymbolsInvalidParameter Writing symbol data to shared memory failed, invalid parameter for

data to write.
302 WriteSymbolsErrorInvalidSize Writing symbol data to shared memory failed, invalid size for data to

write.
303 AddingSymbolNameFailed Adding a symbol name failed, symbol name already exists.
400 ReadTimeOut Reading data failed because read time exceeded. Data may not be

consistent.
401 InvalidBufferElement Reading data failed because the last valid buffer element in the life‐

time buffer is out of bounds.
402 BufferNotWrittenByProducer Reading data failed because lifetime buffer has not been written yet

by the producer.

Examples and tables
A.5 RibReturnCode

Realtime Information Backbone (RIB)
94 Programming Manual, 05/2023, A5E52046002-AB

Value Error Description
403 DataNotAvailable Reading data failed because lifetime buffer is not available anymore,

e.g. it was closed by the producer that disconnected from RIB.
404 SharedMemoryNotAvailable Shared memory not found.
405 ReadError Accessing the reader failed, the lifetime buffer is not available for

reading.
406 SymbolNotFound Symbol not found.
407 InvalidBufferType Invalid buffer type
408 InvalidBufferVersion Invalid buffer version
600 InvalidVersion Version of RIB_App and library does not match.
601 MessageTooLong The message which is tried to be sent is too long

Examples and tables
A.5 RibReturnCode

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 95

Examples and tables
A.5 RibReturnCode

Realtime Information Backbone (RIB)
96 Programming Manual, 05/2023, A5E52046002-AB

List of abbreviations B
The following list explains the abbreviations used in this manual:

API Application Programming Interface
CPPYY Automatic Python-C++ bindings
DB Data Block
IndOS SIMATIC Industrial OS
IPC Industrial PC
JSON JavaScript Object Notation
LTB Lifetime Buffer
MFP Multi Functional Platform
PID Process Identification Number
POSIX Portable Operating System Interface
RIB Realtime Information Backbone
SHM Shared Memory
SWCPU Software Controller
TCP Transmission Control Protocol
UDT User Data Type
VMM Virtual Machine Manager
VNIC Virtual Network Interface Card

Realtime Information Backbone (RIB)
Programming Manual, 05/2023, A5E52046002-AB 97

List of abbreviations

Realtime Information Backbone (RIB)
98 Programming Manual, 05/2023, A5E52046002-AB

	Realtime Information Backbone (RIB)
	Legal information - Warning notice system
	Table of contents
	1 S7-1500/ET 200MP Documentation Guide
	1.1 S7-1500 / ET 200MP Documentation Guide
	1.2 SIMATIC Technical Documentation
	1.3 Tool support

	2 Introduction
	2.1 Operating instructions guide

	3 Safety information
	3.1 Security information
	3.2 Open-source software

	4 Product overview / Software description
	4.1 Integration of RIB
	4.2 Realtime data exchange
	4.2.1 Realtime data exchange concept
	4.2.2 Adjustments for correct realtime behavior
	4.2.3 Lifetime buffer
	4.2.4 Writing data to lifetime buffer
	4.2.5 Reading data from lifetime buffer
	4.2.6 Buffer example

	5 Software installation and uninstallation
	5.1 Installing RIB on CPU 1518(F)‑4 PN/DP MFP
	5.2 Installing RIB on Software Controller
	5.3 Compatibility rules
	5.4 Uninstalling RIB from Software Controller

	6 RIB_Application
	6.1 RIB_Application
	6.2 Diagnostic data
	6.3 General response
	6.4 Global RIB environment
	6.5 Connecting client applications
	6.6 Data processing and symbol matching
	6.7 Connection response
	6.8 Disconnecting client applications
	6.9 Programming example

	7 RIB Support Library
	7.1 Introduction
	7.2 Connecting a client to RIB
	7.3 Defining symbols
	7.4 Activating client
	7.5 Reading data from lifetime buffer
	7.6 Writing data to lifetime buffer
	7.7 Deactivating client
	7.8 Obtaining a string for RibReturnCode
	7.9 Registering and unregistering signal callback functions

	8 Programming using the SFC ODKP_ISC (SFC65490)
	8.1 Configuration
	8.2 "OP_INIT" mode
	8.2.1 "Init" operation
	8.2.2 ODKP_ISC "Initialize" mode parameters

	8.3 "OP_CONNECT" mode
	8.3.1 Connecting to RIB

	8.4 "OP_READ" mode
	8.4.1 Reading data from Linux applications

	8.5 "OP_WRITE" mode
	8.5.1 Writing data from Linux applications

	8.6 "OP_DISCONNECT" mode
	8.6.1 Disconnecting from RIB

	9 Commissioning (software)
	9.1 Cleaning lifetime buffer

	A Examples and tables
	A.1 Example project
	A.2 Application examples
	A.3 Allowed data types
	A.4 Example configuration string
	A.5 RibReturnCode

	B List of abbreviations

