SIEMENS

SIMATIC

STEP 7 (TIA Portal) Options
Open Development Kit 1500S
V2.5 SP4

Programming and Operating Manual

12/2023
ASE35253941-AH

Introduction

Security information

Product overview

Installation

S W N

Developing a CPU function
library for the Windows
environment

Developing a CPU function
library for the realtime
environment

Development of a C/C++
runtime application

Developing a PLCSIM
Advanced function library

Using example projects

General conditions

> | [0 N

Syntax Interface file
<project>.odk for CPU
function libraries

Code generator messages
for CPU function libraries

N

Helper functions for CPU
function libraries

Instructions for CPU
function libraries

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

A WArRNING

indicates that death or severe personal injury may result if proper precautions are not taken.

A cauTion
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

A WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens Aktiengesellschaft. The remaining trademarks in
this publication may be trademarks whose use by third parties for their own purposes could violate the rights of

the owner.
Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent

editions.
Siemens Aktiengesellschaft A5E35253941-AH Copyright © Siemens 2014 - 2023.
Digital Industries (® 01/2024 Subject to change All rights reserved

Postfach 48 48
90026 NURNBERG
GERMANY

Table of contents

1 INTFOQUCTION .ceieiieiiieiieiiiccneeeeeeeeeeeesrneeeeesseeesssnnnneesssssssssssnneeesssssssssssnneesssssssssssnnsrasesssssssssnnnsasesssssssssnnns 7
1.1 S7-1500/ET 200MP Documentation GUIAEcccviiiiiiiiiiiiiiiiiiiccceeeeeeeeeeee e, 8
1.1.1 S7-1500 / ET 200MP Documentation GUIEceviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e 8
1.1.2 SIMATIC Technical DOCUMENTAtION ..ccciiiiiiiiiiiiiieeeee e, 10
1.1.3 OO SUP PO - s 12
2 SECUNILY INFOIMATION ..ciiiiiiieieieiiiierccrrreeteeeeecssrnneeeeesssecsssnnneeeessssesssssnnreeessssssssssnnnaeesssssssssnnnnaesssssssns 13
2.1 Cybersecurity INfOrmMationoiiiiiiiiiii 13
2.2 Information about third-party software updatescccooiiiiiiiiiiiii, 14
2.3 Notes on protecting administrator aCCOUNTS ...cceeiiiiiiiiiiiiiii e, 14
3 PrOQUCT OVEIVIEW ccciiiiiiiicineriieeeiiiennsnnneeessssesssssnseeessssssssssnnsesessssssssssssssssssssssssssnssesessssssssssnnnasssssssssssnnns 15
3.1 INtroduction to ODK T5008Sciiiiiiiiiiiiee e 15
3.2 DevelopmeNt ENVITONMENTS c.cciiiiiieeeeeeeeeeee e 18
3.3 SF T el o] o Tot=To IV T IS SRR 19
4 INSTAIIATION 1o tiiieriiiieiicccereeee e reesrrneree e e e s e esssnnneeeesssssssssnnseesssssssssssnnsaeessssssssssnnsasasssssssssnnnrasssssssssssnnns 21
4.1 SYSTEM REGUITEIMENTS eeiiiiiiiiiiiiiiiiiieeeee ettt e aaaaaaaaaaaaaaeas 21
4.2 INSTAIIING ODK .. 23
4.3 Licensing ODK T500So 25

4.4 Subsequently integrating project template for Windows CPU function libraries in Visual
STUAIO 1ttt e aaaaans 27
4.5 UNINSTAIING ODK ... 27
5 Developing a CPU function library for the Windows environmentcccceveeervnneecinniicnsnnneecesnneennns 28
5.1 Creating a CPU fuNCtion [IDrary.......coeiiiiiiiiiiiiii 28
5.1.1 [=Te T T =T 0 =T) €U PUPPURN 28
5.1.2 Creating @ PrOJECT coeiiiiiiiiiiiiiiiieeeee et e aaaaaaaas 28
5.1.2.1 Solution Explorer structure: CH+ PrOJECT .ouiiiiiiiiiiiiiiiiiieieeeeeeeeee e e e 29
5.1.2.2 Solution Explorer structure: CH# ProJECT ..ouiviiiiiiiiiiiiiiieieeeeeeeeeeeee e 32
5.1.2.3 Solution Explorer structure: VB ProjeCtccviiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeee e 33
5.1.3 Generating @ CPU funCtion lIBraryoooviiiiiiiiiiiiii 33
5.1.4 Defining the runtime properties of a CPU function librarycccooeviiiiiiiiiiiiii, 34
5.1.5 Environment for loading or executing the CPU function librarycccccvvvvviiiiiiiii. 35
5.1.6 Defining functions and structures of a CPU function library......ccccccvvviiiiiiiiiiiiiii, 37
5.1.6.1 Using ODK_VARIANT @S PAramMeTer ..cccciiiiiiiiiiiiieeeeeeeeeee et 40
5.1.6.2 HanNdliNg StrINGS cooeeiieeieeeeee e, 41
5.1.6.3 Definition of the <Project>.0dk file. ... 42
5.1.6.4 Modifying the <Project>.0dK file ...cooviiiiiiiiiii 44
5.1.6.5 (@o] 0 0] 0 01=T] S PP TP PP PPTPPPPRRRR 46
5.1.6.6 ComMMENTS IN ViSUAI BASIC.eiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeee ettt e aeaaaaaaaaas 47
5.1.7 IMplementing fUNCHIONSooii i, 48

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 3

Table of contents

5.1.7.1 (CT= g 1T | g To) (TP PPN 48
5.1.7.2 Callback FUNCLIONS coieeieeeeeeeee 49
5.1.7.3 Implementing CUSTOM fUNCHIONS....coeee e 50
5.2 Transferring a CPU function library to the target SYStemevvveveviviriiririiiriiiiiiieeeeeenannns 51
5.3 Importing and generating an SCLfile in STEP 7....ooiiiiiiiiiiiie e 52
5.4 EXE@CULING @ FUNCLION 1t nan 54
5.4.1 [T To L1 0 o I (1T Tt o o =3 54
5.4.2 CalliNg fUNCHIONS .., 57
5.4.3 O Ta1 oo [TqTo I U Tq Vot To o T 60
5.5 (Y g Te) 1o 1= o1 U [1 T 62
5.5.1 Performing remote debUggingccceeeeeeeeeeeeeeeeeeeeeee e 63
6 Developing a CPU function library for the realtime environmentcccccovveriiiiiiiiiiiinnniciininiiiniinenns 65
6.1 Creating a CPU function lBrary.........oouviiiiiiiiiiieee e, 65
6.1.1 (Yo UL =T 0 a1 £ 65
6.1.2 CrEAtiNG @ PrOJECT coiiiiiiieeeeeee e e e e e e 65
6.1.3 Generating @ CPU function [ibraryooevviiiiiiiiieeceeeeee e, 68
6.1.4 Defining the runtime properties of a CPU function librarycccoeeeeeiiieiiiieieeeeeeeeeeeeeeeeee, 68
6.1.5 Environment for loading or running the CPU function librarycceeeeeeeieeeeeeiieeeeeeeeeeeee, 70
6.1.6 Defining functions and structures of a CPU function library........cccceeeeeeeiiieeeeeeieeeeeeeeeeeee, 71
6.1.6.1 Defining functions @ CPU function HOraryeeeeeeeieiiiiiiiiiiiiiiiiiieiiiieiiieeeeeeeeeeeeeeeeaaanenane 71
6.1.6.2 Use of ODK_CLASSIC_DB @S PArameterceecueeeiiiiieeeeeeiiieieeeeeeeeeiiiieteeeeeeeseiieeeeeeaeeeeennneeeees 74
6.1.6.3 HANAING STIHNGS oottt e e e e ettt e e e e e s ettt eeeeeesessnabttteeaeeeseaannseeneas 75
6.1.6.4 Definition of the <Project>.0dK file........ouiiiiiiiiiie e 76
6.1.6.5 Modifying the <Project>.00dK fil ... eaeeeeaaaaeeaeeaenane 78
6.1.6.6 COMIMIBNTS ¢ttt ettt e e e e et ettt e e e e e et etabbbaa e e e eeeeeeanbaaeeeeeeeeennnaan 78
6.1.7 IMPleMENTING FUNCHIONS . ..ciiiiiiiiiiii et e e et e e e e e ettt e e e e e e e e e neeeeees 80
6.1.7.1 GENETAI NOTES ittt ettt et et e e e e e e e e e e e et e e e e eeaaeeeas 80
6.1.7.2 CallDACK FUNCLIONS eiiiiiiiiie ettt e e e e e ettt e e e e e e s e atnteeeeaeeeaannns 81
6.1.7.3 IMplementing CUSTOM fUNCHIONS. ittt aeaaeeeeeeeeaeeeeseaeeensasennnes 82
6.1.7.4 DyNnamiC MemMOrY MaANAGEMENTuuuuueeneiiiiieniieenenaneteneeneeanenneeneeeeeenneeenssssssenssnssssssssssnsnnnsnnes 83
6.1.7.5 D= oYU Lo T I=1) PP PRPRPPPPPRPPRS 85
6.2 Transferring a CPU function library to the target Systemeevvvvviiiviiiieeeieiiieieereeeeeeeeeeens 88
6.3 Importing and generating an SCLfile iN STEP 7....coviiiiiiiiiiee e 90
6.4 EXECULING @ FUNCHION L. ittt aaeetasaesssesssassssssssssnsnnnnnnes 91
6.4.1 LOAAING FUNCHIONS L. ettt aeaaaeeataetassaessassssssssssssssssssnssnsnnnnnnes 91
6.4.2 (@] aTo R (¥ a et 4] o] o[- PP 93
6.4.3 UNIOAAING FUNCLIONS ... eeataaeaaeeeaseesesesssasssssssnssnsnnnnnnes 96
6.4.4 Reading the trace DUTFEN .o e 97
6.5 POSt MOIEM @NAIYSIS coeeeeeeeeeeeeee e e e e e nnnan 99
6.5.1 T T 0o [T 4 o 99
6.5.2 Execute poSt MOrtemM analySiS ..cceeeeeeeeeeeeeeeeeeeee e 101
7 Development of @ C/C++ runtime applicationccccvveeiiiiiiiiiiiiiiiiiiiiireeccrreecce s secaaneees 105
7.1 Install additional ECliPSe PIUGINS ...ceeeeeeeeeeeeeeeeee e 105
7.2 Create Cl/CH+ @PPliCATION ..ueeiiiiee ettt e e e e ettt e e e e e e bbaaeeeeeeeeas 106
7.2.1 Yo UL C=T 0 AT £ 106
7.2.2 Creating a C/C++ Runtime Application ProjeCt.........eeeiieeiiiiiieiiieeeeeeiiiiieeee e e eeeiieeeeee e 107
Open Development Kit 1500S V2.5 SP4

4 Programming and Operating Manual, 12/2023, A5E35253941-AH

Table of contents

7.2.3 EAItING ClCH+ COUB ottt e e ettt e e e e e e ettt e e e e e e e abbaeeeeeeeeean 109
7.2.4 Generate C/C++ runtime application........eiiiie it 111
7.3 Load C/C++ runtime application in the target SyStemooouvviiiiiieiiiiee e 111
7.3.1 CoONFIGUIING PUTTY Lottt e e e e e ettt e e e e e e sttt et e e e e e e sanabaaeeeeaeeean 111
7.3.2 CommisSioNiNG C/CH+ RUNTIME .oiiiiiiiiiiiiiiiee ettt e e ettt e e e e e e eeeeeeeas 113
7.3.3 Set up new connection to the target system in EClipSe.....coocviiiiiiieiiiiiiiiiiiieeeeeeiieeeeeen 114
7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse 117
7.3.5 Load and debug C/C++ runtime application in the target system via Eclipsecccccee.... 117
7.4 Execute C/C++ runtime @appliCationeiiiieiiiiiiiiiee e 119
7.4.1 Start application via Secure shell ... 119
8 Developing a PLCSIM Advanced function lIBraryccccceeeiiiiiiiiiineniiinniniinnineeecnnnncnseseessssessnnns 120
8.1 Creating a PLCSIM Advanced function library........eeeeeieiiiiiiiiiiiiie 120
8.1.1 REQUITEIMIEBIITS ...eieieeeeeeeett ettt e e ettt e e e e e e ettt et e e e e e ettt e eeeeeessnnbbaeeeeaaeeean 120
8.1.2 Creating a PLCSIM Advanced function library with Visual Studio..........cccevvvveiiiiiiiiiininnnn. 120
8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced..........ccceeeeennnnnnn. 122
8.3 Defining the runtime properties of a PLCSIM Advanced function libraryccccccceeeiee. 123
8.4 Definition of the <Project>.0dK file ... 124
8.5 Modifying the <Project>.0dK fileccoviiiiiiiii 125
8.6 Editing PLCSIM Advanced function library......ccccceeiiiiiiiii 126
8.7 Generating a PLCSIM Advanced function library.........ccccvviiiiiiiiiiiiiiic 127
8.8 EXeCcUting @ fUNCLION ...cciiiii 128
8.9 DebUGGING ClCH+ COUR cunuiiiiiiitiee ettt e e e ettt e e e e e e sttt et e e e e e s enbbaeeeeeeeeeas 128
9 USING @XAMPIE PrOJECLS ..cceveiiiiiiiiiiiiiiiiiiiieeeeieteeeeeeeeeeeeeeeeeeeeeeesesesessesssssesses 129
A LCT=T =T | I elo] o e 134 To] o -3 130
A Number of loadable CPU function librarieseeeiiiiiiiiiiiiiiieee e 130
A.2 COMPATIDIITY tevreieiiiiiiiiiieie aaaaaaaaaeeas 131
B Syntax Interface file <project>.odk for CPU function libraries.........ccccceeeeeeeeemeeemenmnmeeeeeeeneeenneennennnns 132
B.1 DATA LY PS ettt ettt e et e e et e et e e et e eeeaa e aeans 132
B.2 PaFAMETEIS .ottt e e ettt e e e e et e e e e e e eaaaa 134
C Code generator messages for CPU function libraries.........cccccccveceueemeeeeeeeeeeeneennennnnnneenenneseeensensennnes 136
C.1 Error messages of the code generatorcvvvvviiiiiiiiiiii, 136
C.2 Warnings of the COdE gENEIATONuuuuuiiiiiiiiiiiiiiiiittiieiiiieeeeeeeaeeeeaeaeeeeeeaeeseeeeessessssssssesraaaee 138
D Helper functions for CPU function librari@s..........ccceeeiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeseeeeeeeeeessessssssssenes 139
D.1 C+ NelPer FUNCLIONS...ciiiiiiiieeceeeeeeeee e 139
D.2 CHIVB Nelper fUNCLIONS ..ttt e e e e et eeee e 142
E Instructions for CPU function libraries..........cccouueiiiiiiiiiiiiiiiiiiiiiiieeciiinnceeccce e 145
E.1 "LOAA" INSTIUCTION L.ettiiitie ettt ettt e e e e e ettt et e e e e s ettt et e e e e e s eabbbbeeeeas 145
E.2 "UNI0@A" INSTIUCTION L.tttiiieieiiie et e ettt e e e e s ettt e e e e e e e aebbbaeeees 145

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 5

Table of contents

Open Development Kit 1500S V2.5 SP4
6 Programming and Operating Manual, 12/2023, A5E35253941-AH

Introduction 1

Purpose of the documentation

This documentation describes the specific characteristics of the Open Development Kit (ODK)
V2.5 SP3.

Definitions and naming conventions
The following terms are used in this documentation:
e CPU: Designates the products named under "Scope of documentation”.
¢ ODK: Open Development Kit
e MFP: Multifunctional platform
* Windows: Designates the Microsoft operating systems supported by ODK.

e STEP 7: For the designation of the configuring and programming software, we use "STEP
7" as a synonym for the version "STEP 7 (TIA Portal) V13 SP1 and higher".

e DLL: Dynamic Link Library
e SO: Shared Object
» Visual Studio: Microsoft Visual Studio

e TCF: Target Communication Framework

Basic knowledge required

This documentation is intended for engineers, programmers, and maintenance personnel
with general knowledge of automation systems and programmable logic controllers.

To understand this documentation, you need to have general knowledge of automation
engineering. You also need basic knowledge of the following topics:

e SIMATIC Industrial Automation System

* PC-based automation

e Using STEP 7

¢ Use of Microsoft Windows operating systems

¢ Programming with C/C++, C#, Visual Basic

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 7

Introduction

1.1 S7-1500/ET 200MP Documentation Guide

Validity of the documentation
This documentation applies to use of ODK with the following products:
e CPU 1505SP (T/FITF)
e CPU 1507S (F)
e CPU 1508S (F)
e CPU 1518-4 PN/DP MFP (F)

Notes

Please also observe notes labeled as follows:

Note

A note contains important information on the product described in the documentation, on
the handling of the product or on the section of the documentation to which particular
attention should be paid.

1.1 S7-1500/ET 200MP Documentation Guide

1.1.1 S7-1500/ ET 200MP Documentation Guide

The documentation for the SIMATIC S7-1500 automation system and the ET 200MP
distributed 1/0 system is arranged into three areas.

This arrangement enables you to access the specific content you require. Changes and
supplements to the manuals are documented in a Product Information.

You can download the documentation free of charge from the Internet
(https://support.industry.siemens.com/cs/ww/en/view/109742691).

Basic information

The System Manual and Getting Started describe in detail the configuration, installation,
wiring and commissioning of the SIMATIC S7-1500 and ET 200MP systemes.

The STEP 7 online help supports you in the configuration and programming.
Examples:

* Getting Started S7-1500

e S7-1500/ET 200MP System Manual

¢ Online help TIA Portal

Open Development Kit 1500S V2.5 SP4
8 Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.industry.siemens.com/cs/ww/en/view/109742691

Introduction

Device information

1.1 S7-1500/ET 200MP Documentation Guide

Equipment manuals contain a compact description of the module-specific information, such
. as properties, wiring diagrams, characteristics and technical specifications.

Examples:

Equipment Manuals CPUs

Equipment Manuals Interface Modules
Equipment Manuals Digital Modules
Equipment Manuals Analog Modules
Equipment Manuals Communications Modules
Equipment Manuals Technology Modules

Equipment Manuals Power Supply Modules

General information

The function manuals contain detailed descriptions on general topics relating to the SIMATIC
S7-1500 and ET 200MPsystems.

Examples:

Function Manual Diagnostics

Function Manual Communication

Function Manual Motion Control

Function Manual Web Server

Function Manual Cycle and Response Times
PROFINET Function Manual

PROFIBUS Function Manual

Product Information

Changes and supplements to the manuals are documented in a Product Information. The
Product Information takes precedence over the device and system manuals.

You can find the latest Product Information on the S7-1500 and ET 200MP systems on the
Internet (https://support.industry.siemens.com/cs/de/en/view/68052815).

Manual Collection S7-1500/ET 200MP

The Manual Collection contains the complete documentation on the SIMATIC S7-1500
automation system and the ET 200MP distributed 1/0 system gathered together in one file.

You can find the Manual Collection on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/86140384)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 9

https://support.industry.siemens.com/cs/de/en/view/68052815
https://support.industry.siemens.com/cs/ww/en/view/86140384

Introduction

1.1 57-1500/ET 200MP Documentation Guide

SIMATIC S7-1500 comparison list for programming languages

1.1.2

The comparison list contains an overview of which instructions and functions you can use for
which controller families.

You can find the comparison list on the Internet
(https://support.industry.siemens.com/cs/ww/en/view/86630375).

SIMATIC Technical Documentation

Additional SIMATIC documents will complete your information. You can find these
documents and their use at the following links and QR codes.

The Industry Online Support gives you the option to get information on all topics. Application
examples support you in solving your automation tasks.

Overview of the SIMATIC Technical Documentation

10

Here you will find an overview of the SIMATIC documentation available in Siemens Industry
Online Support:

Industry Online Support International
(https://support.industry.siemens.com/cs/iww/en/view/109742705)

Watch this short video to find out where you can find the overview directly in Siemens Indus-
try Online Support and how to use Siemens Industry Online Support on your mobile device:

230 Quick introduction to the technical documentation of automation products per
5. video (https://support.industry.siemens.com/cs/us/en/view/109780491)

YouTube video: Siemens Automation Products - Technical Documentation at a
Glance (https:/lyoutu.be/TwLSxxRQQsA)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/109742705
https://support.industry.siemens.com/cs/us/en/view/109780491
https://youtu.be/TwLSxxRQQsA

Introduction

Retention of the documentation

1.1 S7-1500/ET 200MP Documentation Guide

Retain the documentation for later use.

For documentation provided in digital form:

1. Download the associated documentation after receiving your product and before initial
installation/commissioning. Use the following download options:

— Industry Online Support International: (https://support.industry.siemens.com)

The article number is used to assign the documentation to the product. The article
number is specified on the product and on the packaging label. Products with new,
non-compatible functions are provided with a new article number and documentation.

— D link:

Your product may have an ID link. The ID link is a QR code with a frame and a black
frame corner at the bottom right. The ID link takes you to the digital nameplate of your
product. Scan the QR code on the product or on the packaging label with a smartphone
camera, barcode scanner, or reader app. Call up the ID link.

2. Retain this version of the documentation.

Updating the documentation

The documentation of the product is updated in digital form. In particular in the case of
function extensions, the new performance features are provided in an updated version.

1. Download the current version as described above via the Industry Online Support or the ID

link.

2. Also retain this

mySupport
With "mySupport”

version of the documentation.

you can get the most out of your Industry Online Support.

Registration

You must register once to use the full functionality of "mySupport". After registra-
tion, you can create filters, favorites and tabs in your personal workspace.

Support re-
quests

Your data is already filled out in support requests, and you can get an overview of
your current requests at any time.

Documentation

In the Documentation area you can build your personal library.

Favorites

You can use the "Add to mySupport favorites” to flag especially interesting or
frequently needed content. Under "Favorites”, you will find a list of your flagged
entries.

Recently viewed
articles

The most recently viewed pages in mySupport are available under "Recently
viewed articles".

CAx data

The CAx data area gives you access to the latest product data for your CAx or CAe
system. You configure your own download package with a few clicks:

* Product images, 2D dimension drawings, 3D models, internal circuit diagrams,
EPLAN macro files

e Manuals, characteristics, operating manuals, certificates

¢ Product master data

You can find "mySupport” on the Internet. (https://support.industry.siemens.com/My/ww/en)

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023,

A5E35253941-AH 11

https://support.industry.siemens.com/
https://support.industry.siemens.com/My/ww/en

Introduction

1.1 57-1500/ET 200MP Documentation Guide

Application examples

1.1.3

The application examples support you with various tools and examples for solving your
automation tasks. Solutions are shown in interplay with multiple components in the system -
separated from the focus on individual products.

You can find the application examples on the Internet.
(https://support.industry.siemens.com/cs/ww/en/ps/ae)

Tool support

The tools described below support you in all steps: from planning, over commissioning, all
the way to analysis of your system.

TIA Selection Tool

SINETPLAN

See also

12

The TIA Selection Tool tool supports you in the selection, configuration, and ordering of
devices for Totally Integrated Automation (TIA).

As successor of the SIMATIC Selection Tools , the TIA Selection Tool assembles the already
known configurators for automation technology into a single tool.

With the TIA Selection Tool , you can generate a complete order list from your product
selection or product configuration.

You can find the TIA Selection Tool on the Internet.
(https://support.industry.siemens.com/cs/ww/en/view/109767888)

SINETPLAN, the Siemens Network Planner, supports you in planning automation systems and
networks based on PROFINET. The tool facilitates professional and predictive dimensioning of
your PROFINET installation as early as in the planning stage. In addition, SINETPLAN supports
you during network optimization and helps you to exploit network resources optimally and to
plan reserves. This helps to prevent problems in commissioning or failures during productive
operation even in advance of a planned operation. This increases the availability of the
production plant and helps improve operational safety.

The advantages at a glance
* Network optimization thanks to port-specific calculation of the network load
* Increased production availability thanks to online scan and verification of existing systems

e Transparency before commissioning through importing and simulation of existing STEP 7
projects

» Efficiency through securing existing investments in the long term and the optimal use of
resources

You can find SINETPLAN on the Internet
(https://new.siemens.com/qglobal/en/products/automation/industrial-
communication/profinet/sinetplan.html).

PRONETA Professional (https://support.industry.siemens.com/cs/ww/en/view/109781283)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.industry.siemens.com/cs/ww/en/ps/ae
https://support.industry.siemens.com/cs/ww/en/view/109767888
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://new.siemens.com/global/en/products/automation/industrial-communication/profinet/sinetplan.html
https://support.industry.siemens.com/cs/ww/en/view/109781283

Security information

Notes on Open Source Software

You can download and install various development tools of the Open Source project
MinGW32 as a supplement to the product. Note that these components are optional and are
provided and distributed by the MinGW32 project or other licensors under different licenses,
which you can view on the project homepage or on the specific packages.

2.1 Cybersecurity information

Siemens provides products and solutions with industrial cybersecurity functions that support
the secure operation of plants, systems, machines, and networks.

In order to protect plants, systems, machines, and networks against cyber threats, it is
necessary to implement — and continuously maintain — a holistic, state-of-the-art industrial
cybersecurity concept. Siemens’ products and solutions constitute one element of such a
concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation)
are in place.

For more information on protective industrial cybersecurity measures for implementation,
please visit (https://www.siemens.com/globallen/products/automation/topic-areas/industrial-
cybersecurity.html).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure to
cyber threats.

To stay informed about product updates at all times, subscribe to the Siemens Industrial
Cybersecurity RSS Feed under
(https://Inew.siemens.com/globallen/products/services/cert.html).

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 13

https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://www.siemens.com/global/en/products/automation/topic-areas/industrial-cybersecurity.html
https://new.siemens.com/global/en/products/services/cert.html

Security information

2.2 Information about third-party software updates

2.2 Information about third-party software updates

This product contains third-party software. Siemens accepts liability with respect to
updates/patches for the third-party software only when these are distributed by Siemens in
the context of a Software Update Service contract or officially approved by

Siemens. Otherwise, updates/patches are installed at the user's own risk. You can find more
information in our Software Update Service (http://w3.siemens.com/mcms/automation-
software/en/software-update-service/Pages/Default.aspx).

2.3 Notes on protecting administrator accounts

14

A user with administrator rights has extensive access and manipulation possibilities.

Therefore, make sure that the administrator account is adequately protected to prevent
unauthorized changes. To do this, set secure passwords and use a standard user account for

regular operation. Other measures, such as the use of security policies, should be applied as
required.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx
http://w3.siemens.com/mcms/automation-software/en/software-update-service/Pages/Default.aspx

Product overview 3

3.1 Introduction to ODK 1500S

Overview

ODK is a development kit that allows you to program custom functions and generate files
that STEP 7 can call directly.

ODK serves as a tool for:
¢ Windows environment
— Execution on your Windows PC
— Use of resources of your Windows PC

— Use of operating system functions and system resources with access to external
hardware and software components

¢ Realtime environment

— Execution on your CPU

— Synchronous function call (algorithmic, controllers)
Calling multiple applications under Windows or in the realtime environment is possible.
You must use the CPU function libraries in the STEP 7 program.

You can use C/C++ runtime applications running in SIMATIC S7-1500 MFP C/C++ Runtime
independently of the STEP 7 program.

With the PLCSIM Advanced function libraries, you can run a project in a simulated
environment instead of on a hardware or software CPU.

Structure and design of an CPU function library

ODK supports the interface for calling custom high-level language programs from the
controller program of the CPU.

ODK supports the following templates:

e Templates in different programming languages for Microsoft Visual Studio. This allows
you to generate a DLL file. The C++, C# and Visual Basic programming languages are
supported.

* Atemplate for programming in Eclipse. This allows you to generate an SO file. ODK also
supplies a class library for Eclipse. The C++ programming language is supported.

You can create a CPU function library for both the Windows and the real-time environment.
The programming languages mentioned are available to you for this purpose.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Product overview

3.1 Introduction to ODK 1500S

16

You can run the ODK program in the following ways:

» Synchronous, i.e. executed as part of the CPU cycle (executed in the realtime
environment).

» Asynchronous, i.e. started by the CPU program and ended in the background (executed in
the Windows environment).

You can run CPU function libraries both under Windows (DLL) as well as in the real-time core
of the CPU (SO). You call the functions of the DLL or SO file using instructions in the user
program.

The CPU can perform functions in libraries that can be loaded dynamically. There are several
functions possible in a CPU function library. Specific function blocks are available for a CPU
function library:

* Loading and unloading of the CPU function library
* Ineach case, a specific function block for calling a function.

The following illustration provides a schematic overview of how CPU function libraries work
and run on a PC. The illustration applies to the S7-1500 Software Controller.

PC

Windows Realtime

CPU (—— ngd —> CPU

Function library Function library

Function 1 FB Function 1
{———— function 1 ——>

Function 2 FB Function 2
\1/‘:' function 2 :'\V
L] b
Unload

Figure 3-1 Running a CPU function library on a PC

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Product overview

3.1 Introduction to ODK 1500S

Structure and design of a C/C++ runtime application

c .
/C++ Runtime Application:

C/C++ A
C/C++ A

Pplication
Pplicatic)n

HMI

B PROFINET

B PROFINET

ET 200MP

ET 200SP T

B PROFINET

Figure 3-2 Overview of the performance segment

You can use C/C++ runtime applications to implement parallel processes to the STEP 7 user
program, for example, for pre-processing or transmitting data via Industrial Ethernet. A CPU
can perform several tasks at the same time. The complexity of functions is reduced and the
time required for implementation is reduced.

You can reuse existing C/C++ algorithms. In order to continue using existing technological
know-how, you can integrate the existing C/C++ code via the Open Development Kit as C/C++
runtime applications in the SIMATIC S7-1500 MFP C/C++ Runtime.

Once you integrate the C/C++ sources, you can execute them on the CPU.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 17

Product overview

3.2 Development environments

3.2

The following options are available for communication between CPU Runtime and C/C++
Runtime:

¢ On Open User Communication with the "TSTEND" and "TRCV" function blocks.
¢ About the Communication protocol OPC UA.

S7-1500 MFP

C++RT

TCP Socket
Communication

TSEND / TRCV

C++ Runtime
Application

- Function 1

Function 2

OPC UA Server OPC UA Client

Figure 3-3 ~ Communication between CPU Runtime and C/C++ Runtime

Development environments

The following development environments for creating an ODK project are available for
selection.

* Microsoft Visual Studio for CPU function libraries for the Windows environment (DLL file)
and PLCSIM Advanced function libraries.

» Eclipse CPU function libraries for the realtime environment (SO file) and C/C++ runtime
applications.

Microsoft Visual Studio as a development environment

18

Use Microsoft Visual Studio. To help you develop a CPU function library, a template for a
Microsoft Visual Studio project is included in the installation of ODK 1500S. The ODK

template can be found under the entry of the corresponding programming language when a
new project is created.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Product overview

3.3 Basic procedure

Eclipse as a development environment

Use Eclipse. To help you develop a C/C++ runtime application, a template for an Eclipse
project is included in the installation of ODK 1500S. The template can be found in the folder
"ODK 1500S Templates".

3.3 Basic procedure

The following sections describe the development tasks and procedures for the development
and execution of a CPU function library/C/C++ runtime application:

¢ Developing a CPU function library for the Windows environment (Page|28)
¢ Developing a CPU function library for the realtime environment (Page 65)
* Development of a C/C++ runtime application (Page 105)

¢ Developing a PLCSIM Advanced function library (Page|120)

Implement o Implement o Implement PLCSIM Advanced function library 0
C/C++ runtime application | CPU function library | I

Create files | Create files |
C/C++ I |
runtime DLL .OI' SO SCL || |mport Write 0
application file file to STEP 7 user piogram |
User program
Load to target system | Load to target system I

Load to target system |
]

Figure 3-4 Overview of the development steps

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 19

Product overview

3.3 Basic procedure

Overview of the development steps

Result

20

To develop and execute a C/C++ runtime application/CPU function library, follow these steps:

1.

ok wN

Implement your function.

— Implement your function for CPU function libraries in Visual Studio (DLL file) or Eclipse
(SO file).

— Implement your function for C/C++ runtime application in Eclipse.
Create the C/C++ runtime application, DLL or SO file and the SCL file.
Import the SCL file into STEP 7.

Write your user application in STEP 7.

Load the user program in the CPU and the C/C++ runtime application or DLL or SO file into
the target system.

Your C/C++ runtime application/CPU function library is loaded in the target system.

The CPU function library is loaded and executed by the user program in STEP 7.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Installation

4.1 System Requirements

Requirements

Your PC must meet the following system requirements in order to use the ODK:

Category

Requirements

Operating system

¢ Microsoft Windows 8.1, 64-bit
¢ Microsoft Windows 10, 64-bit
* Microsoft Windows 11, 64-bit

Note: Installation on Windows 8.1

Before installing ODK 1500S with the Windows 8.1 operating system, ensure that the Win-
dows Knowledge Base article "KB2919355" is installed on the PC.

Processor and memory

PC system:

e At least systems with Intel Core i5 processor
* 1.2 GHz or higher

* Atleast 4 GB of RAM

Mass storage

Depending on the already installed components, you need up to 3 GB of free space on the
hard disk C:\.

The exact amount of space required is displayed during the installation.
Note: The setup files are deleted when the installation is complete.

Operator interface

Color monitor, keyboard and mouse or another pointing device (optional) supported by
Microsoft Windows

SIMATIC software

e SIMATIC STEP 7 Professional (TIA Portal) V15 or higher

Additional software

Not included in the product package:

¢ Java Runtime 32-bit as of V1.7 (for Eclipse)
e Microsoft Visual Studio 2015

* Microsoft Visual Studio 2017

e Microsoft Visual Studio Community 2017

* Microsoft Visual Studio 2019

e Microsoft Visual Studio 2022

* Eclipse plugins (for MFP use)

e SSH Client, for example PuTTY (for MFP use)

* Microsoft Development Tool: Download Center (https://www.microsoft.com/en-
us/download/developer-tools.aspx)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

21

https://www.microsoft.com/en-us/download/developer-tools.aspx
https://www.microsoft.com/en-us/download/developer-tools.aspx

Installation

4.1 System Requirements

Note

.NET version for the Windows environment

When creating a C# project, the target framework is set as ".NET 4.8" (e.qg.
"C# Console Application" under Visual Studio 2019/2022).

If you need a new .NET framework, ensure that a .NET version = the target framework version
set on the target device is installed.

ODK 1500S V2.5 SP4 is compatible with the following devices (support for loadable function
libraries depends on the device):

CPU function library CPU function library CIC++ runtime applica-
DLL (Windows) SO (Real-time) tion
CPU 1505SP (FITITF) as of V2.5 Yes Yes No
CPU 1507S (F) as of V2.5
CPU 1508S (F) as of V2.6
CPU 1518-4 PN/DP MFP (F) up to Firm- No Yes Yes
ware V2.6.1
CPU 1518-4 PN/DP MFP (F) Firmware
V2.8
CPU 1518-4 PN/DP MFP (F) Firmware
V2.9
PLCSIM Advanced as of V3.0 no* Yes No

* PLCSIM Advanced has its own function library type "PLCSIM Advanced Function Library DLL (Windows)"

22

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Installation

4.2

Requirements

Procedure

4.2 Installing ODK

Installing ODK

To install the ODK, insert the Installation DVD. Follow the instructions of the setup program.

If the setup program does not start automatically, open the "Start.exe" file on the Installation
DVD manually with a double-click.

You need administrator rights for this procedure.

It is possible to operate different ODK major versions (e.g. V2.0 and V2.5) on one PC at the
same time.

It is not possible to operate the major version and service pack (e.g. V2.5 and V2.5.4) on one
PC at the same time.

Note
Close applications before a repair installation/uninstall

Close all applications (especially ODK-related applications), before performing the repair
installation/uninstall.

Note
Use of antivirus programs
To avoid problems during installation, disable the antivirus program during installation or

close the directory "C:\Program Files\Common Files\Siemens\Automation\Siemens Installer
Assistant" as well as the directory in which the Start.exe of the antivirus program is located.

If you want to use the Microsoft Visual Studio development environment, we recommend
that you install this before ODK.

To install ODK, follow these steps:

1. Start the "Start.exe" file from the Installation DVD manually with a double-click.
2. Select the language for performing the installation.

3. Confirm with "Next".

If you want to upgrade an installed version V2.5, V2.5.1, V2.5.2 or V2.5.3 to V2.5.4,
confirm with "Change".

4. Click "Next" to confirm the list of components that are to be installed.
The check mark for Automation License Manager (ALM) cannot be removed.

5. Follow the instructions of the installation wizard.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 23

Installation

4.2 Installing ODK

Result

24

6. Confirm the installation dialog with the "Install" button.

7. Choose whether you want to carry out the licensing (Page|25) during the installation or at a
later time.

The installation is complete. All product languages are installed by default during the
installation process. The installation creates a shortcut in the Start menu of Windows.

Note
Directory and workspace path for V2.5 SP4

The name of the directory and the path for the V2.5 workspace are retained after the update
to V2.5 SP4.

Example:
C:\Program Files (x86)\Siemens\Automation\ODK1500S\V2.5
C:\Program Data\Siemens\Automation\ODK1500S5\V2.5

The setup program installs the following components:

¢ "Eclipse" development environment for the development of a CPU function library for the
realtime environment or a C/C++ runtime application

* Project templates for Eclipse
— C++ Project for CPU function library (CPU Runtime)
— C++ Project for MFP Linux application (CPU 1518 MFP - up to FW v2.6.1)
— C++ Project for MFP Linux application (CPU 1518 MFP FW v2.8)
— C++ Project for MFP Linux application (CPU 1518 MFP FW v2.9 or higher)
* Project templates for Visual Studio
— For the Windows CPU function library
— For the PLCSIM function library
¢ Tool to integrate Visual Studio templates
¢ Installation script for MinGW32
¢ Code generator
¢ Online help
¢ HelpStarter tool
¢ Automation License Manager, if this is out of date or was not yet installed

* Certificate of license (Certificate of License)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Installation
4.3 Licensing ODK 1500S

Note
Eclipse workspace folder
If you have installed ODK and the Software Controller on the same IPC, move the Eclipse

Workspace from the path "%ProgramData%\Siemens\Automation\ODK1500S\V2.5" to, for
example, "C:\ODK1500S V2.5 Workspace".

4.3 Licensing ODK 1500S

To create CPU function libraries, the software requires a product-specific license key that you
install with the Automation License Manager. Each SIMATIC software product for automation
that is subject to license (e.g., STEP 7) has its own license key. You must install the license key
for each product.

Working with the Automation License Manager

The Automation License Manager is a product of Siemens AG and is used for managing
license keys. The Automation License Manager is supplied on the installation data medium of
this product by default and is transferred automatically during the installation process.

Software products that require license keys for operation register the requirement for license
keys automatically in the Automation License Manager. If the Automation License Manager
finds a valid license key for this software, the software can be used according to the
conditions of use associated with this license key.

Certificate of license

A Certificate of License is included in the scope of delivery. It contains your unique license
number. The license certificate serves as proof that you have a valid license key. Store this
certificate in a safe place.

Note
Obtaining a replacement license key

You must have a valid certificate of license to get a replacement license key.

Recovering the license key in case of defective mass storage

If a error has occurred on the mass storage or USB flash drive containing your license key file,
contact your Siemens representative (https://support.industry.siemens.com/cs/ww/en/). Make
sure you have your certificate of license available for this.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 25

https://support.industry.siemens.com/cs/ww/en/

Installation

4.3 Licensing ODK 15005

License key

The license key for ODK 1500S is located on a USB flash drive that is included in the scope of
delivery.

If the USB flash drive containing the license key is lost or damaged, you can contact Support
(https:/Isupport.industry.siemens.com/cs/ww/en/) to obtain a new license key. You need the
certificate of license to receive a replacement license key from Siemens.

Handling of license key for download version of ODK 1500S

The download of ODK 15005 allows you to access ordered license keys.

For access, you need:

e A personalized login that you can use to fetch all license keys assigned to "your company".

¢ Ananonymous login that you can use to fetch an individual license key, and the
corresponding license certificate. This document contains all data required for the
anonymous download.

Additional information on the license key and the download is available in the Automation
License Manager manual (https://support.industry.siemens.com/cs/ww/en/view/102770153).

Transferring the license key
The license key can be transferred during the installation or afterwards.

If the USB flash drive with the relevant license key is inserted in the USB port of the PC at the
start of installation, the license key will be transferred automatically during the installation. If
the USB flash drive is not inserted at the start of installation, you have three options for
installing the license key subsequently:

* To transfer the license key manually from a network computer or other storage medium,
select the "Manual license transfer" button.

¢ Insert the USB flash drive with license key, and select the "Retry license transfer" button.
The Automation License Manager opens in order to transfer the license key.

¢ If you do not want to install a license key, select the "Skip license transfer" button.

Note
Working without license key

For legal reasons, a valid license key is required for this product.

If no valid license key is present on your PC, you cannot generate any projects. An error
message will inform you at regular intervals that no valid license key is present.

Open Development Kit 1500S V2.5 SP4
26 Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.industry.siemens.com/cs/ww/en/
https://support.industry.siemens.com/cs/ww/en/view/102770153

Installation

4.4 Subsequently integrating project template for Windows CPU function libraries in Visual Studio

Manually transferring the license key subsequently

4.4

Result

4.5

Procedure

Result

A message is displayed if you generate a project for a CPU function library without transferred
license key.

To manually transfer the license key for ODK subsequently, follow these steps:

1. Start the installation of ODK 1500S with administrator rights.

2. Inthe "License Transfer" section, select the "Manual license transfer" button.
A dialog box for synchronization of the license opens.

3. Select the destination and the source of the license key.

4. To transfer the license key, click the "Synchronize" button.

The license key is transferred.

Subsequently integrating project template for Windows CPU
function libraries in Visual Studio

When Visual Studio is already installed, the project template for Windows CPU function
libraries is automatically installed during the ODK installation. If Visual Studio is installed
later, you have the following options to integrate the project template for Windows CPU
function libraries:

e Perform a repair installation of ODK.

¢ Run the integration manually. Call your ODK installation file
"ODK_VSTemplate_Integration.exe" in the "bin" folder.

The project templates for Windows CPU function libraries is installed for Visual Studio. You
can find this under the corresponding programming language.

Uninstalling ODK

To remove ODK from your PC, follow these steps:
1. Close all running programs, especially ODK-related applications.

2. Select the menu "Control Panel > Programs and Features”, select the entry "SIMATIC ODK
1500S" and click "Uninstall".

3. Select the "Uninstall" command in the shortcut menu.
A dialog box for uninstalling appears.

4. Follow the steps for uninstalling.

ODK is removed.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 27

Developing a CPU function library for the Windows

environment

5.1

5.1.1

5.1.2

Procedure

28

Creating a CPU function library

Requirements

5

The Microsoft Visual Studio development environment is not included in the scope of delivery

of ODK.

You can find the Download Center for Microsoft development tools in the Internet
(https:/lwww.microsoft.com/en-us/download/developer-tools.aspx).

Creating a project

To help you develop a CPU function library, a project template for CPU function libraries for a
project in Visual Studio is included in the installation of ODK 1500S. The template supports

32-bit and 64-bit applications.

To create a project in Microsoft Visual Studio using the project template, follow these steps:

1. Open Microsoft Visual Studio as a development environment.

2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

File Edit View Build Debug Team Data Tools Test Window Help
New P | iG] Project. Ctrl+Shift=N
Open * | '@ Web Site.. Shift+Alt+MN
Close ia Team Project...
] File... Ctrl+N
Save Team ODK [Results] Ctrl+S Project From Existing Code...
il Save Al Ctrl+Shift+5
Crnrra T Aantral "
Figure 5-1 Creating a new project in Visual Studio

3. Select your preferred programming language and the corresponding project template (C++,

C# or VB).
4. Enter a project name.

5. Click "OK" to confirm.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

https://www.microsoft.com/en-us/download/developer-tools.aspx

Developing a CPU function library for the Windows environment
5.1 Creating a CPU function library

Result
The CPU function library is created using the project template and sets the following project
settings:
e Project settings for generating the DLL file
¢ Automates the generation of the DLL and SCL file
The project template set ups various structures depending on the programming language:
e C++ project (Page 29)
» C# project (Page 32)
* VB Project (Page|33)
5.1.2.1 Solution Explorer structure: C++ project
Folder / file Description
Wi <project>
I Definition File
L <project>.odk ODK interface description
L <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

Although the file is not part of the project template, the code
generator processes the file.

Wl Generated Files Files from this folder may not be edited!
L] ODK_Types.h Definition of the ODK base types
L] ODK_Functions.h Function prototypes
L] ODK_Execution.cpp Implementation of the "Execute” method
Wi Header Files Header file
Wl ODK Helpers Files from this folder may not be edited!
L] ODK_CpuReadData.h Definition: Help functions for reading the data blocks
L] ODK_CpuReadData.cpp Implementation: Help functions for reading the data blocks

L] ODK_CpuReadWriteData.h | Definition: Help functions for reading/writing the data blocks

| Implementation: Help functions for reading/writing the data
ODK_CpuReadWriteData.cpp blocks

L] ODK_StringHelper.h Definition: Help functions S7 strings | W strings
L] ODK_StringHelper.cpp Implementation: Help functions S7 strings / W strings

Wl Resource Files

L <project>.rc

W Source Files Source Files
L <project>.cpp Function code
L dlimain.cpp Implementation of the "dlimain" file

Wl sTEP7 Files from this folder may not be edited!
L] <project>.scl S7 blocks

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 29

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

The C++ Native project template supports the following applications:

Configuration and platform

Visual Studio Version older than 2015

Visual Studio 2015 and later

Debug Win32 Yes Yes
Release Win32 Yes Yes
Debug x64 To be created manually Yes
Release x64 To be created manually Yes
Note
Configuration of C/C++ Redistributables
Since the software controller contains the C/C++ redistributables for the release
configuration, build the CPU function library with the configuration "Release".
To use the "Debug" configuration, add the redistributables for the debug configuration on the
target system.
Open Development Kit 1500S V2.5 SP4
30 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Creating a CPU function library for x64 platform with Visual Studio version older than 2015

To create a project template for an x64 platform with a Visual Studio version older than 2015,
proceed as follows:

1. Open the "Configuration Manager".

] Projectl4 - Microsoft Visual Studio
File Edit View Project Build Debug Team Data Tools PostSharp Test Window Help

ikﬁﬂ'-ﬂ'ﬁﬂﬂ|*-'_-‘l-ﬁ|")'f“'5i|'L_$|P Debug ~| Win32 -
| NewWorkltem~ 3§ = g | |l g Wins2
Ca o we o o s e ~— Configuration Manager..

2. Create an x64 platform.

O S — i
Configuration Manager M
Active solution configuration: Active solution platform:
|Debug v | {win32 -
.))) ~ Win32
Project contexts (check the project configurations to build c
| Proiect Configuration ~ <Edit.>

The "New Solution Platform" dialog opens.

New Solution Platform 7| &=
Type or select the new platform:
w4 -
Copy settings from:
|Win32 -

[/] Create new project platforms

OK H Cancel]

Select "Win32" from the drop-down list box "Copy settings from:" .

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 31

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

3. Define a solution configuration for an x64 platform.

Configuration Manager =)@ Freigabe ist aktiviert @
Active solution configuration: Active solution platform:
Debug vl [x64 vl

Project contexts (check the project configurations to build or deploy):

Project Configuration Platform Build
Project13 Debug Exﬁﬂr IE‘
Win32
<Edit.»

4. Select "Debug" or "Release" from the drop-down list box "Active solution configuration" and
"x64" from the drop-down list box "Platform".

5.1.2.2 Solution Explorer structure: C# project
Directory / file Description
Wl <project>

W Properties

L] Assemblylinfo.cs

Wl Definition File

L] <project>.odk ODK interface description
L <project>.scl.additional S7 blocks that are appended to the <project>.scl file.

The file is not part of the project template, but the code genera-
tor processes the file.

Wl Generated Files Files from this folder may not be edited!
L] odkTypes.cs Definition of the ODK base types
L] OdkFunctions.cs Function prototypes
L OdkExecution.cs Implementation of the "Execute” method
Wi ODK Helpers Files from this folder may not be edited!
L OdkReadVariant.cs Help functions for reading the data blocks
L OdkReadWriteVariant.cs Help functions for reading/writing the data blocks
Wl Source Source Files
L <project>.cs Function code
Wi STEP7 Files from this folder may not be edited!
L <project>.scl S7 blocks

The C++ project template supports the following applications:

Configuration and platform Visual Studio Version older than 2015 | Visual Studio 2015 and later
Debug each CPU Not supported Yes
Release each CPU Not supported Yes

Open Development Kit 1500S V2.5 SP4
32 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1.2.3 Solution Explorer structure: VB Project

5.1 Creating a CPU function library

Directory / file

Description

Wl <project path>

N My Project

L] Assemblyinfo.vb

M Definition File

L <project>.odk

ODK interface description

L <project>.scl.additional

tor processes the file.

S7 blocks that are appended to the <project>.scl file.
The file is not part of the project template, but the code genera-

Wl Generated Files

Files from this folder may not be edited!

™| OdkTypes.vb

Definition of the ODK base types

L] odkFunctions.vb Function prototypes

L] odkExecution.vb

Implementation of the "Execute” method

Wi oDK Helpers

Files from this folder may not be edited!

[} odkReadVariant.vb

Help functions for reading the data blocks

[odkReadWriteVariant.vb

Help functions for reading/writing the data blocks

W Source Source Files
L <project>.vb Function code

Wl sTEP7 Files from this folder may not be edited!
L <project>.scl S7 blocks
L] <project>.vb Function code

The VB project template supports the following applications:

Configuration and platform

Visual Studio Version older than 2015

Visual Studio 2015 and later

Debug each CPU Not supported Yes
Release each CPU Not supported Yes
5.1.3 Generating a CPU function library

The generation of the project data is divided into two automated steps.

* Pre-Build: Generation of the files created by default based on the changed <project>.odk
file and generation of the SCL file.

¢ Actual-Build: Generation of the DLL file.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

33

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Procedure

Result

5.1.4

Procedure

34

To generate the project data, follow these steps:
1. Save all edited files.

2. In the "Build" menu, select the command "Build Solution”.

Note
C/C++ projects

Perform the build of the CPU function library in the "Release" configuration, as the
software controller has already installed the C/C++ Redistributables (Release Runtime
files).

To use the "Debug" configuration, copy the Debug Runtime files to the software controller.

Note

The project data is only generated if the files have been changed.

The generation of the project data is started. The automatically generated files are stored in
the file system.

* DLL file: Project directory\<project>\<BuildConfiguration>\<project>.dll

* SCL file: Project directory\<project>\STEP7\<project>.scl

Defining the runtime properties of a CPU function library

The next step is to define the interface description of the CPU function library in the
<project>.odk file. The file contains the following elements:

e Comments
e Parameters

¢ Definitions of functions and structures

To define the interface description in the <project>.odk file, follow these steps:
1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The interfaces file supports the following parameters:

Parameter Value Description

Context user Specifies that the CPU function library is loaded in the context of a Windows user
(Page/35).

system Specifies that the CPU function library is loaded in the context of the Windows

system (Page 35).

STEP7Prefix <String> Describes the string that precedes your functions and is shown after importing
the SCL file in STEP 7. The following characters are allowed: {A...Z, a...z, 1...9, -,

}

Umlauts are not permitted.
The project name is entered without spaces by default.

FullClassName

<String> The parameter is required for the C# and VB programming languages.

To change the class names or namespace of the source files of the CPU function
library, you need to adjust the "FullClassName" parameter.

5.1.5

Note
Spaces in the project name

With the STEP7 prefix, invalid characters are replaced by an underscore.

Environment for loading or executing the CPU function library

When the SCL file is imported into STEP 7 as an external source, the ODK instructions are
created in the selected directory in STEP 7. The ODK instructions enable you to control your
CPU function library regardless of the STEP 7 user program after programming and the initial
loading. You can load up to 32 CPU function libraries.

Depending on whether you have created the CPU function library for a 32-bit, 64-bit system
or with the "Any CPU" option, this is loaded into a 32-bit or 64-bit ODK host process.

You can choose one of two contexts for your CPU function library:
* "System" context

Windows is started, a user can be logged on
* "User" context

Windows is started, a user must be logged on

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 35

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

The following graphic shows you when a CPU function library may be loaded depending on

the context.

Start PC
_ Start Windows User logon
Windows } } >
Start CPU
CPU 1 } I »
T T T Ll

"System" context

1
Load €3 Load Load

System & System @
User 8 User Q

Change the following line of code in your <project>.odk file to use the CPU function library in

the system context (Session 0):
Context=system

In the system context, the CPU function library is running without the logon of a Windows
user. This means the CPU function library cannot be actively controlled with user interface

elements such as message dialogs.

"User" context

Change the following line of code in the <project>.odk file to use the CPU function library in

the user context:
Context=user

When you load the CPU function library in the user context, it automatically unloads as soon
as the user logs off in Windows. The CPU function library can be actively controlled by
Windows user interface elements such as message dialogs and provides access to additional

resources of the Windows environment.

If multiple users are logged on to Windows, the CPU function library loads or unloads for the
user, who has the current screen rights until he logs off in Windows.

36

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1.6

Functions

5.1 Creating a CPU function library

Defining functions and structures of a CPU function library

Functions are defined by the following general lines of code:
ODK RESULT <FunctionName>
([<InOut identifier>] <data type> <tag name>, etc.);

The <project>.odk file is the ODK interface description for CPU function libraries. This is
available for all supported programming languages.

The <project>.odk file contains an example function description by default. You can change

this description and/or add more function descriptions.
ODK _RESULT MyFuncl ([IN] INT paraml, [OUT] INT param2);

Syntax rules for functions

The following syntax rules apply to functions within the <project>.odk file:
¢ Note that the function names are case-sensitive.

* You can split function definitions into several lines.

¢ End a function definition with a semicolon.

* TAB and SPACE are allowed.

¢ Do not define a tag name in a function twice.

¢ Do not use any keywords for the programming language that is used (for example
"EN / ENO" as parameter name)

¢ Use ODK_RESULT only for the return values of the function.

¢ The tag name must start with a letter or an underscore.

¢ lllegal function names are displayed during generation in the development environment.

¢ The following names are not allowed in combination of <STEP 7Prefix> and <function
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS

<FunctionName>

Function names are valid with the syntax and character restrictions of the used programming

language.

<InOut-ldentifier>

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT],
[INOUT]

¢ [IN]: Specifies an input tag. The tag is copied to the function when it is called. This is
constant and cannot be changed.

e [OUT]: Specifies an output tag. The tag is copied back after the function has been
completed.

¢ [INOUT]: Specifies an input and output tag. The tag is copied to the function when it is
called. This is not constant and can be changed. The tag is copied back after the function
has been completed.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 37

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

<DataType>

The data type defines the type of a tag. The following table defines the possible data types
and their representation in the individual programming languages or STEP 7:

Elementary data types:

ODK data type |SIMATICdata |C++ data type Ci# data type VB data type Description
type

ODK_DOUBLE LREAL double double Double 64-bit floating point, IEEE
754

ODK_FLOAT REAL float float Single 32-bit floating point, IEEE
754

ODK_INT64 LINT long long long Long 64-bit signed integer

ODK_INT32 DINT long int Integer 32-bit signed integer

ODK_INT16 INT short short Short 16-bit signed integer

ODK_INT8 SINT char sbyte SByte 8-bit signed integer

ODK_UINT64 ULINT unsigned long long | ulong UlLong 64-bit unsigned integer

ODK_UINT32 UDINT unsigned long uint Ulnteger 32-bit unsigned integer

ODK_UINT16 UINT unsigned short ushort UShort 16-bit unsigned integer

ODK_UINT8 USINT unsigned char byte Byte 8-bit unsigned integer

ODK_LWORD LWORD unsigned long long | ulong UlLong 64-bit bit string

ODK_DWORD DWORD unsigned long uint Ulnteger 32-bit bit string

ODK_WORD WORD unsigned short ushort UShort 16-bit bit string

ODK_BYTE BYTE unsigned char byte Byte 8-bit bit string

ODK_BOOL BOOL unsigned char bool Boolean 1-bit bit string, remaining
bits (1..7) are empty

ODK_LTIME LTIME long long long Long 64-bit during in nanosec-
onds

ODK_TIME TIME long int Integer 32-bit during in milliseconds

ODK_LDT LDT unsigned long long | ulong UlLong 64-bit date and time of the
day in nanoseconds since
01/01/1970 00:00

ODK_LTOD LTOD unsigned long long | ulong ULong 64-bit time of the day in
nanoseconds since midnight

ODK_TOD TOD unsigned long uint Ulnteger 32-bit time of the day in
milliseconds since midnight

ODK_WCHAR WCHAR wchar_t char Char 16-bit character

ODK_CHAR CHAR char sbyte SByte 8-bit character

Open Development Kit 1500S V2.5 SP4
38 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Complex data types:

ODK data type |SIMATICdata |C++ data type C# data type VB data type Description
type
ODK_DTL DTL struct ODK_DTL OdklInternal. OdkInternal. Structure for date and time
Dtl (class) Dtl (class)
ODK_S7WSTRIN | WSTRING unsigned short string String Character string:
G

e For SIMATIC and C++:

16-bit character with
length max. and act.
(4xUSINT)

* For other languages:

native
ODK_S7STRING | STRING unsigned char string String Character string:

e For SIMATIC and C++:

8-bit character with
length max. and act.
(2xUSINT)

e For other languages:

native

ODK_VARIANT VARIANT struct ODK_VARIANT | byte [] byte [] Classic data (each data type
that can be serialized with
classic data.)

[ARRAY [[1] [Range of same data types.

You can use all data types as
array except IN_DATA |
INOUT_DATA /| OUT_DATA.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and data types of
this component and their order.

A user-defined data type can be defined in the ODK interface description with the keyword
"ODK_STRUCT".

Example
ODK_STRUCT <StructName>

{

<DataType> <TagName>;

i
The following syntax rules apply to the structure:
* You can divide the structure into multiple lines.

¢ The structure definition must end with a semicolon.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 39

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

5.1.6.1

40

e Any number of tabs and spaces between the elements is permitted.

e Itis not permitted to use any keywords for the generated language used (for example
"en / eno" as tag name).

You can create additional structures within a structure.

<StructName>

Structure names are valid with the syntax and character restrictions of the programming
language and as defined for tag definitions in STEP 7.

In STEP 7, the structure name is extended with the STEP 7 prefix.

<TagName>

Tag names are subject to the syntax and character restrictions of the programming language.

Example

The following code example explains the definitions of functions and structures. Sort the
parameters by: IN, OUT, INOUT.
//INTERFACE

ODK_STRUCT MyStruct
{
ODK_DWORD myDword;
ODK_S7STRING myString;
bi
ODK_RESULT MyFct ([IN] MyStruct myInStruct
, [OUT] MyStruct myOutStruct);

Using ODK_VARIANT as parameter

Restrictions of the data type ODK_VARIANT:

¢ When a parameter of the data type ODK_VARIANT is used, it is not permitted to use other
parameters with the same InOut-Identifier, regardless of data type.

e With the data type ODK_VARIANT, an [OUT] is modeled as [INOUT] in the generated FB.

Example
// INTERFACE

// OK:
ODK_ RESULT MyFuncl ([
ODK_ RESULT MyFunc?2 ([
ro L

[

4

IN] ODK_VARIANT myClassicData);
IN] ODK _VARIANT myDataln

OUT] ODK_VARIANT myDataOut
INOUT] ODK_VARIANT myDatalInout) ;

N
N

//

// NOT OK (Code Generator will throw an error):

// If ODK VARIANT is used for [IN], no other [IN] parameter
// may be defined in this function

ODK_RESULT MyFunc4 ([IN] ODK VARIANT myClassicData

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

, [IN] ODK INT32 myint);

Application example for C++
#include "ODK CpuReadData.h"

ODK RESULT MyFuncl (const ODK VARIANT& myClassicData)
{

CODK_CpuReadData myReader (myClassicData) ;

ODK_INT32Z myIntl, myInt2;

myReader.ReadS7DINT (0, myIntl);

myReader .ReadS7DINT (4, myInt2);

return myIntl + myInt2;
}

Helper functions (Page|139) of the following classes are available to help you access the data
type ODK_VARIANT inside a user function:

e C(lass "CODK_CpuReadData"
e C(Class "CODK_CpuReadWriteData"

Note
Size of the ODK_VARIANT tags
The size of the ODK_VARIANT tags is not known at the time of compiling and is therefore not

checked during the compiling process. When selecting the other parameters, consider the
possible size of the ODK_VARIANT parameter in your application.

5.1.6.2 Handling strings

You can define a maximum length for strings (String or WString). Define the maximum
number of characters in square brackets directly after the data type:

* ODK_S7STRINGI[30] or

* ODK_S7WSTRING[1000]

Without limitation, a string has a default length of 254 characters.

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user function,

the string helper functions (Page 139) are available:

Example
//INTERFACE

ODK_RESULT MyFct (
[IN] ODK_S7STRING myStrHas254Chars
, [OUT] ODK_S7STRING[10] myStrHaslOChars
, [INOUT] ODK_S7STRING[20] myStrArrayHas20Chars5Times[5])

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 41

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the
function block in STEP 7.

Note
Compatibility

If you use the "WSTRING" data type with more than 253 characters in a project, create a new
project with ODK version = V2.5 SP1.

The characters are not read/written correctly with a project created with ODK version < V2.5
SP1.

5.1.6.3 Definition of the <Project>.odk file

The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:
e Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

¢ Context=user

The CPU function library is loaded in the "User" context. You can change the parameter to
Context=system.

e STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the CPU function library.
The string is visible in STEP 7. You can change the parameter. The string length of the
prefix including the function name must not exceed a length of 125 characters (for
example, ODK_App_SampleFunction)

e "SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length may not exceed a length of 125 characters. The associated
function is located in the CPP file.

FullClassName="<OdkProject1.Source.CpuFunctionLibrary>"
The parameter is required for the C# and VB programming languages.

To change the class names or namespace of the source files of the CPU function library,
you need to adjust the "FullClassName" parameter.

Open Development Kit 1500S V2.5 SP4
42 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

Example

//INTERFACE
Context=user
STEP7Prefix=0DKProject

5.1 Creating a CPU function library

FullClassName=0ODKProject.Source.CpuFunctionLibrary

/*

* Elementary data types:
* ODK_DOUBLE LREAL
* ODK_FLOAT REAL
* ODK_INT64 LINT
* ODK_INT32 DINT
* ODK_INT16 INT

* ODK_INTS SINT
* ODK_UINT64 ULINT
* ODK_UINT32 UDINT
* ODK_UINT16 UINT
* ODK_UINTS USINT
* ODK_LWORD LWORD
* ODK_DWORD DWORD
* ODK_WORD WORD
* ODK_BYTE BYTE
* ODK_BOOL BOOL
* ODK_LTIME LTIME
* ODK_TIME TIME
* ODK_LDT LDT
*
* ODK_LTOD LTOD
*

* ODK_TOD TOD

*

* ODK_CHAR CHAR
* ODK WCHAR WCHAR
* Complex Datatypes:

* ODK_DTL DTL

* ODK_S7STRING STRING
* ODK_VARIANT VARTIANT
serialized

*

* ODK_S7WSTRING WSTRING
*] ARRAY
* User Defined Datatype:
* ODK_STRUCT UDT

* Return Datatype:

* ODK_RESULT

*

*

*

*

~

64-bit floating point, IEEE 754
32-bit floating point, IEEE 754
64-bit signed integer
32-bit signed integer
16-bit signed integer

8-bit signed integer

64-bit unsigned integer

32-bit unsigned integer

l16-bit unsigned integer

8-bit unsigned integer

64-bit bit string

32-bit bit string

l6-bit bit string

8-bit bit string

1-bit bit string

64-bit duration in nanoseconds
32-bit duration in milliseconds
64 bit date and time of day

in nanoseconds

64 bit time of day in nanoseconds
since midnight

32 bit time of day in milliseconds
since midnight

8 bit character

16 bit character

structure for date and time
character string with 8-bit characters
classic data (any datatype which can be

to classic data)
character string with 16 bit characters

field of this datatype

user defined structure

0x0000-0x6FFF function succeeded

(ODK_SUCCESS = 0x0000)

0xFO000-0xFFFF function failed

// Basic function in order to show
// how to create a function in ODK 1500S.

ODK_RESULT SampleFunction ([IN]

4

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

(ODK_USER_ERROR_BASE = 0xF000)
ODK_INT32 myInt // integervalue
// as input
[OUT] ODK BOOL myBool // bool value

43

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

// as output

, [INOUT] ODK DOUBLE myReal);// double value
// as input
// and output

5.1.6.4 Modifying the <Project>.odk file

The following examples show you how you can change the <project>.odk file to suit your
needs.

//INTERFACE

Context=user

STEP7Prefix=0DK_SampleApp

ODK_RESULT GetString ([OUT] ODK_S7STRING myString) ;
ODK_RESULT Calculate ([IN] ODK_INT64 Inl,
[IN] ODK_DOUBLE In2,
[OUT] ODK_FLOAT Outl,
[OUT] ODK_INT32 Out2,
[INOUT] ODK BYTE InOutl[64],
[INOUT] ODK BYTE InOut2[64]);

Function prototypes in the ODK file

Example for C++
ODK_RESULT GetString (
/*OUT*/ ODK S7STRING myString[256]);
#define ODK FUNCTION GETSTRING ODK RESULT GetString (/*OUT*/
ODK S7STRING myString[256])

ODK RESULT Calculate (

/*IN*/ const ODK_INTG64& Inl,
/*IN*/ const ODK DOUBLE& In2,
/*OUT*/ ODK_FLOAT& outl,
/*OUT*/ ODK_INT32¢& out2,
/*INOUT*/ ODK BYTE InOutl([64],
/*INOUT*/ ODK BYTE InOut2[64]);

#define ODK_FUNCTION CALCULATE ODK RESULT Calculate (/*IN*/ const
ODK_INT64& Inl,/*IN*/ 2480 const ODK_DOUBLE& In2,/*0OUT*/ ODK_FLOAT&
outl,/*OUT*/ ODK INT32& Out2,/*INOUT*/ ODK BYTE2481
InOutl[64],/*INOUT*/ ODK_BYTE InOut2[64])

#endif // ODK_FUNCTIONS H

Open Development Kit 1500S V2.5 SP4
44 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Example for C#
namespace OdkInternal
{
interface IOdkFunctions
{
// declaration of the callback methods
ushort OnLoad();
ushort OnUnload() ;
ushort OnRun () ;
ushort OnStop () ;

ushort GetString(
/*0UT*/ out string myString);

ushort Calculate(

/*IN*/ ref long Inl,
/*IN*/ ref double In2,
/*0UT*/ out float Outl,
/*0UT*/ out int out2,

/*INOUT*/ ref byte[] InOutl,
/*INOUT*/ ref byte[] InOut2);

Example for VB
Namespace Global.OdkInternal
Public Interface IOdkFunctions
// declaration of the callback methods
Function OnLoad() As UShort

Function OnUnload () As UShort
Function OnRun () As UShort
Function OnStop () As UShort

Function GetString(
ByRef myString As String ‘OUT

) As UShort
Function Calculate(
ByRef Inl As Long, ‘IN
ByRef In2 As Double, VIN
ByRef Outl As Float, ‘OuT

ByRef Out2 As Integer, ‘OUuT
ByRef InOutl() As Byte, ‘INOUT
ByRef InOut2() As Byte ‘INOUT
) As UShort
End Interface
End Namespace

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 45

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

5.1.6.5 Comments

The following examples for using comments are valid for C++ and C#. Differences to Visual
Basic are available under "Comments in Visual Basic (Page 47)"

Comments are started with a double slash "/[" and end automatically at the end of the line.

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a
comment. Characters after the end of the comment identifier "*/" are further processed by
the code generator.

Comments for functions and structures

46

You place comments on functions and structures directly in front of the functions/structures.
These comments are transferred to the ODK_Functions.h/.cs/.vb and <project>.scl files.

In the <project>.scl file, the comments are copied to the block properties and duplicated in
the code area of the function.

Observe the following rules:

e Comments for functions and structures must be located directly in front of the
functions/structures (without blank line).

e The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT keyword.

¢ You can use both identifiers "//* and "/* */" but not in combination within a comment.

Example
// this comment did not appear in MyStruct, because of the empty
line.

// comment MyStruct

//
ODK_STRUCT MyStruct
{
ODK_DWORD myDword;
ODK_S7STRING myString;
}i

/*
comment MyFct
%/
ODK_RESULT MyFct ([IN] MyStruct myInStruct
, [OUT] MyStruct myOutStruct);

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

Comments for tags in functions and structures
Comments for function and structure tags are placed directly in front of or behind the tag.
These comments are transferred to the ODK_Functions.h/ and <project>.scl files.
The following rules apply to comments in front of tags:
¢ Comments must be directly in front of the tag (without blank line).
¢ The end of the comment is the <InOut-ldentifier> of the tags.
The following rules apply to comments after tags:
¢ Comments must be after the tag name (without blank line).
The following general rules apply to comments for tags:
* You can use both identifiers "//" and "/* */" but not in combination within a comment.

* In the header file, the same comment identifier is used ("/[" or "/* */").

Example

ODK_STRUCT MyStruct

{
// comment myDword BEFORE definition
ODK_DWORD myDword;

ODK_S7STRING myString; /* comment myString AFTER definition */
bi

ODK_RESULT MyFct ([IN] MyStruct myInStruct // comment
// myInStruct
// ... "second line"
, [OUT] MyStruct myOutStruct); /* comment
myOutStruct
*/...
5.1.6.6 Comments in Visual Basic

Not all comments can be transferred unchanged from the Interface file to the VB source.
The following rules are valid only for comments in Visual Basic:
e Comments are marked with a apostrophe.

e To mark multiple lines as comment, you need to set an apostrophe before each line.

Example:
<project>.odk ODK_Functions.vb
/* Multi line comment 1 ‘"' This file is AUTO GENERATED ..
comment 2 ' <automatically generated comment>
comment 3%/ ...
ODK_RESULT f1(); ‘' Multi line comment 1
‘' comment 2
‘' comment 3
Function f1 () As UShort

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 47

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

e Comments are not permitted in front of source code.

Set the InOut identifier after the function parameter.

Example:

<project>.odk

ODK_Functions.vb

ODK_RESULT f1([IN] ODK BYTE b);

Function f1(
b As Byte ‘' [IN]
) As UShort

¢ Multi-line comments are not permitted between function parameters.

Set multiple comments in a line.

Example:

<project>.odk

ODK_Functions.vb

ODK_RESULT f£1 (

// cl

// c2

[IN] ODK BYTE b // c3
// c4

) ;

Function f1(
b As Byte ' [IN] cl' c2' c3" c4
) As UShort

Implementing functions

General notes

This section provides an overview of the basic topics relating to the implementation of

functions in a Windows environment.

e The function call is not limited in time, because the function is called asynchronously.

* Traces are possible via OutputDebugString instructions

* All asynchronous functions are executed with equal priority - regardless of the priority of

the OBs

e The complete Windows API (Application Programming Interface) and C++-Runtime library

are available

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

5.1.7.2 Callback functions

The project template includes an execute file to define your functions.

Programming language Name of the execute file
C++ <project>.cpp

C# <project>.cs

VB <project>.vb

This execute file contains functions filled by default. This file does not necessarily need to be
filled with additional user code to be usable. However, neither may the functions be deleted
under any circumstances.

The empty function has the following code (using the "OnLoad()" function as an example):
You can define the following functions in the execute file:

¢ Onload(): Called after loading the CPU function library

¢ OnUnload(): Called before unloading the CPU function library

¢ OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function

e OnStop(): Called when the CPU changes to the STOP mode and before the function

OnUnload()
The following table provides an overview of the various actions to invoke the callback
functions:
Current operating state | New operating state User action ODK action
RUN RUN ODK_Load 1. OnLoad()
2. OnRun()
STOP RUN ODK_Load in 1. OnLoad()
startup OB (e.g.
0B100) 2. OnRun()
RUN STOP <already loaded> | OnStop()
STOP RUN <already loaded> | OnRun()
RUN RUN ODK_Unload 1. OnStop()
2. OnUnload()
RUN SHUTDOWN / MRES <already loaded> | OnStop()
any any <already loaded> | 1. OnStop() (optional, if
Exit ODK host not already executed)
2. OnUnload()

"OnLoad()" and "OnUnload()" function

The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 49

Developing a CPU function library for the Windows environment

5.1 Creating a CPU function library

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()"
function

0x0001 — OxEFFF

Invalid values (system-internal)

OxFOO0O — OxFFFF
ODK_USER_ERROR_BASE = 0xF000 The loading stops and the CPU function library unloads for the "OnLoad()" func-

You can define your own error values.

tion.

The CPU function library within the specified value range is still unloaded for the
"OnUnload()" function.

"OnRun()" and "OnStop()" function

The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

The following return values are possible:

Return value for "ODK_RESULT" Description
ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnRun()" or "OnStop()"
function

0x0001 — OxFFFF

No direct feedback to the user program is possible.
The return value is sent to Windows (WindowsEventLog).

5.1.7.3

Procedure

50

Implementing custom functions

Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the CPU function library in the Project Source file.

To edit the function of a CPU function library, follow these steps:
1. To generate the function prototypes, execute the build.
2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h>/<OdkFunctions.cs/vb> to the
source file.

Note

Use the function prototype macro to transfer the step 3 in the future when there is a change
to the function parameters.

4. Edit the code of your CPU function library in the execute file.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment
5.2 Transferring a CPU function library to the target system

CPU function library

The execute file contains a schematically represented function description by default. You
can change this description with corresponding changes in the <project>.odk file and/or add
more function descriptions.

Execute file based on C++ example
#include "ODK Functions.h"

EXPORT API ODK RESULT OnLoad (void)
{
return ODK SUCCESS;
}
EXPORT API ODK RESULT OnUnload (void)

{
return ODK SUCCESS;
}
EXPORT API ODK RESULT OnRun (void)
{
return ODK SUCCESS;
}
EXPORT API ODK RESULT OnStop (void)
{
return ODK SUCCESS;
}
ODK_RESULT SampleFunction(const ODK_INT32& myInt,
ODK_BOOLé& myBool,
ODK DOUBLE& myReal)

return ODK SUCCESS;

5.2 Transferring a CPU function library to the target system

Manually transfer the DLL file to a specific Windows folder on the target system (e.g. via a
network share or USB flash drive). Use the standard Windows data transfer procedure to
transfer of the CPU function library. The storage location in Windows is specified by a registry
key. When loading an CPU function library, the ODK service automatically searches for the file
in the path specified by the registry key.

Note
CPU function library in the debug configuration

When the CPU function library has been transferred to the debug configuration, you also
need to transfer the debug DLLs of the development environment to the target system.

The default value that describes the file path is:

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 51

Developing a CPU function library for the Windows environment

5.3 Importing and generating an SCL file in STEP 7

5.3

Requirements

52

%ProgramData%\Siemens\Automation\ODK 15005\

Note

Administrator rights

Assign write permission to this folder only for the administrator. This prevents unauthorized
personnel from uploading CPU function libraries.

Please note:

The setup of the SIMATIC S7-1500 Software Controller checks whether the file path already
exists and the required administrator rights are assigned.

If not, the directory is renamed to "ODK1500S_OLD1" or "ODK1500S_OLD2" and a new
directory with the correct access rights is created.

The Windows file system can hide the folder based on your setting. You can view the folder
using the Windows option "Show hidden files, folders, and drives".

The registry key for 32-bit systems is:
HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\Automation\ODK1500S\odk_app_path

The registry key for 64-bit systems is:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Siemens\Automation\ODK1500S\odk_ap
p_path

You can change the default value of the registry key and thus adapt to the expected location
for the DLL file to suit your needs.

Note
Changing the path in the registry key

To protect the DLL file, select a storage location that is secured by access protection.

Importing and generating an SCL file in STEP 7

The following files are created when the project map is created:
e SCL file for importing into STEP 7
* All files depending on the configuration, e.g. DLL file

If STEP 7 is installed on another PC as the development environment, you must transfer the
generated SCL file to the PC where the STEP 7 is installed.

The project data were generated.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.3 Importing and generating an SCL file in STEP 7

To import and compile the SCL file, follow these steps:

Start STEP 7.

. Open your project.

. Select the project view.

Select the CPU in the project tree.

. Select the "External Sources" subfolder.

The "Open" dialog box opens.

. Navigate in the file system to the SCL file that was created during the generation of the

project data.
Confirm your selection with "Open".

The SCL file is imported. After completion of the import process, the SCL file is displayed in
the "External Sources" folder.

You need to compile the SCL file before you can use the blocks in your project.

To do this, select the SCL file in "External sources" subfolder.

10.Select the "Generate blocks from source” command in the shortcut menu.

Procedure
1.
2
3
4.
5
6
7.
8.
9.

Result

STEP 7 creates the S7 blocks based on the selected SCL file.

The created blocks are now automatically displayed in the "Program blocks" folder below the
selected CPU in the project tree. You can load the function blocks during the next download
to the target device.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 53

Developing a CPU function library for the Windows environment

5.4 Executing a function

5.4 Executing a function

5.4.1 Loading functions

Introduction

Regardless of the context in which the CPU function library is running, the loading procedure
consists of the following steps:

e (Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program.

* In the Windows context, the loading process checks if a 32-bit or 64-bit process is required
and starts the appropriate host. Each CPU function library runs in a separate Windows
process (ODK_Host).

* The host loads the CPU function library and calls the "OnLoad()" function and then the
"OnRun()" functions.

Note
Loading the same CPU function libraries with a modified <project>.odk file

When you load an CPU function library and subsequently change the <project>.odk file, we
recommend that you unload your CPU function library first before you load the newly
generated CPU function library. If the "<STEP7Prefix>_Unload" instruction is not executed,
both CPU function libraries are in the memory. This can lead to insufficient memory being
available for the CPU.

"<STEP7Prefix>_Load" instruction

A CPU function library is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7
user program.

<STEP7Prefix>_Load
REQ DONE
BUSY
ERROR
STATUS

Open Development Kit 1500S V2.5 SP4
54 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.4 Executing a function

The following table shows the parameters of the instruction "<STEP7Prefix>_Load":

Section Declaration | Data type | Description

Input REQ BOOL A rising edge activates the loading of the CPU function library.

Output DONE BOOL Indicates that the instruction has finished loading the CPU function library.

Output BUSY BOOL Indicates that the instruction is still loading the CPU function library.

Output ERROR BOOL Indicates that an error occurred during the loading of the CPU function library.
STATUS gives you more information about the possible cause.

Output STATUS INT Provides information about possible sources of error, if an error occurs during
the loading of the CPU function library.

Input parameters

An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameters

The following table shows the information that is returned after loading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000 No active loading
=28672
0 1 0 0x7001 Loading in progress, first call
=28673
0 1 0 0x7002 Loading in progress, ongoing call
=28674
1 0 0 0x7100 CPU 1500 V2.0 and later:
=28928 CPU function library is already loaded.
1 0 0 0x0000 Loading was performed successfully.
=0
0 0 1 0x80A4 CPU function library could not be loaded.
=-32604 Start the ODK service manually or restart Windows.
0x80C2 CPU function library could not be loaded. There are currently not
—-32574 enough resources available from Windows.
Reload the CPU function library after a few seconds.
0x80C3 CPU function library could not be loaded. The CPU currently does not
—-32573 have enough resources.
Reload the CPU function library after a few seconds.
0x8090 CPU function library could not be loaded. An exception occurred during
—-32624 execution of the "OnLoad()" function.
0x8092 CPU function library could not be loaded because the library name is
=-32622 invalid.
0x8093 CPU function library could not be loaded because the
—-32621 CPU function library could not be found. Check the file name and path
of the file.
0x8094 CPU function library could not be loaded. The CPU function library was
—-32620 created for the Windows user context, but no user is logged on.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

55

Developing a CPU function library for the Windows environment

5.4 Executing a function

DONE BUSY ERROR STATUS Meaning
0x8095 CPU function library could not be loaded due to the following reasons:
=-32619 e The DLL file is not a CPU function library

¢ An attempt has been made to load a 64-bit application into a 32-bit
system

* Dependencies on other Windows DLL files could not be resolved.
— Check that the release build of the CPU function library is used.

— Check whether the "Visual C++ Redistributables” are installed for
the Visual Studio version you are using.

e The CPU does not support the utilized ODK version.

0x8096 The CPU function library could not be loaded because the internal iden-
--32618 tification is already being used by another loaded CPU function library.
0x8097 CPU 1500 V1.8 and earlier:

=-32617 CPU function library is already loaded.

0x8098 The CPU function library could not be loaded because the

--32616 CPU function library is currently being unloaded.

0x809B CPU 1500 V2.0 and later:

=-32613 The CPU function library could not be loaded and returns an invalid
value (the values 0x0000 and 0xFOOO - OxFFFF are allowed)

OxF000 - CPU 1500 V2.0 and later:

OxFFFF CPU function library could not be loaded. An error occurred during exe-
=-4096 — -1 | cution of the "OnLoad()" function.

Example

This example describes how the loading and execution of a Windows CPU function library can
be implemented for the Windows environment in STEP 7 after communication disturbances.

When Windows is again available the CPU function library is loaded and the execution of the
functions is again possible.

A communication disturbance can be caused by the following:
¢ Windows Restart (or Shut down)

¢ Windows Log off (if application in user area)

* TerminateProcess/ODK_Host crash

A flag is necessary for this (here: ODK_Loaded), which is set after successful loading and is
reset following a faulty execution of the ODK function.

FUNCTION BLOCK "ODK AutoLoad"

{ S7 Optimized Access := 'TRUE' }
VERSION: 0.1
VAR
ODK Loaded : Bool;
END VAL
BEGIN

// Loading of the Windows-CPU function library
IF NOT #ODK_Loaded THEN
// Toggle request flag if loading is not active

Open Development Kit 1500S V2.5 SP4
56 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

5.4 Executing a function

IF NOT "ODKProject Load DB".BUSY THEN

"ODKProject Load DB".REQ := NOT "ODKProject Load DB".REQ;
END TIF;

// Loading of the CPU function library
"ODKProject Load DB" ();

// Set "Loaded" flag if loading is successful
IF "ODKProject Load DB".DONE THEN
#ODK Loaded := true;
END IF;
END IF;

// Execute the ODK function(s) (only in loaded state)
IF #ODK_Loaded THEN
// Toggle request flag if function call is not active
IF NOT "ODKProjectSampleFunction DB".BUSY THEN
"ODKProjectSampleFunction DB".REQ := NOT
"ODKProjectSampleFunction DB".REQ;
END IF;

// Execute the function
"ODKProjectSampleFunction DB" () ;

// The "Loaded" flag must be reset when

// a) An error is present in the communication with Windows
(0x80A4)

// b) the CPU function library was already unloaded before this
function call (0x8096)

IF "ODKProjectSampleFunction DB".STATUS = 16#80A4 OR
"ODKProjectSampleFunction DB".STATUS = 16#8096

THEN

#ODK Loaded := false;

END IF;

END IF;

END FUNCTION BLOCK

5.4.2 Calling functions

Introduction

Once the CPU function library is loaded, you can execute functions via your STEP 7 user
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction"
instruction.

You can load up to 32 CPU function libraries at the same time.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 57

Developing a CPU function library for the Windows environment

5.4 Executing a function

"<STEP7Prefix>SampleFunction" instruction

A CPU function library is called by the "<STEP7Prefix>SampleFunction" instruction.

<STEP7Prefix>SampleFunction
REQ DONE
mylInt BUSY
myReal ERROR
STATUS
myBool

The following table shows the parameters of the instruction "<STEP7Prefix>SampleFunction":

Section Declaration | Data type | Description

Automatically generated parameters

Input REQ BOOL A rising edge of this input value activates the execution of the
CPU function library.

Output DONE BOOL This output value indicates that the instruction has finished execution of the
CPU function library.

Output BUSY BOOL This output value indicates that the instruction is still unloading the
CPU function library.

Output ERROR BOOL This output value indicates that an error occurred during the execution of the
CPU function library. The STATUS output value provides more information on
this.

Output STATUS INT This output value provides information about possible sources of error, if an
error occurs during the execution of the CPU function library.

User-defined parameter

Input mylnt User-defined input tags

InOut myReal User-defined input-output tags

Output myBool User-defined output tags

Input parameters

An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Open Development Kit 1500S V2.5 SP4
58 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

Output parameters

5.4 Executing a function

The following table shows the information for the output parameters returned after

execution.
DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000 No active process
=28672
0 1 0 0x7001 First call (asynchronous)
=28673
0 1 0 0x7002 Continuous call (asynchronous)
=28674
1 0 0 0x0000 — | Function has been executed and returns a value between 0x0000 and
Ox6FFF Ox6FFF.
=0 - 28671 | (ODK_SUCCESS = 0x0000)
0 0 1 0x80A4 CPU function library could not be executed for the following reasons:
=-32604 * The "<STEP7Prefix>_Unload" instruction was executed during a func-
tion execution. The function execution was aborted at the CPU end.
Windows terminates the execution of the function normally. No re-
turn value is sent to the CPU.
Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load
the CPU function library again.
e Windows is not available
¢ ODK service is not running
Start the ODK service manually or restart Windows.
0x80C2 CPU function library could not be executed. There are currently not
—-32574 enough resources available from Windows.
Execute the CPU function library again after a few seconds.
0x80C3 CPU function library could not be executed. The CPU currently does not
--32573 have enough resources.
Execute the CPU function library again after a few seconds.
0x8090 CPU function library could not be executed. An error occurred during
—-32624 execution.
0x8091 CPU function library could not be executed. A "STOP" occurred during
—-32623 the function call.
0x8096 CPU function library could not be executed because the
—-32618 CPU function library was not loaded or unloading is not yet finished.
0x8098 CPU function library could not be executed because the function is not
--32616 supported.
0x8099 CPU function library could not be executed because the maximum
--32615 amount of input data (1 MB) was exceeded (declarations with "In" and
"InOut")
0x809A CPU function library could not be executed because the maximum
—-32614 amount of output data (1 MB) was exceeded (declarations with "Out"
and "InOut")
0x809B The function returns an invalid value (a value between 0x0000 and
--32613 Ox6FFF; 0xFOOO and OXFFFF is permitted)

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 59

Developing a CPU function library for the Windows environment

5.4 Executing a function

DONE BUSY

ERROR STATUS

Meaning

0x809C
=-32612

Function uses an invalid data type:

« IN_DATA
« INOUT_DATA
« OUT DATA

0xFOO00 —
OXFFFF

=-4096 — -1

CPU 1500 V2.0 and later:

The function could not be executed and returns a value between
OxFO0O0 and OxFFFF.

(ODK_USER_ERROR_BASE = 0xF000)

543

Introduction

60

Note
Call of function(s) influences the cycle time

When you call a function, the function parameters are copied. In particular in the case of
large amounts of data or of structured data, this can lead to the cycle time being influenced.

Unloading functions

The CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction. Call is
made from the STEP 7 user program.

In addition to this call, the CPU function library is also automatically unloaded for the
following reasons.

The CPU is switched off

Memory reset of CPU

Windows is restarted

Logoff off the Windows user (in the context of a Windows user)

Regardless of the context in which the CPU function library is running, the unloading
procedure consists of the following steps:

Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program.

From now on, no new executes can be carried out for this CPU function library. Still active
executes are terminated at the CPU end. Windows terminates the execution of the
function normally ("Unload" waits). No return value is sent to the CPU.

The host calls the "OnStop()" and "OnUnload()" functions.

The CPU function library is being unloaded.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the Windows environment

"<STEP7Prefix>_Unload" instruction

5.4 Executing a function

A CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the
STEP 7 user program.

<STEP7Prefix>_Unload

REQ

DONE

BUSY

ERROR

STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload":

Section Declaration | Data type | Description

Input REQ BOOL A rising edge activates the unloading of the CPU function library.

Output DONE BOOL Indicates that the instruction has finished unloading the CPU function library.

Output BUSY BOOL Indicates that the instruction is still unloading the CPU function library.

Output ERROR BOOL Indicates that an error occurred during the unloading of the CPU function library.
STATUS gives you more information about the possible cause.

Output STATUS INT Provides information about possible sources of error, if an error occurs during
the unloading of the CPU function library.

Input parameters

An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameter STATUS

The following table shows the information that is returned after unloading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000 No active unloading
=28672
0 1 0 0x7001 Unloading in progress, the first call
=28673
0 1 0 0x7002 Unloading in progress, ongoing call
=28674
1 0 0 0x0000 Unloading was carried out successfully
=0
0 0 1 0x80A4 CPU function library could not be unloaded for the following reasons:
=-32604 ¢ Windows is not available
Start the ODK service manually or restart Windows.
0x80C2 CPU function library could not be unloaded. There are currently not
—-32574 enough resources available from Windows.
Reload the CPU function library after a few seconds.
0x80C3 CPU function library could not be unloaded. The CPU currently does not
--32573 have enough resources.

Reload the CPU function library after a few seconds.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 61

Developing a CPU function library for the Windows environment

5.5 Remote debugging

DONE

BUSY

ERROR STATUS Meaning

0x8090 An exception occurred during the unloading of the CPU function library.
--32624 The CPU function library has been unloaded nevertheless.

0x8096 CPU function library could not be unloaded because the
—-32618 CPU function library was not loaded or unloading is not yet finished.
0x809B CPU 1500 V2.0 and later:

=-32613 The CPU function library could be unloaded and returns an invalid value
(the values 0x0000 and 0xFOOO - OxFFFF are allowed)

0xF000 - CPU 1500 V2.0 and later:

OxFFFF CPU function library could be unloaded. An error occurred in the
=-4096 — -1 | CPU function library during the execution of the "OnUnload()" function.

5.5

62

Remote debugging

If you use Microsoft Visual Studio as a development environment, you can use the debugger
for debugging.

You can use the remote debugger to debug a CPU function library on a target system without
Visual Studio. It should be noted that the generated CPU function libraries (DLLs) are loaded
into one of the following processes:

e ODK Host x86.exe process (32-bit)
e ODK Host x64.exe process (64-bit)

The required remote debugger is dependent on the Visual Studio version used on the host
system and on the system type (32-bit/64-bit) of the target system.

You can find links to download the remote debugger for the relevant Visual Studio version on
the Microsoft website (https://docs.microsoft.com/en-us/visualstudio/debugger/remote-
debugging?#download-and-install-the-remote-tools).

After downloading, you can install the remote debugger on the target system.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging?#download-and-install-the-remote-tools
https://docs.microsoft.com/en-us/visualstudio/debugger/remote-debugging?#download-and-install-the-remote-tools

Developing a CPU function library for the Windows environment

5.5.1

Procedure

5.5 Remote debugging

Performing remote debugging

1. Start the Visual Studio remote debugger on the target system using "Start > All Programs >

Visual Studio 20xx > Remote Debugger".

. Configure the authentication.

Select the "No authentication" option and select the "Allow any user to debug" check box.

Observe the security information.

. With a C++ CPU function library, copy the Visual Studio Debug DLLs from the folder

"<installation path VS>\VClredist\Debug_NonRedist\<ApplicationType>\Microsoft.<VS
version>.DebugCRT" in the target folder. With a managed (C# / VB) CPU function library you
can skip step 3.

— Destination folder with 32-bit Windows and a 32-bit application:
<windows install path>\System32

— Destination folder with 64-bit Windows and a 64-bit application:
<windows install path>\System32

— Destination folder with 64-bit Windows and a 32-bit application:
<windows install path>\SyswOW64

Note

You need the file "ucrtbased.dll".

If this DLL is not present in the target system, copy it from the host in the folder:
With 32-bit Windows under Program Files\...

With 64-bit Windows under Program Files (x86)\...

...\Microsoft SDKs\Windows
Kits\10\ExtensionSDKs\Microsoft.UniversalCRT.Debug\<Highest available version>\
Redist\Debug\<Application type (32/64-bit)>

. Load the CPU function library on the target system in the folder

"C:\ProgramData\Siemens\Automation\ODK1500S".

Note
If the CPU function library is loaded, unload (Page 60) it before copying.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 63

Developing a CPU function library for the Windows environment

5.5 Remote debugging

5. Load (Page|54) the CPU function library on the target system.

6. Set the breakpoints in the source code and start the debugger via "Debug > Attach to
Process...".

Select the following settings in the "Attach to Process” dialog:

— Transport: Remote

— Qualifier: IP address of the target system and port of the remote debugger.
— Attach to:

Use the default value "Automatic: Managed (...) code" for managed CPU function
libraries.

Only for a C++ CPU function library: Click "Select...", and select the code type "Native" in
the "Select Code Type" dialog.

[: =
Attach to Process M

Transport: Remote (no authentication) v|

Qualifier 192 168.2.155:4020 - Find...

Transport Information
The 'Rernote (no authentication)’ transport should never be used on a network that might have hostile traffic. Use 'Default’ transport where
possible.

Attach to: Automnatic: Managed (w5, vd.0) code

Available Processes

Process | Title Type User Name Session -
MEVSM 0N, Exe 4332 Visual Studio 2015 Rernote Debugger [Authenti.. w64 DESKTOP-LATKIC\p... 1 E |
ODK_Host_x86 exe 44568 Managed (vd.... DESKTOP-L4TKIC\p.. 1

AT, PR SRR T L TS (RS S ey 1M oAA” L PRy e | LT kol Ve T e Bl e 1 -

Show processes from all users
i Attach [Cancel

b

Debugging OnLoad/OnRun

To attach the debugger to the OnLoad() or OnRun() function, incorporate a wait loop at the
start of OnLoad().

Example of a wait loop:
EXPORT API ODK RESULT OnLoad (void)

{
#if defined DEBUG // available in debug configuration, only
while (!IsDebuggerPresent()) // wait for debugger

{
Sleep (100);

}
#endif
// your code for OnLoad()

Result
The debugger stops the execution of the code after the activated breakpoint.

Open Development Kit 1500S V2.5 SP4
64 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime
environment

6.1

6.1.1

6.1.2

Creating a CPU function library

Requirements

e ODK s installed. The Eclipse development environment is installed.

¢ You need administrator rights to create and edit an Eclipse project (CPU function library
for the realtime environment).

6

Note

If you have to move the workspace to a different storage location, make sure you copy the
entire workspace.

Note
SO files (CPU function libraries)

The SO files are not know-how-protected. The customer is responsible for the SO files and
their know-how protection.

Note
Behavior with a large CPU function library for the real-time environment

When an exception is thrown for a CPU function library as of about 20 MB for the real-time
environment, the CPU may no longer change from "STOP" to "RUN".

Make sure that you have sufficient load memory for backup of the postmortem files. Then
switch the CPU off and on again.

Creating a project

To help you develop a CPU function library, an Eclipse Project template is included in the
installation of ODK 1500S.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

65

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Procedure
To create a CPU project in Eclipse using an ODK template, follow these steps:
1. Start Eclipse as a development environment.
2. In the "File > New" menu, select the command "Project..."
The "New Project" dialog opens.

£ C/C++ - Eclipse
Edit Scurce Refactor Mavigate Search Project Run Window Help

New Alt+Shift+N » | G5 Makefile Project with Existing Code

Open File... @ C++ Project

Close Chri+W [©] CProject
= -

Close All Ctrlshiftew | [Project.

Save Ctrl+5 Convert to a C/C++ Project (Adds C/C++ Nature)
=5 Cmrimme Faldaa

Figure 6-1 Creating a new project with Eclipse

3. Select the project template "C++ Project for CPU function library (CPU Runtime)" .

& New Project O >
Select a wizard L

|
Wizards:

type filter text

2% Java Project

¥ Java Project from Existing Ant Buildfile
£ Plug-in Project

= General

= C/C++

= CV5

= lava
w = ODK 153005 Temglates

E C++ Project for CPU function library (CPU Runtime)
E C++ Project for MFP Linux application (CPU 1518 MFP - up to PW v2.6.1)

—_—
R

gz C++ Project for MFP Linux application (CPU 1318 MFP FW v2.8)
E C++ Project for MFP Linux application (CPU 1518 MFP FW +2.9 or higher)
(== Plug-in Development

‘-\ - -
= < DaCK e INI% dnCe|
@ Back Next Finish Cancel

Figure 6-2 Selecting a template

Open Development Kit 1500S V2.5 SP4
66 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

4. Enter a project name.

5. Click "OK" to confirm.

6.1 Creating a CPU function library

Result
The CPU function library for the realtime environment is created using the project template
and sets the following project settings:
e Project settings for generating the SO file
* Automates the generation of the SO and SCL file
The project template sets up the following Project Explorer by default:
Folder / file Description
Wi <project path>
Wl def
L <project>.odk ODK interface description
L <project>.scl.additional S7 blocks that are appended to the <project>.scl file.
Although the file is not part of the project template, the code
generator processes the file.
Wi STEP7 Files from this folder may not be edited!
L] <project>.scl S7 blocks
M scr cg priv Files from this folder may not be edited!
L] ODK_Types.h Definition of the ODK base types
L] ODK_Functions.h Function prototypes
L] ODK_Execution.cpp Implementation of the "Execute" method
W src

L <project>.cpp

Function code: This file has always the suffix CPP, regardless of
whether you are creating a C or C++ project.

src_odk_helpers

Files from this folder may not be edited!

L] ODK_CpuReadData.h

Definition of the helper function for reading classic DBs.

L] ODK_CpuReadData.cpp

Implementation of the helper function for reading classic DBs.

L] ODK_CpuReadWriteData.h

Definition of the helper function for reading/writing classic DBs.

u
ODK_CpuReadWriteData.cpp

Implementation of the helper function for reading/writing classic
DBs.

L] ODK_StringHelper.h

Definition of the helper function for access to S7String/S7WString.

L] ODK_StringHelper.cpp

Implementation of the helper function for access to
S7String/S7WString.

Wl release so

L <project>.so

ODK Application Binary (release version) that must be transferred
to the target system.

L <project>.debuginfo.so

ODK Application Binary (debug version) that is required for the
post mortem analysis.

L <project>.symbols

Symbol information that is required for the post mortem analysis.

Wl launches

L <project>.gdb.launch

Start for the post mortem analysis.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 67

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6.1.3

Procedure

Result

6.1.4

68

Note
Invalid characters in the project name

All invalid characters in the project name are automatically replaced by an underscore. These
characters are allowed {A...Z, a...z, 1...9, -, _}.

"My + first#project" becomes, for example, "My___ first_project".

Generating a CPU function library

The generation of the project data is divided into two automated steps.

* Pre-Build: Generation of the files created by default based on the changed <Project>.odk
file

¢ Build: Generation of the SO file

To generate the project data, follow these steps:
1. Save all edited files.

2. In the "Build" menu, select the command "Build Project".

Note

The project data is only generated if the files have been changed.

The generation of the project data is started. The automatically generated files are stored in
the file system.

* SO file: Project directory\<Project>\<BuildConfiguration>\<Project>.so

* SCL file: Project directory\<Project>\STEP7\<Project>.scl

Defining the runtime properties of a CPU function library

The next step is to define the interface description of the CPU function library in the
<project>.odk file. The file contains the following elements:

¢ Comments
e Parameters

¢ Definitions of functions and structures

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

Procedure
To define the interface description in the <project>.odk file, follow these steps:
1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The interfaces file supports the following parameters:

Parameter Value Description

Context realtime Specifies that the CPU function library is loaded in the context of the
realtime environment (Page|70).

Trace on Specifies the trace function in the CPU function library. In this case, the
CPU function library requires 32 KB if memory as an additional trace buff-
er. A "GetTrace" function block is created by default for use in a STEP 7.

off A "GetTrace" function block is created. The trace buffer contains only one
trace entry with the contents: trace is off.

HeapSize [4...<Availabl | Specifies a memory in KB that can be used as heap for these realtime
e CPU applications.
memory

(Page/130)>]
k

HeapMaxBlockSize [8...<HeapSiz | Specifies the maximum memory size in bytes that can be allocated at one
e>] time.

SyncCallParallelCount [1...9] If a optional parameter and defines the maximum number of parallel calls
Default=3 in this CPU function library. The size of the memory which is reserved for

calls in this CPU function library:
SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)

SyncCallStackSize [1...1024]k Is a optional parameter and defines the size of the thread stack for a call in
Default=32k | this CPU function library. Each new call receives its own stack memory.

SyncCallDataSize [1...1024]k Is a optional parameter and defines the size of the data area for a call in
this CPU function library. The data area contains IN, INOUT and OUT pa-
rameters. Each new call receives its own stack memory.

Default=auto | The required data size is automatically calculated by the code generator.
With an ODK_CLASSIC DB, 65 KB is applied.

STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-
porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a..z,1..9,-, }

The project name is entered without spaces by default.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 69

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6.1.5 Environment for loading or running the CPU function library

When the SCL file is imported into STEP 7 as an external source, the ODK instructions are
created in the selected directory in STEP 7. You can load up to 32 CPU function libraries.

You can load and run your CPU function library in the context of the realtime environment:

Realtime environment

Add the following line of code in your <project>.odk file to use the CPU function library in the
context of the realtime environment:

Context=realtime

In this context, the CPU function library is not running in a host process at the Windows end,
but instead in the realtime environment. Because the CPU function library is loaded
synchronously, it should be loaded in a startup OB (e.g. OB 100).

The number of loadable CPU function libraries (Page 130) is limited in the context of the

realtime environment.

If the CPU function library has to be loaded in a cyclic OB (for example, OB 1), note the

following loading times:

CPU

Small SO file —» Loading time

Large SO file —» Loading time

CPU 1505SP

0.5MB — 20 ms

3MB - 70 ms

CPU 15075 (with SSD)

0.5MB — 20 ms

5MB — 100 ms

Determining the size of the CPU function library in the CPU memory

To determine the required size of the CPU function library in the CPU memory, follow these

steps:

1. Open acommand line dialog.

2. Enter the following path from the ODK installation folder (the appended option "-I"is a
lower-case "L"): eclipse\ build_tools\x86_64 gcc_pc_elf 11.3.0\bin\x86_64-pc-elf-readelf.exe
"<Storagelocation\File.so>" -|

You can see the size of your CPU function library under the heading "Program Headers" in

the "MemSiz" column.

Additional administrative memory is required for each CPU function library in addition to
the amount specified here. The administrative memory can be calculated as follows:

Administrative memory = SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)

70

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1.6

6.1.6.1

Functions

6.1 Creating a CPU function library

Defining functions and structures of a CPU function library

Defining functions a CPU function library

Functions are defined by the following general lines of code:
ODK RESULT <FunctionName>
([<InOut identifier>] <data type> <tag name>, etc.);

The <project>.odk file contains an example function description by default. You can change

this description and/or add more function descriptions.
ODK_RESULT MyFuncl ([IN] INT paraml, [OUT] INT param2);

Syntax rules for functions

The following syntax rules apply to functions within the <project>.odk file:
¢ Note that the function names are case-sensitive.

* You can split function definitions into several lines.

e End a function definition with a semicolon.

* TAB and SPACE are allowed.

¢ Do not define a tag name in a function twice.

¢ Do not use any keywords for the programming language that is used (for example
"EN / ENO" as parameter name)

¢ Use ODK_RESULT only for the return values of the function.

¢ The tag name must start with a letter or an underscore.

* lllegal function names are displayed during generation in the development environment.

¢ The following names are not allowed in combination of <STEP 7Prefix> and <function
name>: ODK_Load, ODK_Unld, ODK_ExcA, ODK_ExcS

<FunctionName>

Function names are valid with the syntax and character restrictions of the used programming
language.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 71

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

<InOut-ldentifier>

There are three defined InOut-Identifiers. Use these in the following order: [IN], [OUT],

[INOUT]

* [IN]: Specifies an input tag. The tag is copied to the function when it is called. This is
constant and cannot be changed.

e [OUT]: Specifies an output tag. The tag is copied back after the function has been

completed.

¢ [INOUT]: Specifies an input and output tag. The tag is copied to the function when it is
called. This is not constant and can be changed. The tag is copied back after the function
has been completed.

<DataType>

The data type defines the type of a tag. The following tables define the possible data types
and their method of representation in C++ or STEP 7:

Elementary data types:

ODK data type | SIMATIC data C++ data type | Description
type
ODK_DOUBLE LREAL double 64-bit floating point, IEEE 754
ODK_FLOAT REAL float 32-bit floating point, IEEE 754
ODK_INT64 LINT long long 64-bit signed integer
ODK_INT32 DINT long 32-bit signed integer
ODK_INT16 INT short 16-bit signed integer
ODK_INT8 SINT char 8-bit signed integer
ODK_UINT64 ULINT unsigned long 64-bit unsigned integer
long
ODK_UINT32 UDINT unsigned long 32-bit unsigned integer
ODK_UINT16 UINT unsigned short | 16-bit unsigned integer
ODK_UINT8 USINT unsigned char 8-bit unsigned integer
ODK_LWORD LWORD unsigned long 64-bit bit string
long
ODK_DWORD DWORD unsigned long 32-bit bit string
ODK_WORD WORD unsigned short | 16-bit bit string
ODK_BYTE BYTE unsigned char 8-bit bit string
ODK_BOOL BOOL unsigned char 1-bit bit string, remaining bits (1..7) are empty
ODK_LTIME LTIME long long 64-bit during in nanoseconds
ODK_TIME TIME long 32-bit during in milliseconds
ODK_LDT LDT unsigned long 64-bit date and time of the day in nanoseconds since 01/01/1970
long 00:00
ODK_LTOD LTOD Iunsigned long 64-bit time of the day in nanoseconds since midnight
ong
ODK_TOD TOD unsigned long 32-bit time of the day in milliseconds since midnight
ODK_CHAR CHAR char 8-bit character
Open Development Kit 1500S V2.5 SP4
72 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Complex data types:

ODK data type SIMATIC data C++ data type Description
type
ODK_DTL DTL ODK_DTL Structurelclass for date and time
(struct)
ODK_S7STRING STRING unsigned char Character string:
e For SIMATIC and C++:
8-bit character with length max. and act. (2xUSINT)
* For other languages:
native
ODK_CLASSIC_DB | VARIANT ODK_CLASSIC_DB | Classic DB (global or based on UDT)
(struct)
[ARRAY [1] Range of same data types.
You can use all data types as an array except ODK_CLASSIC_DB.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and data types of
this component and their order.

A user-defined data type can be defined in the user interface description with the keyword
"ODK_STRUCT".

Example
ODK_STRUCT <StructName>
{

<DataType> <TagName>;

bi

The following syntax rules apply to the structure:

* You can divide the structure into multiple lines.

* The structure definition must end with a semicolon.

* Any number of tabs and spaces between the elements is permitted.

e Itis not permitted to use any keywords for the generated language used (for example
"en [eno" as tag name).

You can create additional structures within a structure.

<StructName>

Structure names are valid with the syntax and character restrictions of the programming
language and as defined for tag definitions in STEP 7.

In STEP 7, the structure name is extended with the STEP 7 prefix.

<TagName>

Tag names are subject to the syntax and character restrictions of the programming language.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

73

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6.1.6.2

74

Example

The following code example explains the definitions of functions and structures. Sort the
parameters by: IN, OUT, INOUT.
//INTERFACE

ODK_STRUCT MyStruct
{
ODK_DWORD myDword;
ODK_S7STRING myString;
bi
ODK_RESULT MyFct ([IN] MyStruct myInStruct
, [OUT] MyStruct myOutStruct);

Use of ODK_CLASSIC_DB as parameter

The ODK_CLASSIC_DB data type may only be used with the InOut-Identifier [IN] and [INOUT].
If a parameter of data type ODK_CLASSIC_DB with InOut-Identifier [IN] or [INOUT] is used, no
other parameters, regardless of the data type, can be used with the same InOut-Identifier.

Example
// INTERFACE

// OK:

ODK_RESULT MyFuncl ([IN] ODK_CLASSIC_DB myDB) ;

ODK_RESULT MyFunc?2 ([IN] ODK_CLASSIC_DB myDB1, [INOUT] ODK_CLASSIC_DB
myDB2) ;

//

// NOT OK (Code Generator will throw an error):

// ODK_CLASSIC DB not permitted for [OUT]

ODK_RESULT MyFunc3 ([OUT] ODK_CLASSIC_DB myDB) ;

// if ODK CLASSIC DB is used for [IN], no other [IN] parameter may
be

// defined in this function

ODK_RESULT MyFunc4 ([IN] ODK CLASSIC DB myDB, [IN] ODK_INT32 myint);

Application example for C++
#include "ODK CpuReadData.h"
65?_RESULT MyFuncl (const ODK CLASSIC DB& myDB)
{ CODK_CpuReadData myReader (&myDB) ;
ODK_INT32 myIntl, myInt2;

myReader.ReadS7DINT (0, myIntl);
myReader.ReadS7DINT (4, myInt2);

return myIntl + myInt2;

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

In order to access the data type ODK_CLASSIC_DB within a user function, the helper functions
(Page|139) of the following classes are available:

* C(lass "CODK_CpuReadData"
e (lass "CODK_CpuReadWriteData"

6.1.6.3 Handling strings

You can define a maximum length for strings (String or WString). Define the maximum
number of characters in square brackets directly after the data type:

* ODK_S7STRINGI[30] or

* ODK_S7WSTRING[1000]

Without limitation, a string has a default length of 254 characters.

In order to access the data types ODK_S7STRING or ODK_S7WSTRING within a user function,
the string helper functions (Page|139) are available:

Example

//INTERFACE

ODK_RESULT MyFct (
[IN] ODK_S7STRING myStrHas254Chars
, [OUT] ODK_S7STRING[10] myStrHaslOChars
, [INOUT] ODK_S7STRING[20] myStrArrayHas20Chars5Times[5])

If you use [INOUT], you can set the string with a length that differs from the [INOUT of the
function block in STEP 7.

Note
Compatibility

If you use the "WSTRING" data type with more than 253 characters in a project, create a new
project with ODK version = V2.5 SP1.

The characters are not read/written correctly with a project created with ODK version < V2.5
SP1.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 75

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6.1.6.4 Definition of the <Project>.odk file

The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:

76

Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

Context=realtime
The CPU function library is loaded in the context of the realtime environment.
Trace=on

Specifies the trace function in the CPU function library. A "GetTrace" function block is
created by default for use in a STEP 7.

When you define the "ODK_TRACE" instruction (Page 97), it is also compiled and executed.
When you define the parameter Trace=on in the <project>.odk file, the instruction is
automatically defined with the following code:

#define ODK TRACE (msg, ...);

Example: ODK_TRACE("number=%d", 13);

Calling the instruction creates an entry in the trace buffer.

HeapSize

Specifies a memory in KB that can be used as heap for these realtime applications.
HeapMaxBlockSize

Specifies the maximum memory size in bytes that can be allocated at one time.
STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the CPU function library.
This is visible in STEP 7. You can change the parameter. The string length of the prefix
including function name must not exceed 125 characters (e.g.
ODK_App_SampleFunction).

"SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length may not exceed a length of 125 characters. The associated
function is located in the CPP file.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Example

//INTERFACE
Context=realtime
Trace=on

HeapSize=4k
HeapMaxBlockSize=1024
STEP7Prefix=0DK_App

/*
* Elementary data types:

*

* ODK_DOUBLE LREAL 64-bit floating point, IEEE 754

* ODK_FLOAT REAL 32-bit floating point, IEEE 754

* ODK_INT64 LINT 64-bit signed integer

* ODK_INT32 DINT 32-bit signed integer

* ODK_INT16 INT 16-bit signed integer

* ODK INTS8 SINT 8-bit signed integer

* ODK UINT64 ULINT 64-bit unsigned integer

* ODK_UINT32 UDINT 32-bit unsigned integer

* ODK_UINTI16 UINT 16-bit unsigned integer

* ODK UINTS8 USINT 8-bit unsigned integer

* ODK_LWORD LWORD 64-bit bit string

* ODK_DWORD DWORD 32-bit bit string

* ODK_WORD WORD l6-bit bit string

* ODK_BYTE BYTE 8-bit bit string

* ODK_ BOOL BOOL 1-bit bit string

* ODK_LTIME LTIME 64-bit duration in nanoseconds

* ODK_TIME TIME 32-bit duration in milliseconds

* ODK_LDT LDT 64 bit date and time of day

* in nanoseconds

* ODK_LTOD LTOD 64 bit time of day in nanoseconds
since midnight

* ODK_TOD TOD 32 bit time of day in milliseconds
since midnight

* ODK_DTL DTL structure for date and time

* ODK_CHAR CHAR 8 bit character

* ODK_S7STRING STRING character string with 8-bit characters

* ODK CLASSIC DB VARIANT classic DB (global or based on UDT)

* [] ARRAY field of this datatype

* User Defined Datatype:

* ODK_STRUCT UDT user defined structure

* Return data type:

* ODK_RESULT 0x0000 - Ox6FFF function succeeded

* (ODK_SUCCESS = 0x0000)

* 0xF000 - OxFFFF function failed

* (ODK_USER_ERROR BASE = 0xF000)

*/

ODK RESULT SampleFunction ([IN] ODK_ INT32 myInt

, [OUT] ODK_BOOL myBool
, [INOUT] ODK DOUBLE myReal);

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 77

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6.1.6.5

6.1.6.6

Modifying the <Project>.odk file

The following example shows you how you can change the <Project>.odk file to suit your
needs.

//INTERFACE

Context=realtime

Trace=on

HeapSize=4k

HeapMaxBlockSize=1024

STEP7Prefix=0DK_SampleApp

ODK_RESULT GetString ([OUT] ODK_S7STRING myString) ;
ODK_RESULT Calculate ([IN] ODK_INT64 1Inl,
[IN] ODK_DOUBLE In2,
[OUT] ODK_FLOAT Outl,
[OUT] ODK_INT32 Out2,
[INOUT] ODK BYTE InOutl[64],
[INOUT] ODK BYTE Inout2([64]);

Comments

Comments are started with a double slash "/[" and end automatically at the end of the line.

Alternatively, you can limit comments by /* <comment> */, which enables new lines in a
comment. Characters after the end of the comment identifier "*/" are further processed by
the code generator.

Comments for Visual Basic are marked with a apostrophe.

Comments for functions and structures

78

You place comments on functions and structures directly in front of the functions/structures.
These comments are transferred to the ODK_Functions.h and <project>.scl files.

In the <project>.scl file, the comments are copied to the block properties and duplicated in
the code area of the function.

Observe the following rules:

e Comments for functions and structures must be located directly in front of the
functions/structures (without blank line).

e The end of the comment is located in front of the ODK_RESULT or ODK_STRUCT keyword.

¢ You can use both identifiers "//* and "/* */" but not in combination within a comment.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Example

// this comment did not appear in MyStruct, because of the empty
line.

// comment MyStruct
//
ODK_STRUCT MyStruct

{
ODK_DWORD myDword;
ODK_S7STRING myString;

}i
/*

comment MyFct
%/
ODK RESULT MyFct ([IN] MyStruct myInStruct
, [OUT] MyStruct myOutStruct);

Comments for tags in functions and structures
Comments for function and structure tags are placed directly in front of or behind the tag.
These comments are transferred to the ODK_Functions.h/ and <project>.scl files.
The following rules apply to comments in front of tags:
¢ Comments must be located directly in front of the tag (without blank line)
¢ The end of the comment is the <InOut-ldentifier> of the tag
The following rules apply to comments after tags:
e Comments must be located after the tag name (without blank line)
The following general rules apply to comments for tags:
* You can use both identifiers "/[" and "/* */" but not in combination within a comment.

* In the header file, the same comment identifier is used ("/" or "/* */").

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 79

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Example

ODK_STRUCT MyStruct

{
// comment myDword BEFORE definition
ODK_DWORD myDword;

ODK_S7STRING myString; /* comment myString AFTER definition */
bi

ODK_RESULT MyFct ([IN] MyStruct myInStruct // comment
// myInStruct
// ... "second line"
, [OUT] MyStruct myOutStruct); /* comment
myOutStruct
*/...
6.1.7 Implementing functions
6.1.7.1 General notes

This section provides an overview of the basic topics relating to the implementation of
functions in a realtime environment.

¢ The function call is limited in time

Since the function is called synchronously, the function call must be adjusted to the
timing of the cycle.

¢ Trace functionality

ODK provides a trace function (Page|97) to check variables or the execution of functions in
the realtime environment.

¢ The execution of synchronous functions can be interrupted by higher priority OBs
(Page 93) running in the same CPU.

e Application size

The number of loadable CPU function libraries (Page 70) is limited in the context of the
realtime environment.

¢ C++ Runtime library

Functions that need operating system functionality (threading) cannot be used

Open Development Kit 1500S V2.5 SP4
80 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment
6.1 Creating a CPU function library

6.1.7.2 Callback functions

The project for the realtime CPU function library contains a CPP file (execute file:
<project>.cpp) to define your functions. This CPP file contains functions filled by default. You
do not necessarily have to fill these with additional user code to be usable. However, neither
may the functions be deleted under any circumstances.

The empty function has the following code (using the "OnLoad()" function as an example):
ODK_RESULT OnLoad (void)

{

// place your code here
return ODK SUCCESS;
}

You can define the following functions in the CPP file:

¢ OnLoad(): Called after loading the CPU function library

* OnUnload(): Called before unloading the CPU function library

¢ OnRun(): Called when the CPU changes to RUN mode after the OnLoad() function

¢ OnStop(): Called when the CPU changes to the STOP mode and before the function
OnUnload()

The OnStop() function is terminated if the execution takes longer than 50 ms when CPU
changes to STOP mode.

"OnLoad()" and "OnUnload()" function

The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

The following return values are possible:

Return value for "ODK_RESULT" Description

ODK_SUCCESS = 0x0000 Return value following a successful execution of the "OnLoad()" or "OnUnload()"
function

0x0001 — OXEFFF Invalid values (system-internal)

0xFO0O — OxFFFF You can define your own return values.

ODK_USER_ERROR_BASE = 0xF000 The loading stops and the CPU function library unloads for the "OnLoad()" func-
tion.
The CPU function library within the specified value range is still unloaded for the
"OnUnload()" function.

"OnRun()" and "OnStop()" function

The functions have a return value of type "ODK_RESULT" and typically provide information
about the status of the "ODK_SUCCESS" value.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 81

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

The following return values are possible:

Return value for "ODK_RESULT"

Description

ODK_SUCCESS = 0x0000

Default return value for a successful execution of the function "OnRun()" or "On-
Stop()”

0x0001 - OxFFFF

Direct feedback to the user program is not possible because these functions are
not called directly by the user at RUN/STOP mode transitions.

6.1.7.3 Implementing custom functions

Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the CPU function library in the Project Source file.

Procedure

To edit the function of a CPU function library, follow these steps:

1. To generate the function prototypes, execute the build.

2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h>/<OdkFunctions.cs/vb> to the

source file.

Note

Use the function prototype macro to transfer the step 3 in the future when there is a change
to the function parameters.

4. Edit the code of your CPU function library in the execute file.

CPU function library

The execute file contains a schematically represented function description by default. You

can change this description with corresponding changes in the <project>.odk file and/or add
more function descriptions.

Execute file based on C++ example
#include "ODK Functions.h"

EXPORT API
{

return

}
EXPORT_ API

{

return

}
EXPORT API

{

return

}

82

ODK_RESULT OnLoad (void)
ODK_SUCCESS;

ODK_RESULT OnUnload (void)
ODK_SUCCESS;

ODK_RESULT OnRun (void)

ODK_SUCCESS;

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

EXPORT API ODK_RESULT OnStop (void)
{
return ODK SUCCESS;
}
ODK_RESULT SampleFunction(const ODK INT32& myInt,
ODK_BOOLé& myBool,
ODK_DOUBLE& myReal)

return ODK SUCCESS;

6.1.7.4 Dynamic memory management

Introduction

ODK objects work with a dynamic memory management (heap). The following instructions
and functionalities are supported by using the dynamic memory management:

¢ The newl/delete and malloc/free instructions.
e STL (Standard Template Library)

e Software exceptions

The default setting for the heap size is 4 KB. The heap size can be from 4 KB up to the

available memory of the CPU (Page|130). You change the heap size in the <project>.odk file
using the following parameters:

e HeapSize
¢ HeapMaxBlockSize

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 83

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

Special features

Example

84

Because the used memory area (heap) has been optimized with regard to realtime and cyclic
processing, it has some special features:

Blocks can only be allocated up to a specified size during the compiling time of the ODK
object.

Note

You can specify the maximum block size with the HeapMaxBlockSize parameter in
<project>.odk. However, this has an effect on the global memory use for

CPU function libraries, because the management information of the following memories is
required in addition to the actual heap:

size_heap_admin_data = HeapMaxBlockSize * 3

Example: Therefore, with a maximum block size of 100 KB, this project needs 300 KB of
global data in addition to the heap. This data is used for heap administration.

You can find additional information under Environment for loading or running the CPU
function library (Page|70).

Blocks can initially be requested in any size. When the blocks are released again, they are
entered in free lists. There is a free list in each case for all possible block sizes (up to
HeapMaxBlockSize) so that later allocations can be performed in constant time.

There is, however, no merging of neighboring released blocks to form a larger block.

This means continuously recurring requests can be met faster than constantly different
requests.

Example: The user allocates only blocks with 8 bytes until the heap is full. The user then
releases everything again so that the heap is completely empty. An allocation of a block
with 16 bytes is then no longer possible, however, because all free blocks are entered in
the free list for 8 bytes and merging is not possible.

#include <assert.h>
#include <exception>
#include <vector>

// check parameter
assert (NULL != myPointer);

// allocate heap memory with malloc ()
char* pl = (char*) malloc(32);
if (NULL == pl)
{
ODK_TRACE ("ERROR: malloc() failed");
}
else
{
ODK_ TRACE ("malloc () done");
// free allocated memory
free(pl);

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

ODK_TRACE ("free () done");
}

// allocate heap memory with new ()
char* p2 = NULL;
try
{
p2 = new char [64];
ODK TRACE ("new done") ;
// delete allocated memory
delete[] p2;
ODK_TRACE ("delete done");
}
catch (std::exceptioné& e)
{
ODK_TRACE ("exception: %s", e.what());

}

std::vector<int> vec; // empty vector of ints

6.1.7.5 Debug (Test)

You have the possibility to write a custom test to debug the CPU function library for the
realtime environment in a Windows environment. This will ensure the quality of the code.

Requirements
You need an Internet connection for this procedure.

You need administrator rights for this procedure.

Procedure before the first debug process

To perform a test on a CPU function library for the realtime environment in a Windows

environment, perform the following once:
1. Close Eclipse.
2. Open the "bin" folder of your ODK installation.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

85

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

3. Run the "MinGW32_Install.cmd" file with the "Run as administrator” command from the
shortcut menu.

A text editing dialog opens. The Windows prompt installs all necessary components.

i12-man. tar.lzma

2-man.tar.lzma

install done

4. Click on any button.
MinGW32 is installed.

Basic procedure
To perform the test, proceed as follows:
1. Open your project in Eclipse.

2. Change the debug environment to "Windows". To do this, select the "debug (win32)" option
in menu "Project > Build Configurations > Set Active".

wrch Run Window Help
T Ay Open Project & 5 - - - - - | -~ Q
Close Project

= 0
aig Build All Ctrl+B
Build Configurations 2 Set Active » 1 debug (win32)
Build Project Manage... v 2release (s0)
Build Working Set ' Build by Working Set v |
Clean... Set Active by Working Set ,

v Build Automatically

Edamanas Warlina Cote

3. Create the project as debug version. To do so, select the "Build Project” command in the
"Project " menu.

4. If you debug the project for the first time, you must now set the debug configuration.
Otherwise, continue with step 8.

5. To do this, select the "Debug Configurations" command in the "Run" menu.

The "Debug Configurations" dialog opens.

Open Development Kit 1500S V2.5 SP4
86 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.1 Creating a CPU function library

6. To create a new application, select the entry "C/C++ Application" and select the "New"
command in the context menu.

S Debug Configurations

Create, manage, and run configurations

i | B 2~

type filter text
[c] C/C++ Application

Configure launch
¥ - Press the 'N

=l - Precc the '[h

[E] C/C++ Attachto 4 [New

[E1 C/fC++ Postmortet

]

Puvnlicrata

7. Configure your test environment.

8. Click the "Search Project" button to select your application.

% Debug Cenfigurations

Create, manage, and run configurations

€3 Program not specified

fEX|E -

type filter text

[E] C/C++ Application

[T] ODK_15005 debug (win32)
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[E] C/C++ Remote Application
4 Eclipse Application
] Java Applet
[T Java Application
Ju JUnit
% 1Unit Plug-in Test
= Launch Group
4 0SGi Framework
E Remote Java Application

Marme:

ED Main

0DK_15005 debug (win32)
()= Arguments P8 Environment | %5 Debugger *

C/C++ Application:

Variables... l ’5earch Project...] [Browse... l
Project:

Build (if required) before launching

Build configuration: | Use Active

Select configuration using 'C/C++ Application’
(") Enable auto build () Disable auto build

@ Use workspace settings Configure Workspace Settings...

9. Start the debug process by clicking the "Debug" button.

10.1f you want to debug your project again, select the "Local C/C++ Application” command in
the menu "Run > Debug as".

ct Window Help
¥ o @, Run
%, Debug
Run History
Run As

Run Configurations...

Debug History
Debug As

Nebua Confinurations...

Open Development Kit 1500S V2.5 SP4

Ctrl+F11 - - - - -
F11

¥ |[E] 1Llocal C/C++ Application
I

Programming and Operating Manual, 12/2023, A5E35253941-AH 87

Developing a CPU function library for the realtime environment

6.2 Transferring a CPU function library to the target system

Result
Eclipse suggests a change in the debug perspective.
The test code is executed. The test code for the test is compiled only in the debug
environment and is implemented in the "main()" function. This function is located in the
<project>.cpp file.
The "main()" function offers you the following possibilities:
e Test data are provided and results can be reviewed.
* You can monitor tags of the function.
* You can use breakpoints to check the execution.
Test code
The following sample code shows the default contents of the "main()" function.
/*
* main() 1s defined for windows debugging, only.
* Therefore all automatically invoked functions
* (OnLoad, OnRun, OnStop, OnUnload) have to be called manually.
*/
#ifdef DEBUG
int main (int argc, char* argv([])
{
ODK_RESULT ret = ODK_SUCCESS;
ret = OnLoad():;
// error handling
ret = OnRun () ;
// error handling
// place your test code here
ret = OnStop():;
// error handling
ret = OnUnload();
// error handling
return ret;
}
#endif // _DEBUG
6.2 Transferring a CPU function library to the target system
Procedure

Manually transfer the SO file to the target system. Use the file explorer of the web server of
the CPU to transfer the CPU function library.

Open Development Kit 1500S V2.5 SP4
88 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment
6.2 Transferring a CPU function library to the target system

To transfer an SO file, follow these steps:

1. Enable the Web server in your STEP 7 project.
2. Open the web server of the CPU in the browser.
3. Open the "Filebrowser" menu.
4

. Open the following directory as the storage location for the CPU function libraries:
\ODK15005S\

Filebrowser
—

PC-System 1/ ODK15005 /

» Start page sSize
» Diagnostics Directory operations:
» Diagnostic Buffer | |E
A || Upload file

» Motion conirol diaanostics

Date modified

30102014 1308 File folder

» Tag status
301020141308 File foider
» alchiabies 301020141307 File folder
» Trace & Music __ StringHandling.so 301020141308 SO File
¢+ Datalogs &= Pictures =
; . Videos
» User Files
» User-defined | 1% Computer
» Filebrowser @ (C:) SYSTEM
§s (D) Volume - TE =] .
v Introduction File name: StringHandling.so - {Aﬂﬁu(’.‘} v]

L Openy v | Comce |

Figure 6-3 Transferring the SO file via the file explorer from the web server of the CPU

5. Click the "Browse" button.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 89

Developing a CPU function library for the realtime environment

6.3 Importing and generating an SCL file in STEP 7

Result

6.3

Requirements

Procedure

90

6. Navigate in the file system to the SO file or copy the location from the properties of the SO
file in Eclipse.

7. Confirm the transfer of the SO file to the web server of the CPU by pressing the "Load File"
button.

The SO file is transferred to the load memory of the CPU.

After a successful transfer, the SO file is loaded by calling the "<STEP7Prefix>_Load"
instruction.

Importing and generating an SCL file in STEP 7

When generating the project data, the following files are created:
e SCL file for importing into STEP 7
« Allfiles depending on the configuration, e.g. SO file

If STEP 7 is installed on another PC as the development environment, you must transfer the
generated SCL file to the PC where the STEP 7 is installed.

The project data were generated.

To import and compile the SCL file, follow these steps:
1. Start STEP 7.
2. Open your project.
3. Select the project view.
4. Select the CPU in the project tree.
5. Select the "External Sources" subfolder.
The "Open" dialog box opens.

6. Navigate in the file system to the SCL file that was created during generation of the project
data or copy the storage location from the properties of the SCL file to Eclipse.

7. Confirm your selection with "Open".

The SCL file is imported. After completion of the import process, the SCL file is displayed in
the "External Sources" folder.

8. Compile the SCL file before you use the blocks in your project.
9. To do this, select the SCL file in "External sources" subfolder.

10.Select the "Generate blocks from source” command in the shortcut menu.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

Result

6.4

6.4.1

Introduction

6.4 Executing a function

STEP 7 creates the S7 blocks based on the selected SCL file.

The "GetTrace" function block, which makes it possible to read the trace buffer, is created by
default.

The created blocks are now automatically displayed in the "Program blocks" folder below the
selected CPU in the project tree. You can load the function blocks during the next download
to the target device.

Executing a function

Loading functions

Regardless of the context in which the CPU function library is running, the loading procedure
consists of the following steps:

e (Call the "<STEP7Prefix>_Load" instruction in the STEP 7 user program.
* The loading process takes place synchronously

To avoid influencing the cycle time, load the CPU function library in startup OB (e.g. OB
100).

If the CPU function library has to be loaded in a cyclic OB (for example, OB 1), note the
following loading times:

CPU Small SO file —» Loading time | Large SO file —» Loading time
CPU 1505SP 0.5 MB — 20 ms 3MB - 70ms
CPU 1507S (with SSD) 0.5MB — 20 ms 5MB — 100 ms

e Assoon as the "<STEP7Prefix>_Load" instruction returns after the first call, the CPU
function library is loaded.

Note
Loading the same CPU function libraries with a modified <project>.odk file

When you load a CPU function library and subsequently change the <project>.odk file, we
recommend that you unload your CPU function library first before you load the newly
generated CPU function library. If the "<STEP7Prefix>_Unload" instruction is not executed,
both CPU function libraries are in the memory. This can lead to insufficient memory being
available for the CPU.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 91

Developing a CPU function library for the realtime environment

6.4 Executing a function

"<STEP7Prefix>_Load" instruction

A CPU function library is loaded by calling the "<STEP7Prefix>_Load" instruction in the STEP 7
user program.

<STEP7Prefix>_Load

REQ

DONE

BUSY

ERROR

STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Load":

Section Declaration | Data type | Description

Input REQ BOOL A rising edge activates the loading of the CPU function library.

Output DONE BOOL Indicates that the instruction has finished loading the CPU function library.

Output BUSY BOOL Indicates that the instruction is still loading the CPU function library.

Output ERROR BOOL Indicates that an error occurred during the loading of the CPU function library.
STATUS gives you more information about the possible cause of the error.

Output STATUS INT Provides information about possible sources of error, if an error occurs during

the loading of the CPU function library.

Input parameters

An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameters

The following table shows the information that is returned after loading.

DONE BUSY ERROR STATUS Meaning

0 0 0 0x7000 No active loading
=28672

1 0 0 0x7100 CPU 1500 V2.0 and later:
=28928 CPU function library is already loaded.
1 0 0 0x0000 Loading was performed successfully.

=0

0 0 1 0x80A4 CPU function library could not be loaded.
=-32604
0x80C3 CPU function library could not be loaded. The CPU currently does not
--32573 have enough resources.

Unload the CPU function library before you load a new CPU function
library or restart the CPU.
0x8090 CPU function library could not be loaded. An exception occurred during
—-32624 execution of the "OnLoad()" function.
0x8092 CPU function library could not be loaded because the library name is
=-32622 invalid.
0x8093 CPU function library could not be loaded because the CPU function
—-32621 library could not be found. Check the file name and path of the file.
Open Development Kit 1500S V2.5 SP4
92 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.4 Executing a function

DONE BUSY ERROR STATUS Meaning

0x8095 CPU function library could not be loaded due to the following reasons:
=-32619 e The SO fileis not a CPU function library.

e The CPU does not support the utilized ODK version.

0x8096 The CPU function library could not be loaded because the internal iden-
—-32618 tification is already being used by another loaded CPU function library.
0x8097 CPU 1500 V1.8 and earlier:

=-32617 CPU function library is already loaded.

0x8098 CPU function library could not be loaded because the CPU function
—-32616 library is currently being unloaded.

0x8099 Unable to load the CPU function library because the instruction was not

--32615 called in an OB with lowest priority. Use a Startup OB (e.g. OB100) or a
Program cycle OB (e.g. OB1).

0x809B CPU 1500 V2.0 and later:

=-32613 The CPU function library could not be loaded and returns an invalid
value (the values 0x0000 and 0xFOOO - OxFFFF are allowed)

0xFO00 — CPU 1500 V2.0 and later:

OxFFFF CPU function library could not be loaded. An error occurred during exe-
=-4096 — -1 | cution of the "OnLoad()" function.

6.4.2 Calling functions

Introduction

Once the CPU function library is loaded, you can execute C functions via your STEP 7 user
program. This call is made from the corresponding "<STEP7Prefix>SampleFunction"
instruction.

Priority — — — — ~ T T T T 7 - T - -==-==F
Level C I |

Priority T 7 r-—=-—=-=-
Level B |

Priority I
Level A |

Figure 6-4 Calling functions

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 93

Developing a CPU function library for the realtime environment

6.4 Executing a function

The execution of synchronous functions can be interrupted by higher priority OBs running in
the same CPU.

¢ (Call another ODK function
¢ (Call the same function

Therefore, when creating your CPU function library make sure that the function calls are
implemented as re-entrant or avoid parallel execution.

If you implement more than the number of parallel calls set in "SyncCallParallelCount”, the
function returns the status 0x80C3.

"<STEP7Prefix>SampleFunction" instruction

A CPU function library is called by the "<STEP7Prefix>SampleFunction" instruction.

<STEP7Prefix>SampleFunction
mylnt STATUS
myReal myBool

The following table shows the parameters of the instruction "<STEP7Prefix>SampleFunction":

Section

Declaration | Data type | Description

Automatically generated parameters

Output

STATUS INT This output value provides information about possible sources of error, if an

error occurs during the execution of the CPU function library.

User-defined parameter

Input mylnt User-defined input tags
InOut myReal User-defined input-output tags
Output myBool User-defined output tags

Output parameters

The "<STEP7Prefix>SampleFunction” instruction only has the "STATUS" output parameter.

The following table shows the information for the output parameter returned after
execution.

STATUS Meaning

0x0000 - Function has been executed and returns a value between 0x0000 and Ox6FFF.

Ox6FFF (ODK_SUCCESS = 0x0000)

=0 - 28671

0x80A4 CPU function library could not be executed for the following reasons:

=-32604 * Astack overflow was detected after execution of the function. To avoid sequential errors, unload the
CPU function library. The developer of the CPU function library must ensure that the stack is not
overwritten.

e The "<STEP7Prefix>_Unload" instruction was executed during a function execution. The execution of
the function was interrupted and terminated immediately. No return value is sent to the CPU.
Wait until the "<STEP7Prefix>_Unload" instruction has ended. Then load the CPU function library
again.
Open Development Kit 1500S V2.5 SP4
94

Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.4 Executing a function

STATUS Meaning
0x80C3 CPU function library could not be executed. The CPU currently does not have enough resources.
=-32573 Pay attention to the maximum number of parallel calls (SyncCallParallelCount).
0x8090 CPU function library could not be executed. An exception occurred during execution.
=-32624 Each unhandled exception reduces the available heap size. An unhandled exception can damage the CPU
function library and lead to this no longer being used for further calls. The CPU function library must be
unloaded. The developer of the CPU function library must handle the exception and deliver an applica-
tion-specific error value.
0x8091 CPU function library could not be executed. A "STOP" occurred during the function call.
=-32623
0x8096 CPU function library could not be executed because the CPU function library was not loaded or unloading
—-32618 is not yet finished.
0x8098 CPU function library could not be executed because the CPU function library is different than the ODK
—-32616 instructions (FBs) in STEP 7:
e older
* newer
e different parameters
0x8099 CPU function libraries could not be executed because the maximum amount of input data (Sync-
—-32615 CallDataSize) was exceeded (declarations with "In" and "InOut").
0x809A CPU function libraries could not be executed because the maximum amount of data (SyncCallDataSize)
—-32614 was exceeded (declarations with "In", "Out" and "InOut").
0x809B The function returns an invalid value (a value between 0x0000 and Ox6FFF; OxFOOO and OxFFFF is al-
=-32613 |OW6C|).
0x809C Function uses an invalid data type:
=-32612 + IN_DATA
e INOUT_DATA
* OUT_DATA
0xF000 - CPU 1500 V2.0 and later:
OxFFFF The function could not be executed and returns a value between 0xFOOO and OxFFFF.
=-4096 — -1

(ODK_USER_ERROR_BASE = 0xF000)

Note
Call of function(s) influences the cycle time

When you call a function, the function parameters are copied. In particular in the case of
large amounts of data or of structured data, this can lead to the cycle time being influenced.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 95

Developing a CPU function library for the realtime environment

6.4 Executing a function

6.4.3

Unloading functions

Introduction

The CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction. Call is
made from the STEP 7 user program.

In addition to this call, the CPU function library is also automatically unloaded for the
following reasons.

¢ The CPU is switched off
e The CPU is reset

Regardless of the context in which the CPU function library is running, the unloading
procedure consists of the following steps:

e (Call the "<STEP7Prefix>_Unload" instruction in the STEP 7 user program.

¢ From now on, no new executes can be carried out for this CPU function library. Executions
still running are aborted. The execution of the function is interrupted and terminated
immediately. No return value is sent to the CPU.

¢ The host calls the "OnStop()" and "OnUnload()" functions.

The unloading of the cycle time can be influenced because the "OnStop()" and
"OnUnload()" functions are called synchronously.

e The CPU function library is being unloaded.

"<STEP7Prefix>_Unload" instruction

A CPU function library is unloaded by calling the "<STEP7Prefix>_Unload" instruction in the
STEP 7 user program.

<STEP7Prefix>_Unload
REQ DONE
BUSY
ERROR
STATUS

The following table shows the parameters of the instruction "<STEP7Prefix>_Unload":

Section Declaration | Data type | Description
Input REQ BOOL A rising edge activates the unloading of the CPU function library.
Output DONE BOOL Indicates that the instruction has finished unloading the CPU function library.
Output BUSY BOOL Indicates that the instruction is still unloading the CPU function library.
Output ERROR BOOL Indicates that an error occurred during the unloading of the CPU function library.
STATUS gives you more information about the possible cause.
Output STATUS INT Provides information about possible sources of error, if an error occurs during
the unloading of the CPU function library.
Open Development Kit 1500S V2.5 SP4
96 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.4 Executing a function

Input parameters

An edge transition (0 to 1) at the "REQ" input parameter starts the function.

Output parameter STATUS

The following table shows the information that is returned after unloading.

DONE BUSY ERROR STATUS Meaning
0 0 0 0x7000 No active unloading
=28672
0 1 0 0x7001 Unloading in progress, the first call
=28673
0 1 0 0x7002 Unloading in progress, ongoing call
=28674
1 0 0 0x0000 Unloading was carried out successfully
=0
0 0 1 0x80A4 CPU function library could not be unloaded. A communication error

—-32604 between the CPU and ODK occurred during the execution of the "OnUn-
load()" function.

0x80C3 CPU function library could not be unloaded. The CPU currently does not
—-32573 have enough resources.

0x8090 An exception occurred during the unloading of the CPU function library.
—-32624 The CPU function library has been unloaded nevertheless.

0x8096 CPU function library could not be unloaded because the CPU function
—-32618 library was not loaded or unloading is not yet finished.

0x8098B CPU 1500 V2.0 and later:

=-32613 The CPU function library could be unloaded and returns an invalid value

(the values 0x0000 and 0xFO0O - OxFFFF are allowed)
0xF0O00 - CPU 1500 V2.0 and later:

OxFFFF CPU function library could be unloaded. An error occurred in the
=-4096 — -1 | CPU function library during the execution of the "OnUnload()" function.

6.4.4 Reading the trace buffer

ODK provides a trace function to check variables or the execution of functions in the realtime
environment. The trace function supports the following elements:

* Anintegrated trace buffer for each CPU function library.
e An"ODK_TRACE" instruction that you can add to your code

¢ A"GetTrace" function block, which makes it possible to read the trace buffer

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 97

Developing a CPU function library for the realtime environment

6.4 Executing a function

"ODK_TRACE" instruction

If you define the "ODK_TRACE" instruction, it is also compiled and executed. When you define
the parameter Trace=on in the <project>.odk file, the instruction is automatically defined
with the following code:

#define ODK TRACE (msg, ...);

Example: ODK_TRACE("number=%d", 13);

Calling the instruction creates an entry in the trace buffer.

When you define the parameter Trace=off in the <project>.odk file, no trace data is written.

Trace data is written automatically when an exception occurs.

Reading the trace buffer

The "GetTrace" function block enables you to read the trace buffer. The entries of the trace
buffer can be read in the following ways:

e By avariable table in the web server of the CPU

e By avariable table in STEP 7 (online)

¢ Onan HMI display

The function block is included in the standard CPP file "<project>.cpp".

GetTrace

TraceCount

| STATUS

The following table shows the parameters of the "GetTrace" function block:

Section Declaration | Data type | Description
Output STATUS INT Number of trace entries actually read
Input TraceCount INT Number of trace entries to be read
Output TraceBuffer Array Trace string array for the user
[O~;255] of | Each trace string consists of:
String[125
] * Date
e Time-of-day
e OB number
e File name
* Line number
* Trace text (trace implemented by the user)
Define the function block in the SCL file as follows:
#ret := "ODK App MyFct DB 1" (myInt:=4);
IF (#ret > 0)
{
#ret := "ODK App GetTraces DB 1" (TraceCount:=20);
// ret val = number of entries
}
Open Development Kit 1500S V2.5 SP4
98 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.5 Post Mortem analysis

When the "GetTrace" function block is called in STEP 7, the instance block appears as follows:

ODK_RT_GetTrace_DB
Namig Data type St valug Monitor valug

1 @ ¥ Input

2 4@n TraceCount g o
ila~ oupu

4 @ STATUS: n 256

5 l@ls = Tcebufier | Amayto.255_ [W]=]

6 €@ = Tmcemuferlo] stwinglzsal ‘201411017 12:06:52.201 169 OB1 _srelmyOOKAPp.cpp(B7): Exscuting ADD (IN1 = 561, INZ = 99, QUTI = 660)°
7@ = TraceBuMer[1) Sering|254) 20141017 12:06:33.747131 OB1 _tsrelmyCDKApp.cpp{BT): Executing ADD (N1 = 15, IN2 = 31, OUTI = 46Y
ala = TraceBufer(2] String|254] o

L. =] = TraceBufer(3] String[254)

m+|E = Trace Buffer|4] Swing{254]

M = TraceBufier(5) String|254]

243 L] TraceBuffer[§] String|254]

13 = TraceBufer7] Sering|284]

14 - TraceBuffer(8] String|254]

1541 = TraceBuferd] String[254]

16 4@ = TraceBuffer(10] String[254]

i@ = TraceBuffer(11] String[254]

18 =01 = TraceBuffer[12] String|254]

| .- Tracegufier[12] Stringl254]

20 <O = TraceBuffer[14] String[254]

2@ - TraceBuffer[15] stringl254] m

24 = TraceBuffer[16] Swing[254] m

da - TraceBuffer[17] stringl254] mr

24 g = TraceBufer[18] String|254) m

@ - TraceBuffer[19] String|254] m

26 @ = TraceBuMer|20] Sering|254) m

7@ s Tracesufier21] String|254] m

8 0w TraceBuffer|22] Sering|254) m

224@ = TraceBufier(23] String|254] m

50 @ = TraceBufer|24] String[254] m

n | =l TraceBuffer(25] Siring|254] m

.
6.5 Post Mortem analysis
.

6.5.1 Introduction

You use the post mortem analysis to evaluate the system after an exception. The post
mortem files map a snapshot at the time of the exception.

You can analyze the dump with the post mortem analysis. It includes, for example:
* Register
* Stack
* Locallglobal data
» Transfer parameters
e The exception number under "g_PostMortemExceptionNr" in the window "Expressions”
An exception can be triggered by one of the following cases:
e Execution of an illegal command
— Division by zero
— Access to protected memory

¢ An exception triggered by the "throw" instruction but not handled by the "try...catch”
instruction

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 99

Developing a CPU function library for the realtime environment

6.5 Post Mortem analysis

The objective of the post mortem analysis is to find the error within the CPU function library
that caused the exception.

NOTICE

Exception influences the cycle time

When an exception occurs in your application, the complete application memory is
buffered. This may take some milliseconds and influence the cycle time.

The post mortem files for the snapshot of the first exception are not created until the CPU
changes from RUN to STOP. You can use it for the following post mortem analysis. They are
stored in the following directory: <load memory>/ODK1500S

The following files are created or overwritten during this process and can, for example, be
downloaded via the web server:

* <project>.ed

Binary dump of the shared object in which the exception has occurred
e <project>.es

Stack at the time of the exception
e <project>.er

Script for restoring the snapshot at the time of the exception

NOTICE

Insufficient load memory

When there is not enough load memory, the post mortem files are not saved properly.

Make sure that you have enough load memory for your applications.

Open Development Kit 1500S V2.5 SP4
100 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment
6.5 Post Mortem analysis

6.5.2 Execute post mortem analysis

Procedure
To run a post mortem analysis, follow these steps:
1. Open Eclipse.

2. Load the post mortem files to the engineering PC via the web server. Load these files to the
same directory in which the SO file is stored.

B C/C++ - Project/src/Project.cpp - Eclipse
File Edit Source Refactor MNavigate Search Prc

- | By v wgvraiv v
) . o " =~
[t~ Project Explorer &2 E = B8
4 = Project
- 4 Binaries
» i Includes
& sre

&2 src_cg_priv
2 src_odk_helpers
& def
& launches
4 (= release (s0)
& src
& src_cg_priv

= err nik halners

3. Select the required project.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 101

Developing a CPU function library for the realtime environment

6.5 Post Mortem analysis

4. Start the debugging in one of the following ways:

— From Favorites:
BrOv Qv ® v o
=] TestPrDject.gdb%

Debug As 4
Debug Configurations...

Organize Favorites...

— Using "Debug Configurations”

BrOv Qv ® v o
{no launch history)

Debug As 4
Debug Configuration%
Organize Favorites...

% Debug Configurations

Create, manage, and run configurations

2 [T —+i
CEx 8%~ Mame: TestProject.gdb

‘ Main -3 Debuggeﬂ ™

type filter text
4 [6] GDB Hardware Debugging =

= TestPrDje%ng L

Filter matched 15 of 15 items

Apply Revert

@ Debug] [Close

Open Development Kit 1500S V2.5 SP4
102 Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a CPU function library for the realtime environment

6.5 Post Mortem analysis

When you start a debug process for the first time, a dialog opens prompting you to select

the required launch environment.

Select the item "GDB (DSF) Hardware Debugging Launcher".

This dialog allows you to specify which launcher to use when multiple
launchers are available for a configuration and launch mode.

[#] Use configuration specific settings n i i

Launchers:

iGDB (DSF) Hardware Debugging Launcher|
Standard GDB Hardware Debugging Launcher

Description
Jtag hardware debugging using the Debugger Services Framework (DSF).

@) oK I I Cancel I

%

a Select Preferred Launcher l;lm

A dialog opens showing you the progress of the loading process for the post mortem

image. The loading process can take several minutes, depending on the size of the post

mortem image.

. Select the required debug view.

9 Confirm Perspective Switch

=x=)

Do you want to open this perspective now?

|| Remember my decision

e This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It incorporates
) views for displaying the debug stack, variables and breakpoint management.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

103

Developing a CPU function library for the realtime environment

6.5 Post Mortem analysis

6. Run the debug process.

F |
@ Debug - TestProject/src/TestProject.cpp - Eclipse SDK E‘@ﬂ
File Edit Source Refactor Mavigate Search Project Run Window Help
T Gt BN RPET N HyOrauvyiem® gy
b e S o O - v | = Quick Access %’| &' Java EEC/C++ |%% Debug
% Debug % 8|1 T =0 wvx % MRmM — O
4 [t] TestProject.gdb [GDB Hardware Debugging] = B &R K| A T
4 [TestProject.so [cores: 0] L MName Type Value il
4 4 Thread [1] 1 (core 0) [core: 0] (Suspended : User Request) I =i int 0 ‘E‘
= CreateException() at TestProject.cpp:84 0x2b0236f8 9= k int 10 B
= Execute() at ODK_Execution.cpp:93 0x2b022db6 = | int 0 -
= ExecuteRT() at ODK_Execution.cpp:133 0x2b022e6kd -
TestProjectodk | [¢ TestProject.cpp 2 = 0
20~ 0DK_RESULT CreateException () -
81 {
82 int i = @;
83 int k = 10; E|
s34 | dnt 1 =k / i; -
a5
< | 1 3

Bl Console 52 & Tasks Prob maor = d

m
m
m
(o]
4]
m

m

TestProject.gdb [GDE Hardware Debugging] gdb

The target endianness is set automatically (currently little endian) -

Bx2b02368 84 int 1 = k / i; i

4 b
Writable Smart Insert | :

The exception number is displayed as "g_PostMortemExceptionNr" in the window
"Expressions".

Open Development Kit 1500S V2.5 SP4
104 Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.1 Install additional Eclipse plugins

Requirement
e ODKis installed.

¢ The Eclipse development environment is installed.

Procedure
1. Start Eclipse as a development environment.
2. Select the command "Install New Software..." in the menu bar under "Help".
The "Install" dialog opens.

3. Select the "--All Available Sites--" selection under "Work with:".

g

()

£ Install =

Available Software
Check the items that you wish to install.

i

Work with:” - Ad
Find more software by working with the "Available Software Sites” preferences.
type filter text
Marne Version it

> [] 000 APITeols Execution Environment Descriptions

> [] 000 Application Development Frameworks

» [] 000 Business Intelligence, Reporting and Charting -
] [T r

| SelectAll || Deselect Al

Details

Show only the latest versions of available software [¥] Hide iterns that are already installe
[] Group items by category What is already installed?

[7] Show only software applicable to target environment

[¥] Contact all update sites during install to find required software

™
'\‘?,' < Back MNext = Finish

Figure 7-1 Install dialog

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

105

Development of a C/C++ runtime application
7.2 Create C/C++ application

4. Select the following plugins:

— C/C++ Remote Launch

— TCF Target Explorer

— TCF Remote System Explorer

— TCF C/C++ Debugger

You can filter the selection via the text box.
5. Confirm with "Next".

6. Accept the license provisions and install the plugin with "Finish".

Result

The plugins are installed and Eclipse restarted.
7.2 Create C/C++ application
7.2.1 Requirements

e ODK s installed.
¢ The Eclipse development environment is installed.
e Additional Eclipse plugins are installed.

e SSH client (for example, PuTTY) is installed.

Note

Root rights

The default user and the C/C++ application must not have any root rights. Create a new user
to execute the C/C++ application.

Performance and jitter influence through C/C++ application

Depending on the programming type in the C/C++ application, CPU performance may be
influenced by jitter.

Know-how protection

The customer is responsible for the C/C++ application and its know-how protection.

Open Development Kit 1500S V2.5 SP4
106 Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.2 Create C/C++ application

7.2.2 Creating a C/C++ Runtime Application project

A template for an Eclipse project is included in the installation of ODK 1500S to help you
develop a C/C++ runtime application.

Procedure
To create a project in Eclipse using a C++-project ODK template, follow these steps:
1. Start Eclipse as a development environment.
2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.

£ C/C++ - Eclipse
Edit Source Refactor WNavigate Search Project Run Window Help

MNew Alt+Shift+«MN » | &Y Makefile Project with Existing Code

Open File... ¥ C++ Project

Close Ctrl+W s

Close Al Ctrl+Shiftew |1 Project..

Save Chrles [c-] Converttoa C/C++ Project (Adds C/C++ Nature)
= [SRR I

Figure 7-2 Creating a new project with Eclipse

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 107

Development of a C/C++ runtime application

7.2 Create C/C++ application

3. Select one of the following templates depending on the CPU firmware version:

"C++ Project for MFP Linux application (CPU 1518 MFP - up to FW v2.6.1)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version <V2.6.1)

"C++ Project for MFP Linux application (CU 1518 MFP FW v2.8)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version = V2.8)

— "C++ Project for MFP Linux application (CU 1518 MFP FW v2.9 or higher)"
(Template for CC++ applications for 1518 MFP CPUs with firmware version = V2.9)

Confirm your selection with "Next".

& New Project O d

Select a wizard

Wizard=:
type filter text

122 Java Project
Java Project from Existing Ant Buildfile
IZ Plug-in Project
= General
= C/C++
= CVs
= Java
v [= ODK 13005 Templates
E C++ Project for CPU function library (CPU Runtime)
E C++ Project for MFP Linux application (CPU 15318 MFP - up to FW v2.6.1)
E C++ Project for MFP Linux application (CPU 1518 MFP PW v2.8)
E C++ Project for MFP Linux application (CPU 1518 MFP FW vZ.9 or higher)
= Plug-in Development

':?:' < Back Mext > Finish Cancel
Figure 7-3 Selecting a template

4. Enter a project name.

5. Confirm with "Finish".

Open Development Kit 1500S V2.5 SP4
108 Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application
7.2 Create C/C++ application

Result
The C/C++ project is created using the template for the C/C++ runtime application.
The template for the C/C++ runtime application configures the following data structure by
default:
Project Explorer Description
Project name:
m src
L] <project>.cpp Function code: This file always has the suffix CPP, re-
gardless of whether you are creating a C or C++ pro-
ject.
Ml launches
L <pro- Start for the post mortem analysis.
ject>.gdb.launch
B mFP
1518 release
L1 <project>" CIC++ Runtime Application Binary (release version) that
must be transferred to the target system.
Note
Spaces in the project name
All spaces in the project name are automatically replaced by an underscore.
In the example, "My first project” becomes "My _first_project".
Note
If you need to store the workspace at another storage location, ensure that you copy the
entire workspace.
7.2.3 Editing C/C++ code

Requirement
* You have created a project.

e Eclipse is open

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 109

Development of a C/C++ runtime application
7.2 Create C/C++ application

Procedure
1. Select the "<project>.cpp" file in the project folder under "src".

The editing mask opens.

helloworidMentorcpp 3

[= r - WMET r 4w - Ay 4 ~m
: nux applicati

#include <stdlib.h>
#include <stdio.h>

~“int main (int argc, char* argv[])

{
printf ("Hello World\n"):

retarn 0;

}
Figure 7-4 Editing a project

2. Edit the code.

3. To add the new C/C++ files to the project, right-click on the "src" folder and select "New >
Source File" from the shortcut menu.

The "New Source File" dialog opens.

B " New Source File l EY éj
Source File _
Create a new source file, C
Source folder: HelloWarld/src
Source file: HelloUniverse.cpp
Template: ’Default C++ source template vl [Configure... l
@j [Finish] ’ Cancel]

Figure 7-5 Dialog box New Source File

4. Enter a name for the CPP file in the "Source File" and confirm with "Finish".

The new CPP file is stored in the "src" folder.

Open Development Kit 1500S V2.5 SP4

110 Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

7.24 Generate C/C++ runtime application

The generation of the project data runs in an automated "Build" and generates the C/C++
runtime application.

Requirement

A project has been created for the C/C++ runtime application.

Procedure
To generate the project data, follow these steps:
1. Select the project for the C/C++ runtime application.
2. Select the "Build Project" command in the "Project" menu in the system bar.
You can also select the "Build Project" command by right-clicking on the project for the
CIC++ Runtime Application in the shortcut menu.
Note
The project data is only generated if you have changed the files.
Result
The generation of the project data starts. The automatically generated files are stored in the
file system.
7.3 Load C/C++ runtime application in the target system
7.3.1 Configuring PuTTY

You require a configured SSH client to establish a secure connection between Eclipse and the
C++ Runtime of the CPU 1518MFP (for example, PuTTY).

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 111

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

Procedure based on "PuTTY" example

112

1. Start PuTTY.

2. Enter the target address "Host Name (or IP address)" (default address: 192.168.15.18) in the

text box.

This is the IP address of the C/C++ Runtime and not the project IP address of the CPU.

3. Make sure that the following default settings are retained:

— Port: 22

— Connection type: SSH

ﬁ PuTTY Configuraticn l DS
Category:

=R Spssion Basic options for your PuTTY session

; ~ Logging Specify the destination you want to connect to

[=)- Terminal
... Keyboard Host Mame for IP address) Port
. Bell 152.168.15.18]
- Features Connection type:

= Windaw ('Raw () Telnet) Rlogin @ SSH () Serial
Pppea@nce Load, save or delete a stored session
- Behaviour
.. Translation Saved Sessions
- Selection
- Colours -

Default Settings

=+ Connection _
.- Prosy
- Rlogin

(- S5H
- Serial Close window an exit:
() Aways (0) Never (@ Only on clean exit
l About l [Help] [Cpen] l Cancel

)

4. To identify the PUTTY window and to create the association of the connection to the CPU in
Eclipse, enter the title "CPU 1518MFP Linux Secure Connection” in the category "Window >
Behavior" in the text box "Window title".

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

5. Enter the following values in the category "Connection > SSH > Tunnels".
— Under "Source port" "1534" or "2345".
— Under "Destination" "localhost:1534" or "localhost: 2345".

In each case, confirm the entries with "Add".

ﬁ PuTTY Cenfiguration T |-l
Cateqory
‘. Features - Options controlling S5H port forwarding
E 1'““:3"\' Port forwarding
: BEE:?ESFCB [7] Local ports accept connections from other hosts
- Translation [7] Remote ports do the same {SSH-2 only)
Selection Forwarded ports:
| - Colours L1538 locahost: 1534
: ! ocalhost:
= CD”B:"'”” (2345 localhost: 2345
- Data
P
T;CI:; Add new forwarded port:
- Rlogin Source port 2345
[=-55H E
- Kex Destination localhost: 2345
- Host keys @ Local (") Remote 7 Dynamic
- Cipher @ Auto i IPv4 () IPvE
- Auth
- X1
- Tunnels
- Bugs
- More bugs =
[About] [Help] [Open l [Cancel]

6. Enter "CPU-1518MFP-Linux-Secure-Connection" in the category "Session" under "Saved
Sessions" and confirm it with "Save".

7. Tolog on to the CPU 1518MFP, click "Open".

7.3.2 Commissioning C/C++ Runtime

Requirement
* You have started the CPU 1518-4 PN/DP MFP (F).

Procedure
1. Start the secure shell client (for example, PuTTY).

2. Connect the secure shell client to the CPU 1518-4 PN/DP MFP (F) using the PuTTY
configuration "CPU 1518MFP Linux Secure Connection” via the target address (default
address: 192.168.15.18).

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 113

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

3. Type in the user name and password and establish a secure shell connection.
The default user name is "root".
The default password is displayed under "Overview > MFP > Default Password:".
4. Change the default password after the first startup of the CPU.
5. Start the TCF Agent with the following command:
/usr/sbin/tcf-agent -d -L- -I0 -sTCP:localhost

6. On the CPU 1518-4 PN/DP MFP (F), in the directory "lhomel<user>" create a folder in which
to load the application.

Reference
You can find more information on commissioning and the CPU 1518-4 PN/DP MFP (F) in the
CPU manual (https://support.automation.siemens.com/WW/view/en/109749061).

7.3.3 Set up new connection to the target system in Eclipse

Requirements
e An MFP is created in Eclipse.
* An MFP is generated in Eclipse.

Open Development Kit 1500S V2.5 SP4
114 Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.automation.siemens.com/WW/view/en/109749061

Development of a C/C++ runtime application

Procedure

7.3 Load C/C++ runtime application in the target system

Create a C/C++ remote application connection to the CPU 1518-4 PN/DP MFP (F).
1. Select the "Run Configurations..." command in the "Run” menu in the system bar.
The "Run Configurations" dialog opens.

2. Configure your connection.

Create, manage, and run configurations ;—;

% Run Cenfigurations @

4 Java Applet
[T Java Application

Build configuration: | MFP1518 Release

TN | S Name HelloWorld.gdb
type filter text £l Main 3= Arguments |] Comman
[E] C/C++ Application
a €] C/C++ Remote Apg | | Connection: ’TCF MFP1518 Run v] ’ MNew...] [Properties... l
[t | HelloWorld.gdb _
Cif C/C++ Unit % Project:
& Eclipse Application HelleWorld

Ju JUnit

Select configuration using 'C/C++ Application’

% 1Unit Plug-in Test
= Launch Group

4 0SGi Framework
[EL Rernote Application
[ﬁ Target Communical

C/C++ Application:
MFP1518 Release\HelloWorld

’ Variables... l’SearchProject...H Browse... l

Remote Absolute File Path for C/C++ Application:
/home/ODK15005/HelloWorld
Commands to execute before application
chmod 777 /home/0DK15005 /HelloWerld

[Skip download to target path.

a4 (L I [

Appl Revert
Filter matched 14 of 14 item PRl l ’ =S]

':?:' [Run] l Close

)

Figure 7-6 "Run Configurations" dialog with example configuration of a connection

3. To set up a new connection, click "New" in the "Main" tab under "Connection".
The "New Connection" dialog opens.

4. Select "TCF" and confirm with "Next".

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

115

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

5. Fill the dialog as in the following figure and confirm with "Finish".

% Mew Connection = \EI
Remote TCF System Connection

Define connection information

Parent profile: BT1200T-W7ub4-VM

Host name: LOCALHOST

Connection name: localhost

Description:

| Verify host name

Configure proxy settings

o

@ <Back | MNea> |[Finish || Cancelel

Figure 7-7 New connection dialog

6. In the "Run Configurations” dialog, select the connection "localhost" under "Connections".

7. Apply the configuration settings with "Apply"

Result

A new connection to target system has been established.

Note

Folder structure on the Linux target system

Create the folder structure manually on the Linux target system. Otherwise, remote launch is

not possible and the project folder is not created automatically.

Open Development Kit 1500S V2.5 SP4

116 Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse

Procedure
Transfer the C/C++ runtime application to the target system.
1. Select the "Run Configurations..." command in the "Run" menu in the system bar.
The "Run Configurations" dialog opens.
2. Select the required configuration under "C/C++ Remote Application".

3. Run the loading process with "Run".

Result
Your program is executed on the CPU 1518-4 PN/DP MFP (F).

7.3.5 Load and debug C/C++ runtime application in the target system via Eclipse
To debug C/C++ applications, you have the option to write a custom test. This will ensure the
quality of the code.

Procedure

To perform the test, proceed as follows:

1. Open your project in Eclipse.

2. In the "Run" menu, select the command "Debug Configurations".
The "Debug Configurations” dialog opens.

3. If you debug the project for the first time, you must now set the debug configuration.
Otherwise, continue with step 5.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 117

Development of a C/C++ runtime application

7.3 Load C/C++ runtime application in the target system

4. Configure your connection in the "Main" tab as described under Set up new connection to

the target system in Eclipse (Page 114).

S Debug Configurations

Create, manage, and run configurations

TEX| B2

Mame: HelloWorld MFP1518 Release

[Z] Main

C/C++ Application:
MFP1518 Releaze\HelloWorld

type filter text

] C/C++ Applicatio
[©] C/C++ Attach to |
[©] C/C++ Postmorte

()= Arguments | %% Debugger| B~ Source| & Commen

4 [C] C/C++ Remote A

Variables...

] [Search Project...l ’ Browse... l

[£] HelloWorld M
Cif C/C++ Unit
& Eclipse Applicatio
[t]| GDB Hardware De
) Java Applet
31 Java Application
Ju JUnit
Ji JUnit Plug-in Test
= Launch Group
4 05Gi Framework
[EL Rernote Applicatiy

Project:

HelloWorld

Build {if required) before launching

Build configuration:

(") Enable auto build

(@ Use workspace settings

MFP1518 Release
Select configuration using 'C/C++ Application’

Browse...

() Disable auto build
Cenfigure Workspace Settings...

E Remote Java Appl

ETarge‘chmmunin Connection: | Local

*|[MNew. || Properties.

/heme/ProjectFolder/HelloWorld

Commands to execute before application

[] Skip download to target path.

Remote Absolute File Path for C/C++ Application:

chmed 777 /home/ProjectFolder/HelloWorld

Browse...

Result

118

4« m

Filter matched 18 of 18 ite

@

Using GDE (DSF) Automatic Remote
Debugging Launcher - Select other...

| aeety ||

Revert

[Debug ||

Close

Figure 7-8 Configuring the connection

5. Select the required configuration under "C/C++ Remote Application".

6. Start the debug process by clicking the "Debug" button

Eclipse suggests a change in the debug perspective.

The test code is executed.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Development of a C/C++ runtime application

7.4 Execute C/C++ runtime application

7.4 Execute C/C++ runtime application

7.4.1 Start application via secure shell

Requirement

The CPU is connected to a secure shell client.

Procedure
1. Open the secure shell client.
2. To decouple the application from the secure shell, enter the command "nohup" before
calling the application.
3. Call the application via the secure shell client.
Result

The CPU executes the application.

Note

The CPU executes the application also after the secure shell client has terminated.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 119

Developing a PLCSIM Advanced function library 8

8.1 Creating a PLCSIM Advanced function library

8.1.1 Requirements

The Microsoft Visual Studio development environment is not included in the ODK product
package. You can find the Download Center for Microsoft development tools on the Internet
(https:/lwww.microsoft.com/en-us/download/developer-tools.aspx).

The C++ PLCSIM Advanced project template supports the applications as of Visual Studio
2015. To debug the generated DLL file, you need Visual Studio 2017 or newer.

8.1.2 Creating a PLCSIM Advanced function library with Visual Studio

To help you develop a PLCSIM Advanced function library, a project template for PLCSIM
Advanced function libraries for a project in Visual Studio is included in the installation of ODK
1500S. The template supports 32-bit and 64-bit applications.

Procedure

To create a project in Microsoft Visual Studio using the project template, follow these steps:
1. Open Microsoft Visual Studio as a development environment.
2. In the "File > New" menu, select the command "Project..."

The "New Project" dialog opens.
File Edit View Build Debug Team Data Tools Test Window Help

New P | iG] Project. Ctrl+Shift+N
Open * | '@ WebSite... Shift+Alt+N
Close ia Team Project...
] File... Ctrl+N
led Save Team ODK [Results] Ctrl+S Project From Existing Code...
Save All Ctrl+Shift+5

Crnrea (T antral E

Figure 8-1 Creating a new project in Visual Studio

Open Development Kit 1500S V2.5 SP4
120 Programming and Operating Manual, 12/2023, A5E35253941-AH

https://www.microsoft.com/en-us/download/developer-tools.aspx

Developing a PLCSIM Advanced function library

3. Select the project template

8.1 Creating a PLCSIM Advanced function library

"ODK 1500S V2.5.1 PLCSIM Advanced function library C++ (Windows Sync)" under

"Visual C++".

P Recent Sort by: Default

4 Installed

5.1 CPU function library C++

Ak, ODK 15005 V2.5.1 PLCSIM Advanced function library C

Windows Console Application

Empty Project

Windows

P Online

Figure 8-2 Select a template

4. Enter a project name.

5. Click "OK" to confirm.

Result

sktop Application

Visual C++

Visual C++

Visual C++

Visual C++

Visual C++

The PLCSIM Advanced function library is created using the project template and sets the

following project settings:

* Project settings for generating the DLL file

¢ Automates the generation of the DLL and SCL file

By default, the project template sets up the following Solution Explorer structure:

Folder / file

Description

Mi<project>

W Definition
File

L <project>.odk

ODK interface description

L <pro-
ject>.scl.additional

S7 blocks that are appended to the <project>.scl file.

Although the file is not part of the project template,
the code generator processes the file.

W Generated
Files

Files from this folder must not be edited!

L] ODK_Types.h

Definition of the ODK base types

L] ODK_Functions.h

Function prototypes

L] ODK_Execution.cpp

Implementation of the "Execute” method

W Header Files

Header file

Wi oDK Helpers

Files from this folder must not be edited!

™| ODK_CpuReadData.h

Definition: Help functions for reading the data
blocks

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

121

Developing a PLCSIM Advanced function library

8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced

Folder / file Description
Implementation: Help functions for reading the data
ODK_CpuReadData.cpp blocks
Definition: Help functions for reading/writing the
ODK_CpuReadWriteData. | data blocks
h
Implementation: Help functions for reading/writing
ODK_CpuReadWriteData. |the data blocks
cpp
L] ODK_StringHelper.h Definition: Help functions S7 strings | W strings
L] ODK_StringHelper.cpp | Implementation: Help functions S7 strings | W
strings
W Resource
Files
L] <project>.rc
W source Files Source files
L] <project>.cpp Function code
L dlimain.cpp Implementation of the "dlimain" file
Wi STEP7 Files from this folder must not be edited!
L <project>.scl S7 blocks

Transferring the PLCSIM Advanced function library to

PLCSIM Advanced

After creating it, transfer the PLCSIM function library to the PLCSIM Advanced program.

Transferring PLCSIM Advanced function library

Transfer the DLL file manually to PLCSIM Advanced. Use the standard Windows data transfer
procedure to transfer the PLCSIM Advanced function library.

Save the DLL file on the virtual memory card with the S7-PLCSIM Advanced Control Panel.

The default value that describes the file path is:

C:\Users\<user name>\Documents\Siemens\Simatic\Simulation\Runtime\Persistence\<name of

instance>\SIMATIC_MC\ODK1500S

Note
Administrator rights

Assign write permission to this folder only for the administrator. This prevents unauthorized
personnel from importing PLCSIM Advanced function libraries.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a PLCSIM Advanced function library
8.3 Defining the runtime properties of a PLCSIM Advanced function library

8.3 Defining the runtime properties of a PLCSIM Advanced function
library

The next step is to define the interface description of the PLCSIM Advanced function library in
the <project>.odk file. The file contains the following elements:

¢ Comments
e Parameters

* Definitions of functions and structures

Procedure
To define the interface description in the <project>.odk file, follow these steps:
1. Open the <project>.odk file.

2. Change the elements depending on your requirements.

Description of the elements

Comments

You can use comments for explanation purposes.

Parameters

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The interfaces file supports the following parameters:

Parameter Value Description

Context user Specifies that the PLCSIM Advanced function library is loaded in the con-
text of a user.

STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-
porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a..z, 1..9,- }

Umlauts are not permitted.
The project name is entered without spaces by default.

Note
Spaces in the project name

With the STEP7 prefix, invalid characters are replaced by an underscore.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 123

Developing a PLCSIM Advanced function library

8.4 Definition of the <Project>.odk file

8.4

Example

124

Definition of the <Project>.odk file

The function prototypes and function blocks are generated based on the selected parameters
in the <project>.odk file. Define the <project>.odk file for this.

By default, the <project>.odk file contains the following:

Description

The possible data types that are used for the interface are described in comment lines.
This simplifies the definition of the correct tag type for your task.

Context=user

The CPU function library is loaded in the "User" context. You can change the parameter to
Context=system.

STEP7Prefix="<project>"

Sets a string for the SCL generation in front of the functions of the PLCSIM function
library. The string is visible in STEP 7. You can change the parameter. The string length of
the prefix including the function name must not exceed a length of 125 characters (for
example, ODK_App_SampleFunction)

"SampleFunction" function definition

You can change this default function as you wish in the <project>.odk file and add more
functions. The string length must not exceed a length of 125 characters. The associated
function is located in the CPP file.

//INTERFACE ODK 1500S Vv2.5.1
Context=user
STEP7Prefix=0DKProject
Trace=on

/*

Elementary data types:

ODK_DOUBLE LREAL 64-bit floating point, IEEE 754
ODK_FLOAT REAL 32-bit floating point, IEEE 754
ODK_INT64 LINT 64-bit signed integer

ODK_INT32 DINT 32-bit signed integer

ODK_INT16 INT 16-bit signed integer

ODK_INTS8 SINT 8-bit signed integer

ODK_UINT64 ULINT 64-bit unsigned integer
ODK_UINT32 UDINT 32-bit unsigned integer
ODK_UINT16 UINT 16-bit unsigned integer
ODK_UINTS8 USINT 8-bit unsigned integer
ODK_LWORD LWORD 64-bit bit string

ODK_DWORD DWORD 32-bit bit string

ODK_WORD WORD l6-bit bit string

ODK_BYTE BYTE 8-bit bit string

ODK_BOOL BOOL 1-bit bit string

ODK_ LTIME LTIME 64-bit duration in nanoseconds
ODK_TIME TIME 32-bit duration in milliseconds
ODK_LDT LDT 64-bit date and time of day

in nanoseconds

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a PLCSIM Advanced function library

8.5 Modifying the <Project>.odk file

* ODK_LTOD LTOD 64-bit time of day in nanoseconds

* since midnight

* ODK_TOD TOD 32-bit time of day in milliseconds
* since midnight

* ODK_CHAR CHAR 8-bit character

* Complex Datatypes:

* ODK_DTL DTL structure for date and time

* ODK_S7STRING STRING character string with 8-bit characters
* ODK CLASSIC DB VARIANT classic DB (global or based on UDT
* "optimized block access" must be
unchecked)

* [ARRAY field of this datatype

* User Defined Datatype:

* ODK_STRUCT UDT user defined structure

* Return Datatype:

* ODK_RESULT 0x0000-0x6FFF function succeeded

* (ODK_SUCCESS = 0x0000)

* 0xFO000-0xFFFF function failed

* (ODK_USER_ERROR _BASE = 0xF000)
*/

// Basic function in order to show
// how to create a function in ODK 1500S.

ODK_RESULT SampleFunction ([IN] ODK_INT32 myInt // integervalue
// as input
, [OUT] ODK BOOL myBool // bool value

// as output

, [INOUT] ODK DOUBLE myReal);// double value
// as input
// and output

8.5 Modifying the <Project>.odk file

The following example shows you how you can change the <project>.odk file to suit your
needs.

//INTERFACE ODK 1500S Vv2.5.1
Context=user
STEP7Prefix=SampleProject
Trace=on

// Basic function in order to show

// how to create a function in ODK 1500S.

ODK_RESULT SampleFunction ([IN] ODK_INT32Z numl
, [IN] ODK_INT32 num?2
, [OUT] ODK_INT32 sum) ;

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 125

Developing a PLCSIM Advanced function library

8.6 Editing PLCSIM Advanced function library

8.6 Editing PLCSIM Advanced function library

Procedure

Once you have defined the ODK interface in the <project>.odk file, you must edit the
functions of the PLCSIM Advanced function library in the Project Source file.

To edit the function of a PLCSIM Advanced function library, follow these steps:

1. To generate the function prototypes, execute the build.

2. Open the project source file, or create a custom source file if necessary.

3. Transfer the function prototypes from <ODK_Functions.h> to the source file.

Note

Use the function prototype macro to transfer the step 3 in the future when there is a change

to the function parameters.

4. Edit the code of your PLCSIM Advanced function library in the execute file (<project>.cpp).

PLCSIM Advanced function library

The execute file contains a schematically represented function description by default. You
can change this description with corresponding changes in the <project>.odk file and/or add

126

more function descriptions.

Execute file based on C++ example

#include "stdafx.h"
#include "ODK Functions.h"
#include "tchar.h"

EXPORT API ODK_ RESULT OnLoad (void)
{

// place your code here

return ODK SUCCESS;
}
EXPORT API ODK_RESULT OnUnload (void)
{

// place your code here

return ODK SUCCESS;
}
EXPORT API ODK RESULT OnRun (void)
{

// place your code here

return ODK SUCCESS;
}
EXPORT API ODK RESULT OnStop (void)
{

// place your code here

return ODK SUCCESS;

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

Developing a PLCSIM Advanced function library
8.7 Generating a PLCSIM Advanced function library

ODK_RESULT SampleFunction (
/*IN*/ const ODK_INT32& myInt,
/*0OUT*/ ODK_BOOL& myBool,
/*INOUT*/ ODK_DOUBLE& myReal)

return ODK SUCCESS;

8.7 Generating a PLCSIM Advanced function library
The generation of the project data is divided into two automated steps.

* Pre-Build: Generation of the files created by default based on the changed <project>.odk
file and generation of the SCL file.

¢ Actual-Build: Generation of the DLL file.

Procedure
To generate the project data, follow these steps:
1. Save all edited files.
2. Inthe "Build" menu, select the command "Build Solution".
Note
C/C++ projects
Perform the build of the PLCSIM Advanced function library in the "Release" configuration,
because the software controller has already installed the C/C++ Redistributables
(Release Runtime files).
To use the "Debug” configuration, copy the Debug Runtime files to the software controller.
Note
The project data is only generated if the files have been changed.
Result

The generation of the project data is started. The automatically generated files are stored in
the file system.

* DLL file: Project directory\<project>\<BuildConfiguration>\<project>.dll

* SCL file: Project directory\<project>\STEP7\<project>.scl

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 127

Developing a PLCSIM Advanced function library

8.8 Executing a function

8.8 Executing a function

Executing functions is described in the section "Executing a function (Page 54)" using the
example of a CPU function library for the Windows environment.

Special features about PLCSIM Advanced, as well as advanced error codes are described in the
manual "SIMATIC S7-1500 S7-PLCSIM Advanced
(https://support.automation.siemens.com/WW/view/en/109760835)".

8.9 Debugging C/C++ Code

The debugging of Visual Studio C/C++ code is described in the section "Remote debugging
(Page|62)". To debug the generated DLL file, you need Visual Studio 2017 or newer.

While Visual Studio is connected to the client, PLCSIM Advanced is also in debug mode and
therefore remains in the "RUN" state. The cycle time is not exceeded.

Open Development Kit 1500S V2.5 SP4
128 Programming and Operating Manual, 12/2023, A5E35253941-AH

https://support.automation.siemens.com/WW/view/en/109760835

Using example projects 9

To facilitate your introduction , ODK 1500S offers example projects for both development
environments. The example projects consist of the following elements:

* A project for Microsoft Visual Studio or Eclipse

* A compiled binary and SCL source that enables you to immediately test the example
projects

e ASTEP 7 example project

Storage location of example projects

e The example projects for the CPU function libraries are available on the Internet

(https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-
examples?dti=0&Ic=en-WW) for download.

e Example projects for C/C++ Runtime applications:

— Setting up communication between CPU and C/C++ runtime for a multifunctional
platform using OPC UA

(https://support.industry.siemens.com/cs/ww/en/view/109749176)

— Establishment of Open User Communication between CPU runtime and C/C++ runtime
of a multifunctional platform

(https:/Isupport.industry.siemens.com/cs/ww/en/view/109756757)

Using example projects
To open the example projects, follow these steps:
1. Transfer the example projects onto the hard disk of your PC.

2. Transfer the C/C++ runtime application, DLL or SO file to the target system.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 129

https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/106192387/simatic-odk-1500s-examples?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/ww/en/view/109749176
https://support.industry.siemens.com/cs/ww/en/view/109756757

General conditions

A.1 Number of loadable CPU function libraries

A

You can load up to 32 CPU function libraries for Windows and realtime environment.

Configuration limits for CPU function libraries:

e CPU function libraries for the Windows environment:

— Up to 32 parallel function calls (total)

— Upto 1 MB input and output data (in total)

— Upto 1 MBinput data per function call

— Up to 1 MB output data per function call

Note

The memory for input and output parameters is allocated dynamically, depending on the
quantity needed. The memory is allocated here in blocks of 8 KB each.

¢ Development of a CPU function library for the real time environment

— Parallel function calls in a CPU function library defined by the "SyncCallParallelCount"

parameter

— Up to 32 parallel function calls (in total)

— Upto 1 MBinput data and output data per function call

Memory for loading CPU function libraries

The available memory for loading of CPU function libraries is limited in the context of the real
time environment. The table below provides an overview of the available memory of the
different CPUs for loading CPU function libraries:

CPU

Memory available for loading

Maximum size of the SO file

CPU 1505SP (T)(F) 20 MB 5.8 MB
CPU 15075 (F) 50 MB 9.8 MB
CPU 1518-4 PN/DP MFP (F) |50 MB 9.8 MB

The following restrictions are also in effect in the context of the realtime environment:

¢ SO file name may not exceed 56 characters.

130

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

General conditions
A.2 Compatibility

A.2 Compatibility
If you use an ODK version V2.5, note the following:
e Engineering:

A CPU function library project that was created with an ODK version < V2.5 is not
compatible. You need to recreate a CPU function library in the version V2.5.

¢ Runtime:

A CPU function library that was created with an ODK version < V2.5 is not compatible with
newer CPU versions.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 131

Syntax Interface file <project>.odk for CPU
function libraries

B.1 Data types

The data type defines the type of a tag. The following table defines the possible data types
and their representation in the individual program languages or in C++ or STEP 7:

Elementary data types:

ODK data type |SIMATICdata |C++ data type C# data type VB data type Description
type

ODK_DOUBLE LREAL double double Double 64-bit floating point, IEEE
754

ODK_FLOAT REAL float float Single 32-bit floating point, IEEE
754

ODK_INT64 LINT long long long Long 64-bit signed integer

ODK_INT32 DINT long int Integer 32-bit signed integer

ODK_INT16 INT short short Short 16-bit signed integer

ODK_INT8 SINT char sbyte SByte 8-bit signed integer

ODK_UINT64 ULINT unsigned long long | ulong UlLong 64-bit unsigned integer

ODK_UINT32 UDINT unsigned long uint Ulnteger 32-bit unsigned integer

ODK_UINT16 UINT unsigned short ushort UShort 16-bit unsigned integer

ODK_UINT8 USINT unsigned char byte Byte 8-bit unsigned integer

ODK_LWORD LWORD unsigned long long | ulong UlLong 64-bit bit string

ODK_DWORD DWORD unsigned long uint Ulnteger 32-bit bit string

ODK_WORD WORD unsigned short ushort UShort 16-bit bit string

ODK_BYTE BYTE unsigned char byte Byte 8-bit bit string

ODK_BOOL BOOL unsigned char bool Boolean 1-bit bit string, remaining
bits (1..7) are empty

ODK_LTIME LTIME long long long Long 64-bit during in nanosec-
onds

ODK_TIME TIME long int Integer 32-bit during in milliseconds

ODK_LDT LDT unsigned long long | ulong UlLong 64-bit date and time of the
day in nanoseconds

ODK_LTOD LTOD unsigned long long | ulong ULong 64-bit time of the day in
nanoseconds since midnight

ODK_TOD TOD unsigned long uint Ulnteger 32-bit time of the day in
milliseconds since midnight

ODK_WCHAR WCHAR wchar_t char Char Only for Windows: 16-bit
character

ODK_CHAR CHAR char sbyte SByte 8-bit character

Open Development Kit 1500S V2.5 SP4
132 Programming and Operating Manual, 12/2023, A5E35253941-AH

Syntax Interface file <project>.odk for CPU function libraries

B.1 Data types

Complex data types:

ODK data type |SIMATICdata |C++ data type C# data type VB data type Description
type
ODK_DTL DTL struct ODK_DTL OdklInternal. OdklInternal. Structure for date and time
Dtl (class) Dtl (class)
ODK_S7STRING | STRING unsigned char string String Character string (8-bit char-

acter) with max. and act.
length (2xUSINT)

ODK_S7WSTRIN
G

WSTRING unsigned short string String Only for Windows: Charac-
ter string (16-bit character)
with max. and act. length
(2xUINT)

ODK_VARIANT

VARIANT struct ODK_VARIANT | byte [] byte [] For Windows only: Classic
data (each data type that
can be serialized with clas-

sic data.)

ODK_CLASSIC_D | VARIANT struct - - Only for realtime envi-

B ODK_CLASSIC_DB ronment: Classic DB (global
or based on UDT)

[1] ARRAY [1] [1] [1] Range of same data types.

The maximum number of
array elements is 220
(=1,048,576).

You can use all data types
as array except IN_DATA |
INOUT_DATA /| OUT_DATA.

User-defined data types:

User-defined data types (UDT) include structured data, especially the names and the data
types of this component and their order.

A user-defined data type can be defined in the user interface description with the keyword
"ODK_STRUCT".

Example
ODK_STRUCT <StructName>

{

<DataType> <TagName>;

i

The following syntax rules apply to the structure:

* You can divide the structure into multiple lines.

* The structure definition must end with a semicolon.

* Any number of tabs and spaces between the elements is permitted.

e Itis not permitted to use any keywords for the generated language used (for example
"en [eno" as tag name).

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 133

Syntax Interface file <project>.odk for CPU function libraries

B.2 Parameters

Restrictions of the data type ODK_VARIANT:

¢ When a parameter of the data type ODK_VARIANT is used, it is not permitted to use other
parameters with the same InOut-Identifier, regardless of data type.

e With the data type ODK_VARIANT, an [OUT] is modeled as [INOUT] in the generated FB.
Restrictions of the data type ODK_CLASSIC_DB:

¢ The data type ODK_CLASSIC_DB can only be used with the InOut-Identifier [IN] and
[INOUT].

¢ When a parameter of the data type ODK_CLASSIC_DB is used with the InOut-ldentifier [IN]
or [INOUT], it is not permitted to use other parameters with the same InOut-ldentifier,
regardless of data type.

B.2 Parameters
The parameters of the <project>.odk file are different:
¢ Developing a CPU function library for the Windows environment

¢ Developing a CPU function library for the realtime environment

Parameters for the Windows environment

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

The <project>.odk file supports the following parameters:

Parameter Value Description

Context user Specifies that the CPU function library is loaded in the context of a Win-
dows user.

system Specifies that the CPU function library is loaded in the context of the Win-

dows system.

STEP7Prefix <String> Describes the string that precedes your functions and is shown after im-
porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a..z,1..9,-, 1}

FullClassName <String> The parameter is required for the C# and VB programming languages.
To change the class names or namespace of the source files of the CPU
function library, you need to adjust the "FullClassName" parameter.

Parameters for the realtime environment

The definition of the parameters must be within a line of code.
<parameter name>=<value> // optional comment

Open Development Kit 1500S V2.5 SP4
134 Programming and Operating Manual, 12/2023, A5E35253941-AH

Syntax Interface file <project>.odk for CPU function libraries

B.2 Parameters

The <project>.odk file supports the following parameters:

Parameter Value Description
Context realtime Specifies that the CPU function library is loaded in the context of the real
time environment.
Trace on Specifies the trace function in the CPU function library. In this case, the
CPU function library requires 32 KB if memory as an additional trace buff-
er. A "GetTrace" function block is created by default for use in a STEP 7.
off A "GetTrace" function block is created. The trace buffer contains only one
trace entry with the contents: trace is off.
HeapSize [4...<Availabl | Specifies a memory in KB that is used as heap for realtime applications.
e CPU
memory>
(Page/130)]k
HeapMaxBlockSize [8...<HeapSiz | Specifies the memory size in bytes that can be allocated at one time.
e>]
SyncCallParallelCount [1...9] If a optional parameter and defines the maximum number of parallel calls
Default=3 in this CPU function library. The size of the memory which is reserved for
calls in this CPU function library:
SyncCallParallelCount * (SyncCallStackSize + SyncCallDataSize)
SyncCallStackSize [1...1024]k Is a optional parameter and defines the size of the thread stack for a call in
Default=32k | this CPU function library. Each new call contains a separate stack memory.
SyncCallDataSize [1...1024]k Is a optional parameter and defines the size of the data area for a call in

this CPU function library. The data area contains IN, INOUT and OUT pa-
rameters. Each new call contains a separate stack memory.

Default=auto

The required data size is automatically calculated by the code generator.

STEP7Prefix

<String>

Describes the string that precedes your functions and is shown after im-
porting the SCL file in STEP 7. The following characters are allowed: {A...Z,
a..z, 1..9,- }

By default the name is entered without blanks.

Changes in the interface file

If changes to the interface file (.odk) are not automatically recognized with the next build,
run a manual rebuild.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH 135

Code generator messages for CPU function
libraries

C.1

Error messages of the code generator

The code generator stops the build process and generates the following error messages:

File errors:
Error Error message Possible solution
number
100 ‘<Project>.odk’ is missing Rename the file to <project>.odk.
101 Context is missing in resource file Valid for Visual Studio only.
One of the following resource files is faulty:
e C++: <project>.rc
e C#: AssemblyInfo.cs
e VB: AssemblyInfo.vb
102 resource file *..." is missing Valid for Visual Studio only.
One of the following resource files is missing:
e C++: <project>.rc
e C#: AssemblyInfo.cs
e VB: AssemblyInfo.vb
103 ‘... write protected One of the following files is write-protected:
o C++
— <project>.rc (only for Visual Studio)
— ODK_Types.h
— ODK Functions.h
— ODK_Execution.cpp
e C# (only for Visual Studio)
— Assemblylnfo.cs
— OdkTypes.cs
— OdkFunctions.cs
— OdkExecution.cs
e VB (for Visual Studio only)
— Assemblylnfo.vb
— 0OdkTypes.vb
— OdkFunctions.vb
— OdkExecution.vb
e General
- cg.tmp
Temporary file for the code generator to detect changes
in the interface file.
- <project>.scl
Open Development Kit 1500S V2.5 SP4
136 Programming and Operating Manual, 12/2023, A5E35253941-AH

Code generator messages for CPU function libraries

C.1 Error messages of the code generator

Error Error message Possible solution
number
110 license key missing Transfer a current license key.
111 retrieve license key not possible Install the ALM with the version = 6.0.
Parameter errors:
Error Error message Possible solution
number
200 parameter "..." is not allowed for current con- | The indicated parameter is not allowed here.
text
201 missing "..." definition The indicated parameter (Page 68) is not defined.
202 more than one definition for"...” There is more than one definition for the indicated parameter
(Page 68).
203 Context has to be one of ‘user’ or 'system’ for | Choose the context "system" or "user" for Visual Studio.
Microsoft Visual Studio
204 Context has to be ‘realtime’ for Eclipse Choose the context "realtime" for Eclipse.
205 Trace has to be on or off The "Trace" parameter must have the value "on" or "off" (only
for realtime environment).
206 STEP7Prefix must not be longer than 120 The STEP 7 prefix must not exceed 120 characters.
characters
207 HeapSize has to be interval of [4...100000]k | Ensure that the HeapSize parameter is within the value range
[4...100000]k.
208 HeapMaxBlockSize has to be interval of Ensure that the HeapMaxBlockSize parameter is within the
[8...<HeapSize>] value range [8...<HeapSize>].
209 SyncCallDataSize must be interval of Ensure that the SyncCallDataSize parameter is within the value
[1...1024]k range [1...1024]k.
210 SyncCallStackSize must be interval of Ensure that the SyncCallStackSize parameter is within the value
[1...1024]k range [1...1024]k.
211 SyncCallParallelCount must be interval of Ensure that the SyncCallParallelCount parameter is within the
[1...9] value range [1...9].
Syntax errors:
Error Error message Possible solution
number
500 unexpected end-of-file found Always end the file with a semicolon.
501 "..." should be alpha numeric The following characters are allowed:a-z, A-Z,0-9, _
Umlauts are not permitted.
502 "..." should be numeric The following characters are allowed: 0 - 9
503 ‘... undefined keyword Use only the keywords [IN], [OUT] and [INOUT] and the defined
data types.
504 ... missing before ... Add the character displayed by the error message.
missing space Add a space.
506 ‘... undefined type Use only the defined data types.
507 "..." type not allowed Observe the syntax rules in section Defining functions a CPU
function library (Page|71)
508 ‘..." type redefinition The function or parameter name is already assigned. Choose a
different name.
509 ‘..." variable redefinition The tag name is already assigned. Choose a different name.
510 Structure “..." must not be empty Fill the structure with a data type.

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

137

Code generator messages for CPU function libraries

C.2 Warnings of the code generator

Error Error message Possible solution

number

511 ‘..."no valid name Observe the syntax rules in section Defining functions a CPU

function library (Page/71).

512 unexpected variable order (must be [IN], There are three defined InOut identifiers. Use these in the fol-
[OUT], lowing order: [IN], [OUT], [INOUT]
[INOUT] order)

513 size of ODK_S7STRING could not be bigger A string can have a maximum length of 254 characters.
than 254

514 size of ODK_S7WSTRING could not be bigger | A Wstring can have a maximum length of 16382 characters.
than 16382

515 Prefix + Function name"...." exceeds 125 Prefix and function name together are longer than 125 charac-
characters ters.

516 variable name’..." exceeds 128 characters The tag name is longer than 128 characters.

517 "..."IN_BUFFER + INOUT_BUFFER could not be | Altogether, the InOut identifiers [IN] and [INOUT] in a function
greater than 1 MB must not exceed 1 MB.

518 "..."INOUT_BUFFER + OUT_BUFFER could not | Altogether, the InOut identifiers [OUT] and [INOUT] in a func-
be greater than 1 MB tion must not exceed 1 MB.

519 "..."needs "...k', but data size (Sync- The amount of data is too high.
CallDataSize) is limited to ...k’

520 "..."has an array size of '...", but max. array size | The maximum Array size is exceeded.
is limited to "..."

521 no other variable in the same direction for As soon as the data type ODK_CLASSIC_DB or ODK_VARIANT is
ODK_CLASSIC_DB / ODK_VARIANT type used, no other parameter may defined with the same InOut

identifier.

522 no array allowed for ODK_CLASSIC_DB/ No Array may be defined for the data type ODK_CLASSIC_DB or
ODK_VARIANT type ODK_VARIANT.

523 no [OUT] direction allowed for The InOut identifier [OUT] may not be defined for the
ODK_CLASSIC_DB type ODK_CLASSIC_DB data type.

524 function declarations lead to identical hashes | Change a parameter name.
(change name of one parameter):"...", "...]

C.2 Warnings of the code generator

The code generator continues to execute the build process and generates the following
warnings:

Warning | Warning message Description

number

4100 built project with ODK 15008 trial mode - "..." | Use the test version. The warning shows when the test version
day(s) left runs.

Open Development Kit 1500S V2.5 SP4
138 Programming and Operating Manual, 12/2023, A5E35253941-AH

Helper functions for CPU function libraries

D.1

C++ helper functions

String helper functions for CPU function library for the Windows and realtime environment

The following helper functions provide access to S7 strings:

Helper functions

Description

Convert_S7STRING_to_SZSTR

Convert PLC string types to C/C++ string types ("char" array,
null-terminated)

Convert_SZSTR_to_S7STRING

Convert C/C++ string types ("char" array, null-terminated) to PLC
string types.

Get_S7STRING_Length

Returns the current length of a PLC string type.

Get_S7STRING_MaxLength

Returns the maximum length of a PLC string type.

String helper functions for CPU function library for the Windows environment

The following helper functions provide access to S7WStrings:

Helper functions

Description

Convert_S7WSTRING_to_SZWSTR

Convert PLC WString types to C/C++ WString types ("wchar_t"
array, null-terminated)

Convert_SZWSTR_to_S7WSTRING

Convert C/C++ WString types ("wchar_t" array, null-terminated)
to PLC WString types.

Get_S7WSTRING_Length

Returns the current length of a PLC Wstring type.

Get_S7WSTRING_MaxLength

Returns the maximum length of a PLC WString type.

Class "CODK_CpuReadData" (Windows and real-time environment)

The "CODK_CpuReadData" class allows read access to classic DBs / classic data:

Value Description

CODK_CpuReadData Class constructor, initializes the input data area and the data size.
SetBuffer Initializes the input data area and the data size.
ReadS7BOOL Reads "bool" (1 byte) from the data area.
ReadS7BYTE Reads a "byte" (1 byte) from the data area.
ReadS7WORD Reads a "word" (2 bytes) from the data area.
ReadS7DWORD Reads a "double word" (4 bytes) from the data area.
ReadS7LWORD Reads a "long word" (8 bytes) from the data area.
ReadS7SINT Reads a "short integer” (1 byte) from the data area.
ReadS7INT Reads a "integer" (2 bytes) from the data area.
ReadS7DINT Reads a "double integer" (4 bytes) from the data area.
ReadS7LINT Reads "long integer" (8 bytes) from the data area.

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

139

Helper functions for CPU function libraries

D.1 C++ helper functions

Value Description

ReadS7USINT Reads a "unsigned short integer" (1 byte) from the data area.
ReadS7UINT Reads a "unsigned integer" (2 bytes) from the data area.
ReadS7UDINT Reads a "unsigned double integer" (4 bytes) from the data area.
ReadS7ULINT Reads "unsigned long integer" (8 bytes) from the data area.
ReadS7REAL Reads a "real number" (4 bytes) from the data area.
ReadS7LREAL Reads a "long real number" (8 bytes) from the data area.
ReadS7S5TIME Reads a 16 bit (2 bytes) from the data area.

ReadS7DATE Reads a date value (2 bytes) from the data area.

ReadS7TIME Reads a time value (4 bytes) from the data area.

ReadS7LTIME

Reads a time value (8 bytes) from the data area as nanoseconds.

ReadS7TIME_OF DAY

Reads the time of day (4 bytes) from the data area.

ReadS7LTIME_OF_DAY

Reads the time of day (8 bytes) from the data area as nanosec-
onds since midnight.

ReadS7DATE_AND_TIME

Reads a general date and time area.

ReadS7DATE_AND_LTIME

Reads a date and time value (8 bytes) from the data area as na-
noseconds since 01/01/1970 00:00.

ReadS7DTL Reads a date and time information (12 bytes) as a predefined
structure from the data area.
ReadS7CHAR Reads a "char" (1 byte) from the data area.

ReadS7STRING_LEN

Reads the information of the string length for a S7 string in the
data area.

ReadS7STRING Reads an S7 string from the data area and returns it as language
dependent string.
The string is shortened when there is insufficient space in the
target string.

ReadS7WCHAR Only available for CPU function libraries for the Windows envi-

ronment.
Reads "wide char" (2 bytes) from the data area.

ReadS7WSTRING_LEN

Only available for CPU function libraries for the Windows envi-
ronment.

Reads the information of the string length for a S7W string in the
data area.

ReadS7WSTRING

Only available for CPU function libraries for the Windows envi-
ronment.

Reads an S7W string from the data area and returns it as lan-
guage dependent string.

The string is shortened when there is insufficient space in the
target string.

140

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Helper functions for CPU function libraries

D.1 C++ helper functions

Class "CODK_CpuReadWriteData" (Windows and real-time environment)

The "CODK_CpuReadWriteData" class allows the following write accesses in addition to the all
read accesses from "CODK_CpuReadData" to classic DBs / classic data:

Value

Description

CODK_CpuReadWriteData

Class constructor, initializes the output data area and the data
size.

SetBuffer Initializes the output data area and the data size.
LastByteChanged Retrieves the index of the last byte changed in the data area.
FirstByteChanged Retrieves the index of the first byte changed in the data area.
WriteS7BOOL Writes a "bool" (1 byte) to the data area.

WriteS7BYTE Writes a "byte" (1 byte) to the data area.

WriteS7WORD Writes a "word" (2 bytes) to the data area.

WriteS7DWORD Writes a "double word" (4 bytes) to the data area.
WriteS7LWORD Writes a "long word" (8 bytes) to the data area.

WriteS7SINT Writes a "short integer” (1 byte) to the data area.

WriteS7INT Writes a "integer" (2 bytes) to the data area.

WriteS7DINT Writes a "double integer” (4 bytes) to the data area.
WriteS7LINT Writes a "long integer" (8 bytes) to the data area.
WriteS7USINT Writes a "unsigned short integer" (1 byte) to the data area.
WriteS7UINT Writes a "unsigned integer" (2 bytes) to the data area.

WriteS7UDINT

Writes a "unsigned double integer” (4 bytes) to the data area.

WriteS7ULINT

Writes a "unsigned long integer” (2 bytes) to the data area.

WriteS7REAL Writes a "real number" (4 bytes) to the data area.
WriteS7LREAL Writes a "long real number" (8 bytes) to the data area.
WriteS7S5TIME Writes a 16-bit (2 bytes) time value to the data area.
WriteS7DATE Writes a date value (2 bytes) to the data area.
WriteS7TIME Writes a time value (4 bytes) to the data area.

WriteS7LTIME

Writes a time value (8 bytes) to the data area as nanoseconds.

WriteS7TIME_OF DAY

Writes a time of day (4 bytes) to the data area.

WriteS7LTIME_OF_DAY

Writes the time of day (8 bytes) to the data area as nanoseconds
since midnight.

WriteS7DATE_AND_TIME

Writes a "System.DateTime" to the data area.

WriteS7DATE_AND_LTIME

Writes a date and time value (8 bytes) to the data area as nano-
seconds since 01/01/1970 00:00.

WriteS7DTL Writes a date and time information (12 bytes) as a predefined
structure to the data area.
WriteS7CHAR Writes a "char" (1 byte) to the data area.

WriteS7STRING

Writes a S7 string to the data area.

The string is shortened when there is insufficient space in the
target string.

If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

WriteS7STRING_MAX_LEN

Only available for CPU function libraries for the Windows envi-
ronment.

Writes the maximum string length to an S7 string.
Is only required for "[OUT] Variant".

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

141

Helper functions for CPU function libraries

D.2 C#/VB helper functions

D.2 C#/VB helper functions

Value

Description

WriteS7WCHAR

Only available for CPU function libraries for the Windows envi-
ronment.

Writes a "char" (2 bytes) to the data area.

WriteS7WSTRING

Only available for CPU function libraries for the Windows envi-
ronment.

Writes an S7W string to the data area.

The string is shortened when there is insufficient space in the
target string.

If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

WriteS7WSTRING_MAX_LEN

Only available for CPU function libraries for the Windows envi-
ronment.

Writes the maximum string length to an S7W string.
Is only required for "[OUT] Variant".

Access to classic data

For the C# and VB programming languages, the following classes are available for reading
and writing in a classic data stream:

¢ OdkReadVariant

Supports all "ReadS7..." methods.

¢ OdkReadWriteVariant

Supports all "ReadS7..." and "WriteS7..." methods.

ReadS7 methods WriteS7 methods Description
ReadS7Bool WriteS7Bool Writes/writes/reads a "bool" (1 byte) to/to/from the data area.
ReadS7Byte WriteS7Byte Writes/writes/reads a "byte" (1 byte) to/from the data area.
ReadS7Word WriteS7Word Writes/writes/reads a "word" (2 bytes) to/from the data area.
ReadS7DWord WriteS7DWord Writes/writes/reads a "double word" (4 bytes) to/from the data
area.
ReadS7LWord WriteS7LWord Writes/writes/reads a "long word" (8 bytes) to/from the data area.
ReadS7Sint WriteS7Sint Writes/writes/reads a "short integer” (1 byte) to/from the data
area.
ReadS7Int WriteS7Int Writes/writes/reads a "integer" (2 bytes) to/from the data area.
ReadS7Dint WriteS7Dint Writes/writes/reads a "double integer” (4 bytes) to/from the data
area.
ReadS7Lint WriteS7Lint Writes/writes/reads a "long integer" (8 bytes) to/from the data
area.
ReadS7USint WriteS7USint Writes/writes/reads a "unsigned short integer" (1 byte) to/from the
data area.
ReadS7Uint WriteS7Uint Writes/writes/reads a "unsigned integer" (2 bytes) to/from the
data area.
Open Development Kit 1500S V2.5 SP4
142 Programming and Operating Manual, 12/2023, A5E35253941-AH

Helper functions for CPU function libraries

D.2 C#/VB helper functions

ReadS7 methods

WriteS7 methods

Description

ReadS7UDint

WriteS7UDint

Writes/writes/reads a "unsigned double integer" (4 bytes) to/from
the data area.

ReadS7ULint WriteS7ULint Writes/writes/reads a "unsigned long integer" (8 bytes) to/from
the data area.

ReadS7Real WriteS7Real Writes/writes/reads a "real number" (4 bytes) to/from the data
area.

ReadS7LReal WriteS7LReal Writes/writes/reads a "long real number" (8 bytes) to/from the

data area.

ReadS7S5Time

WriteS7S5Time

Writes/writes/reads a 16-bit (2 bytes) time value to/from the data
area.

ReadS7Time WriteS7Time Writes/reads a time value (4 bytes) to/from the data area.
ReadS7LTime WriteS7LTime Writes/reads a time value (8 bytes) to/from the data area.
ReadS7Date WriteS7Date Writes/reads a date and time value (2 bytes) to/from the data

area.

ReadS7TimeOfDay

WriteS7TimeOfDay

Writes/reads the time of day (4 bytes) to/from the data area.

ReadS7LTimeOfDay

WriteS7LTimeOfDay

Writes/reads the time of day (8 bytes) to/from the data area.

ReadS7DateAndTime

WriteS7DateAndTime

Writes/reads a "System.DateTime" to/from the data area.

ReadS7DateAndLTime

WriteS7DateAndLTime

Writes/reads a date and time value (8 bytes) to/from the data area
as nanoseconds since 01/01/1970 00:00.

ReadS7Dtl

WriteS7Dtl

Writes/reads a date and time value (12 bytes) as a predefined
structure to/from the data area.

ReadS7Char

WriteS7Char

Writes/reads a "char" (1 byte) to/from the data area.

ReadS7String

WriteS7String

Writes/reads an SIMATIC S7 string to/from the data area and re-
turns it as language-dependent string.

The string is shortened when there is insufficient space in the
target string.

If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

ReadS7StringCurlLen

Reads the current string length of a S7 string exception if the
current string length is larger than the maximum string length.

ReadS7StringMaxLen

WriteS7StringMaxLen

Writes/reads the maximum string length to/from a S7 string.
Is only required for "[OUT] Variant".

ReadS7WChar

WriteS7WChar

Writes/reads a "wide char" (2 bytes) to/from the data area.

ReadS7WString

WriteS7WString

Writes/reads an S7W string to/from the data area and returns it as
language dependent string.

The string is shortened when there is insufficient space in the
target string.

If no maximum string length is set in the case of a "[OUT] Vari-
ant", the current string length is set as maximum string length.

ReadS7WStringCurLen

Reads the current string length of a S7W string exception if the
current string length is larger than the maximum string length.

ReadS7WStringMaxLen

WriteS7WStringMaxLen

Writes/reads the maximum string length to/from a S7W string.
Only required for "[OUT] variant".

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH

143

Helper functions for CPU function libraries

D.2 C#/VB helper functions

Access to classic DBs

Use in C#

using OdkInternal;

public ushort SampleFunction

{

OdkReadVariant rv
int 1 = rv.ReadS7DINT (0) ;
// do something with i
return ODK SUCSESS;

}

Use in VB

Imports OdkInternal;

Public Function SampleFunction

{

Dim wv As OdkReadWriteVariant
Dim value As Short

wv.WriteS7INT (8,

return ODK SUCSESS;

}

144

(byte[] myDB)

new OdkReadVariant (myDB) ;

(ByRef myDB As Byte[]) As UShort

= new OdkReadWriteVariant (myDB)

calculate the value somehow

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Instructions for CPU function libraries

E.1

E.2

E.3

"Load" instruction

The "<STEP7Prefix>_Load" instruction has different parameters that depending on the

development environment:

* Development of a CPU function library for the Windows environment (Page 54)

* Development of a CPU function library for the realtime environment (Page 91)

"Unload" instruction

The "<STEP7Prefix>_Unload" instruction has different parameters that depending on the

development environment:

* Development of a CPU function library for the Windows environment (Page 60)

* Development of a CPU function library for the realtime environment (Page 96)

"GetTrace" instruction

The function block (Page|97) "GetTrace" is included in the default CPPfile "<project>.cpp”.

GetTrace

TraceCount

| STATUS

The following table shows the parameters of the "GetTrace" function block:

Section

Declaration

Data type

Description

Output

STATUS

INT

Number of trace entries actually read

Input

TraceCount

INT

Number of trace entries to be read

Output

TraceBuffer

Array

[0..255] of
String[125
]

Trace string array for the user
Each trace string consists of:

Date
Time-of-day
OB number
File name
Line number

Trace text (trace implemented by the user)

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

145

Index

C

Callback functions
Realtime,|81
Windows, |49
Calling functions
Realtime,|93
Windows,|57
Certificate of license, 25
Commissioning
C/C++ Runtime,|113
Context Application,|36, 70
Context Realtime, 70
Context System,|36
Context User,|36
Creating a project
CIC++ runtime application, 107
PLCSIM Advanced, 120
Realtime,| 65
Windows,|28
Customer service, 7

D

Debug (Test),|85
C/C++ runtime application, 117
Debug (Windows), 62
Defining functions,|37, 71
Defining runtime properties
PLCSIM Advanced, 123
Realtime,|69
Windows, |34
Definitions,|7
Development environments,|18
Development steps,|20
Documentation, 7
Dynamic memory,|83

G

Generating an application
C/C++ runtime application, 111
PLCSIM Advanced, 127
Realtime, 68
Windows, |34

146

Implementing functions
Custom functions, |50, 82, 126
Realtime, 80
Windows, 48
Installation, 23
Licensing,|25
Internet Web sites (Siemens),| 7

K

Knowledge required,| 7

L

License key, 25
Loading functions
Realtime, 91

Windows,|54

M

Manuals, 7

P

Post Mortem analysis,|99

Product overview, 15
Basic procedure, 20
How it works, 15

S

Siemens contact information, 7
STEP 7 import
Realtime, 90
Windows,|52
Support,|7
Syntax rules,|37, 71
System requirements, 21

Open Development Kit 1500S V2.5 SP4
Programming and Operating Manual, 12/2023, A5E35253941-AH

Index

T

Target group,|7
Technical support,|7
Trace buffer, 98
Transfer to target system
CIC++ application, 117
Create connection to the target system,|115
Realtime, 88
Windows,|51

U

Uninstalling, 27
Unloading functions
Realtime, 96
Windows, |60

W

Web sites (Siemens), 7

Open Development Kit 1500S V2.5 SP4

Programming and Operating Manual, 12/2023, A5E35253941-AH 147

	Open Development Kit 1500S V2.5 SP4
	Legal information
	Table of contents
	1 Introduction
	1.1 S7-1500/ET 200MP Documentation Guide
	1.1.1 S7-1500 / ET 200MP Documentation Guide
	1.1.2 SIMATIC Technical Documentation
	1.1.3 Tool support

	2 Security information
	2.1 Cybersecurity information
	2.2 Information about third-party software updates
	2.3 Notes on protecting administrator accounts

	3 Product overview
	3.1 Introduction to ODK 1500S
	3.2 Development environments
	3.3 Basic procedure

	4 Installation
	4.1 System Requirements
	4.2 Installing ODK
	4.3 Licensing ODK 1500S
	4.4 Subsequently integrating project template for Windows CPU function libraries in Visual Studio
	4.5 Uninstalling ODK

	5 Developing a CPU function library for the Windows environment
	5.1 Creating a CPU function library
	5.1.1 Requirements
	5.1.2 Creating a project
	5.1.2.1 Solution Explorer structure: C++ project
	5.1.2.2 Solution Explorer structure: C# project
	5.1.2.3 Solution Explorer structure: VB Project

	5.1.3 Generating a CPU function library
	5.1.4 Defining the runtime properties of a CPU function library
	5.1.5 Environment for loading or executing the CPU function library
	5.1.6 Defining functions and structures of a CPU function library
	5.1.6.1 Using ODK_VARIANT as parameter
	5.1.6.2 Handling strings
	5.1.6.3 Definition of the <Project>.odk file
	5.1.6.4 Modifying the <Project>.odk file
	5.1.6.5 Comments
	5.1.6.6 Comments in Visual Basic

	5.1.7 Implementing functions
	5.1.7.1 General notes
	5.1.7.2 Callback functions
	5.1.7.3 Implementing custom functions

	5.2 Transferring a CPU function library to the target system
	5.3 Importing and generating an SCL file in STEP 7
	5.4 Executing a function
	5.4.1 Loading functions
	5.4.2 Calling functions
	5.4.3 Unloading functions

	5.5 Remote debugging
	5.5.1 Performing remote debugging

	6 Developing a CPU function library for the realtime environment
	6.1 Creating a CPU function library
	6.1.1 Requirements
	6.1.2 Creating a project
	6.1.3 Generating a CPU function library
	6.1.4 Defining the runtime properties of a CPU function library
	6.1.5 Environment for loading or running the CPU function library
	6.1.6 Defining functions and structures of a CPU function library
	6.1.6.1 Defining functions a CPU function library
	6.1.6.2 Use of ODK_CLASSIC_DB as parameter
	6.1.6.3 Handling strings
	6.1.6.4 Definition of the <Project>.odk file
	6.1.6.5 Modifying the <Project>.odk file
	6.1.6.6 Comments

	6.1.7 Implementing functions
	6.1.7.1 General notes
	6.1.7.2 Callback functions
	6.1.7.3 Implementing custom functions
	6.1.7.4 Dynamic memory management
	6.1.7.5 Debug (Test)

	6.2 Transferring a CPU function library to the target system
	6.3 Importing and generating an SCL file in STEP 7
	6.4 Executing a function
	6.4.1 Loading functions
	6.4.2 Calling functions
	6.4.3 Unloading functions
	6.4.4 Reading the trace buffer

	6.5 Post Mortem analysis
	6.5.1 Introduction
	6.5.2 Execute post mortem analysis

	7 Development of a C/C++ runtime application
	7.1 Install additional Eclipse plugins
	7.2 Create C/C++ application
	7.2.1 Requirements
	7.2.2 Creating a C/C++ Runtime Application project
	7.2.3 Editing C/C++ code
	7.2.4 Generate C/C++ runtime application

	7.3 Load C/C++ runtime application in the target system
	7.3.1 Configuring PuTTY
	7.3.2 Commissioning C/C++ Runtime
	7.3.3 Set up new connection to the target system in Eclipse
	7.3.4 Load and execute C/C++ runtime application in the target system via Eclipse
	7.3.5 Load and debug C/C++ runtime application in the target system via Eclipse

	7.4 Execute C/C++ runtime application
	7.4.1 Start application via secure shell

	8 Developing a PLCSIM Advanced function library
	8.1 Creating a PLCSIM Advanced function library
	8.1.1 Requirements
	8.1.2 Creating a PLCSIM Advanced function library with Visual Studio

	8.2 Transferring the PLCSIM Advanced function library to PLCSIM Advanced
	8.3 Defining the runtime properties of a PLCSIM Advanced function library
	8.4 Definition of the <Project>.odk file
	8.5 Modifying the <Project>.odk file
	8.6 Editing PLCSIM Advanced function library
	8.7 Generating a PLCSIM Advanced function library
	8.8 Executing a function
	8.9 Debugging C/C++ Code

	9 Using example projects
	A General conditions
	A.1 Number of loadable CPU function libraries
	A.2 Compatibility

	B Syntax Interface file <project>.odk for CPU function libraries
	B.1 Data types
	B.2 Parameters

	C Code generator messages for CPU function libraries
	C.1 Error messages of the code generator
	C.2 Warnings of the code generator

	D Helper functions for CPU function libraries
	D.1 C++ helper functions
	D.2 C#/VB helper functions

	E Instructions for CPU function libraries
	E.1 "Load" instruction
	E.2 "Unload" instruction
	E.3 "GetTrace" instruction

	 Index

